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I. FOREWORD 

Our lmrpose  is to in t roduce some models  of inference for risk 
processes. The  bayes ian  v iewpoint  is adop t ed  and  for our t r e a t m e n t  
tile concepts  of exchangeab i l i ty  and  par t ia l  exchangeab i l i ty  (due to 

B. de Finet t i ,  [6], [17]) are essential• 

We recall the defini t ions:  

The  r a n d o m  var iables  of a sequence (X1, X2 . . .) are exchangeable  
if, for every  n, the  joint  d is t r ibut ion  of 'n r .v.  of the sequence is 
a lwavs  the same,  w h a t e v e r  the n r.v. are and  however  they  are 
pe rmuted .  

F r o m  a s t ruc tu ra l  point  of view an exchangeab le  process X~, X2 
• . .  can be in tended  as a sequence of r .v.  equal ly  d i s t r ibu ted  a m o n g  
which a " s tochas t i c  dependence  due to u n c e r t a i n t y "  exists. More 
precisely the  X~ are independen t  condi t ional ly  on any  of a given 
set (finite or not) of exhaus t ive  and  exclusive hypothes is .  These  
hypo theses  m a y  concern,  for instance,  the  values  of a p a r a m e t e r  
(number  or vector)  on which the c o m m o n  dis t r ibut ion,  of known 
funct ional  form, of X ,  depends.  We  shall res tr ic t  ourselves to this 
case. Therefore ,  we shall  a s sume  tha t ,  condi t ional ly  on each possible 
value 0 of a p a r a m e t e r  O, the  X ,  are independen t  wi th  F(x/O)  as 
known dis t r ibut ion  funct ion.  According to the bayes i an  approach ,  
a p robab i l i t y  d is t r ibut ion  on ® mus t  be assigned. 

I f  we denote  this d.f. as U(0), the d is t r ibut ion  of the Xt i s  the mix tu r e  : 

F ( x )  = f F (x lO)dU(O)  

If  the obse rva t ions  re levan t  to n of the r .v.  X~ (e.g. to the first  n 
X x  = x i ,  X ~  = x2 . . . .  X n  = xn)  are avai lable ,  the  d is t r ibut ion  on 
® is modif ied  according to 

u(01Xl, x~ . . . . .  xn )  oc L (x~ ,  x~ . . . . .  x~10) u(0) 
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where u(O) denotes the density of the distribution (supposing that  
it exists. The modification in a discrete case is obvious). 

L(x l ,  x2 . . . . .  xn[O) is the likelihood of O, after the observation 
X = X l ,  X 2 ,  • . • - ~ n .  

We have 

L(xl ,  xe . . . . .  x,dO) = l'i f(xdO) 
i - I  

if f(x/O) is the density of the X distributions (in the discr, ete case 
the modification is obvious). 

The d.f. of the Xi after the n observations is 

Vn(x)  = .[ F(xlO)dU(Olxx, x~ . . . . .  Xn) (I) 

In the bayesian formulation the exchangeability can be a sub- 
stitute for the randomness concept of the sampling theory. Ac- 
cording to this viewpoint, the partial exchangeability can be defined 
assuming that,  also in this case, the X, are independent condi- 
tionally on each hypothesis about the value of a parameter @, but 
now their distributions are different and depend, as well as on 0, on 
another observable enti ty ~,, relevant to each X,. If, for instance, 
the modalities of ~, are only two, two subsequences are individual- 
ized 

X~ 1), X2 (1) . . . .  and X~ 2), X~ (2) . . . .  

In each of them the X~ are exchangeable and have as d.f. : 

F(h)(x) = f F(~)(xlO)dU(O), h = I,  2. 

After n observations relevant to n variables 

x [  = =), = x = x (=) 
, , . ~ n 2 n 2  

(n~ + n2 = n), the distributions of the X~ a) become 

F(a)n,,n,,*J (~' = S F(h)(x{O)dUn(O), h = I, 2 
where 

~t t n. a 

dU.(O) oc n f(i)(x~°lO)n f(~)(x~2)lO)dU(O) 
~ - 1  t - t  

Referring to one risk process, we shall now assume to collect--for 
each of the subsequent equally sized intervals of time (e.g. years)--  
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the  observat ions  re levant  to the  num b er  of claims and the amoun t  
of each of t hem (and then  the  cumula t ed  claim per  year).  

Thus,  schematical ly,  the observat ion in the per iod i supt)lies the 
da t a  

n i 

n~;x~ O,x2 (0, x (0" S t = X x ( ° ; i =  1,2,  
• * ' '  h i '  n " • ' 

n - 1  

Ins tead  of l imiting the observat ion  to one risk, we could enlarge it 
to more  risks which, a l though "s imilar" ,  must  be different iated,  
f rom the ve ry  beginning, owing to some feature  peculiar  to each of 
them.  T h a t  is, for instance,  in the observat ion of the claim number  
process in mo to r  insurance to consider cars with different  H.P.  as 
"s imi la r"  risks, or, in fire insurance,  to consider commercia l  buil- 
dings with different  k ind of services as par t ia l ly  exchangeable  risks. 

Then,  we can resort  to the par t ia l  exchangeabi l i ty  in order  to set 
up an inference procedure  which allows us to specify our  opinions 
abou t  the behav iour  of a risk also by  means  of observat ions on a 
similar bu t  d i f ferent ia ted  one. This is par t icu lar ly  useful when the 
observat ions on a single risk are few. 

2. I N F E R E N C E  F O R  N U M B E R  O F  C L A I M S  

a) Referr ing to a single risk, be it of interest  to make  inference for 
the  number  of claims per year.  

The sampling variables are, in this case, the r.v. of the sequence 
N, ,  N~ . . . .  and  we can consider them as the subsequent  increments  
(relevant  to  equal  periods of time) of a claim n u m b er  process Mt  
(number  of claims in o, t) N~ = M~ - -  M s_ 1, i = I, 2 . . . .  

In  this approach,  it is spontaneous  to consider a "weigh ted  
Poisson process" where  

P{M, = n} = .I 
(Ot)" 

e-°*dU(O), n = O ,  I . . . .  

o 

This  process, in t roduced  in 194o b y  O. Lundberg  [IOl, under  the 
name of " c o m p o u n d  Poisson process"  has been s tudied in te rms of 
a process wi th  exchangeable  increments  by  H. Bf ih lmann [I l in 196o. 
Inference procedures  for this process have  a l ready been t r ea t ed  b y  
several  Authors  (besides O. Lundberg  himself  in the quo ted  book 
[IO]). However  we deem it interest ing to  expose some considerat ions 
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in order  to show how the  above  i l lus t ra ted fo rmula t ion  can be 
appl ied to this fundamen ta l  model.  

First  of all, we can prove  t ha t  one arr ives to a weighted Poisson 
process f rom a Markov claim n u m b e r  process assuming t h a t  the  
in terarr ival  t imes are exchangeable.  

The  quest ion is to ident i fy  the intensit ies for occurence,  Xn(t), 
n = o, i . . . . .  of the Markov process according to the  required  
condi t ion of exchangeabi l i ty .  

These  intensit ies appear  in the differential  sys tem 

~Pu(v, t )  
~t - -  X,(t)pu('~, t) i = o, x . . . .  

3t - -  X~(t)p,j(~,t) + X j - l ( O p o - l ( v , t )  j > i  ---- o, I, . . .  (2) 

which, under  the initial  condit ions p,j(,~, , )  = 8{, gives the condi- 
t ional  probabil i t ies  of t ransi t ion.  Le t  T1, T2 . . .  be the  subsequent  
in terar r iva l  times, we have  

F T , ( t  ) = P { T ~  < t }  = I - - P o o ( O , t )  = I - - ~ e - !  x°~x~ax 

We have  also 

P { T ~ > t J T 1  = "~} = P n ( x ,  t + ~) = e - i  x'cx+~)ax 

So the  densi ty  of the joint  d is t r ibut ion  of Tx, T=, if Xo(t), Xl(t) 
cont inuous,  is 

I t I + t ~  

and an analogous formula  can be wr i t t en  for the joint  d is t r ibut ion  
of the first n in ter-arr ival  times. 

Le t  us suppose, now, t ha t  Zn(t) > o when t is finite and  for each 
integer  n. If  kn(t) -~- o for n > N,  only N arrivals  are possible in the  
Markov process. Le t  us assume ~n(t) cont inuous  for each n and  

t > o 1) Then  let us denote  l(t) = e - i  x0<z)a2 and  q~(t) = e - I  x~<x)a~ 
- -  " = 0 ° 

~) These  cond i t i ons  i m p l y  t h a t  the  j o i n t  dens i t i e s  of T,  are c o n t i n u o u s  a n d  
s t r i c t ly  pos i t ive  for f in i te  va lues  of t h e i r  a r g u m e n t s .  F o r  f u r t h e r  cons idera -  
t ions  on  t h e  n a t u r e  of t he  kn (t) see L. D a b o n i  [5], L. Cr i sma  [4] a n d  M. 
S t r u d t h o f f  [i2]. 
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The funct ions  l(t) and  ~(t) are der ivable  and  s t r ic t ly  posi t ive for 
t > o .  

The  condi t ion of exchangeabi l i ty  

f~ . , r , ( t , ,  t~) = f~.~r,(t~, t~) v t .  t~ >_ o 

implies tha t  

~0'(l, + t2) q~'(t~ + t~) 
l '(t,)  ~( l , )  - l'(t2) ~(t2) 

namely  

v(t) oc l'(t). 

So l(t) is twice derivable.  Now we have  

and  therefore  

t '(t)  ~'(t)  
X0 --  and  Xl(t) - -  l(t) ~o(t) 

¥ h ,  t2 > o 

v'(t) 
x,( t)  = - -  l ' (O" 

Reasoning in the same way  upon the dis t r ibut ion of Tx, T,,  T3, we 
r" ( t )  

obta in  X3(t) - -  l " ( t )  " And so on for Xn(t) ,  n > 3. 

Necessarily the l(t)  must  be comple te ly  monot6ne :  (--I)*l  (0 (t) > o 
Z(-+i)(t) 

and, generally,  it follows tha t  Xn(t)  = - -  l (m( t )  • 

Now we have  l(o) = I and therefore  (Bernstein 's  theorem) l(t)  

satisfies our  condit ions iff 

t(t) = ~ ~ 0 ,  a u ( 0 )  
0 

with U(0) as d.f. of a r.v. 0 > o. 

We have,  by  now, established tha t  the  r.v. Tx, T2 . . . . . .  in ter-  
arr ival  t imes in a Markov claim num b er  process are exchangeable  iff 

F T ( t )  = I -  l(t) = I -  i e - ° t  dU(O)  • 
0 
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In  the  hypothes i s  t h a t  O-1 and  O-2 are in tegrable  wi th  respect  to 
U(O), we obta in  easily 

E ( T )  = i [ i - - F ( t ) l d t  = i O - ' d U ( O )  = E (®-1), 
0 o 

va r  (T) : 2 E (0  -2) - -  E ( 0 - ' )  2, 

cov (T, ,  Ti)  = E (0  -2) - - E  (@-1i12. (3) 

where  in the  r igh t -hand  sides E is the  expec ta t ion  with  respect  to 
the  d is t r ibut ion  U(0). 

F r o m  the  (2), b y  recur ren t  in tegra t ions  we find 

( t - - ~ ) ~  l (~+~) it) i = o,  ~ . . . .  
P*i+n(*,t) = ( - - I )  n n! /(*)('~) ' n - -  o, I ,  . . .  

I t  is easy  to ver i fy  t h a t  

P { M t  - -  M ,  = n} = Z p~+n(~,  t) pot(O, ~) = 
l 

n! ( - -  ~)* iE (0 = 
t 

= (-- ~)" (t - -  ~ ) ,  l ( , ) ( t - ~ )  = . f  (t - -  ~ ) ,  O ,e_O,  ")dU(O). 
n! n! 

o 

Analogously  it is p roved  t h a t  for v < t < v + h, 

P { M t ~ M , =  n) A ( M t + h - - M ,  4-a = m)} = 
hn+m 

= ( - -  i )n+m n! ra! l("+m)(2h)'  n , m  ~- o, I . . . . .  

Thus ,  for a f ixed h, the  jo int  d is t r ibut ion  of two inc rements  
re levant  to equal  and  disjoint  in te rva l s  is symmet r i c .  And  this is 
for as m a n  3 , i nc rements  as we want .  

Then  pu t  N~(s)  = Mhs  - -  M/h_  1/8, h = I ,  2 . . . . .  s > o, the  r.v. 
of the  sequence Nl(s ) ,  Ni (s ) ,  N3(s) . . . .  are exchangeab le  wi th  distri-  
bu t ions  

s n 

P{Nh(s )  = n} = ,~. { One-°SdU(O) 
o 

h ~ i ,  2 ,  . . . 



44 I N F E R E N C E  FROM A BAYESIAN V I E W P O I N T  

I t  is easy to s tate  

E(Nh(s ) )  = sE(®),  

var  (Nh(s))  = s2var (®) + sE(®),  

cov (Nh(s),  Nk(s) )  = s~var (®). (4) 

La ter  on we will assume s = I and  denote the number  of arrivals 
in the h : t h  un i t a ry  interval  of t ime (h :th year) by  Nh. 

In  conclusion the r.v. 

N,, N2, N3 . . . .  
and  

T1, T2, T3 . . . . .  

whose dis tr ibut ions depend on the pa ramete r  0, are exchangeable.  

Our initial distr ibution for ® is the U(0). Now by  means  of the 
observat ions  relevant  to t r.v. 

Nx = nl,  N2 = n2 . . . . .  N t  = nt 

we can specify our knowledge about  ® according to wha t  s ta ted  
sub I, 

Here we have 

L(n l ,  n2 . . . . .  n/]0) ocO nl+n . . . . . .  n, e-tO = One-tO 

with 

Hence 

and 

t 

n :  ] ~ n  t. 

Ue.n(0) : U(Olnl, ne . . . . .  nt) = 

Then after  the observat ions  we have 

o 
f xne- t~dU(x ) 
0 

i One- t°dU(O) 
0 

i On ~ le - tO dU(O) 

E.n(O)  = I OdUn,do) = " 
o ~ One- to dU(O) 

0 

= x n ( t )  

vart,n(®) = Xn(t)[Xn+l(t) - -  Xn(t)]. 
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This  is a posi t ive q u a n t i t y  unless Ut,n(0) is concen t ra t ed  in one 
point .  So t ha t  for the  increments  Nt  +,, i = i ,  2 . . . .  and by  (4) 
we have  

E t , n ( N h )  = Xn(t), 

var t , . (Nh)  = Xn(t)[X. +~(t) - -  X.(t) + 11, 

c o v t , n ( N h ,  N D  = Xn(t)[Xn+l(t) - -  X.(t)] > o. 

If the  observat ions  concern the intervals  Tt  = h,  T2 = t2 . . . .  
n 

T n  = tn, we have  L ( h ,  h . . . . .  tn[O) ---- One -°t ,  with t = Y~ h. 

Then,  the conclusions are the same we have reached for the  
process {N d except  t ha t  t is now real, while before it  was integer.  

In  bo th  cases the "suff icient  s ta t i s t ic"  is the to ta l  number ,  n, of 
arr ivals  and  the length,  t, of the whole in terval  of observat ions.  

After  the n observat ions  and taking into account  the (3), we get 

E , , n ( T , )  = E ( T # , ,  t ,  . . . . .  tn) = ~O-~dUt ,n (O)  = 
o 

I On- t e - ° tdU(O)  
I o 

O n e - ° t d U ( O )  ~ . n - 1  (t) 
o 

and, if n > 2, 

covt,n(T,,  Tj) = 

2 Xn-  1(0 - -  Xn-  2(t) 
var t ' n (Td  = Xn_l(t) "Xn_~(t----)--' 

x . _  , ( t )  - -  x .  _ 2 ( 0  
Xn_x(t)'Xn-2(t) ' i , j = n + I , n + 2  . . . . .  

F ina l ly  we note  tha t  Xn(t) is a funct ion of the sufficient s tat is t ic  
(n,  t), whose funct ional  form depends on the initial  d is t r ibut ion 
U(O). In  the  statistic,  the  integer  n (number  of arr ivals  in o, t) does 
not  decrease when t increases. Let  us suppose, now, tha t  for a f ixed 

u(o), 
lim Xn(t; U) = Xu 
t--++ oo 

t hen  bo th  covariances  of the r.v. {N d and  {T,} converge to  o when 
t---~ -t- oo.  
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The  stochast ic  dependence due to the ince r t a in ty  fades out  a n d  
we are, asymptot ica l ly ,  in condit ions of independence.  Then  we can 
expec t  tha t  the limit Xu = X does not  depend on the  dis t r ibut ion 
U(0) unless it is not  cons tant  in a ne ighbourhood of X. In  the quo ted  
paper  of O. Lundberg  it  is p roved  tha t  if nit = Z, when t varies, 
t hen  lim Xn(t) = Z (if U(0) is not  cons tant  in a ne ighbourhood  of Z). 

t---~ + ~ 

After  t rea t ing  the inference problem in general  condit ions,  let us 
t r y  to deta i l  the  initial d is t r ibut ion U(0). 

I t  is usual to assume tha t  it belongs to the " G a m m a "  class 
(conjugated to the likelihood function).  I t  is known tha t  in this 

~ -q -n  
case the weighted process is a P61ya process with Zn(t) -- ~ + t 

if ~(0) = U'(0) o50"-1e -x° 

In  fact,  however,  the  choice of such a U(0) means  tha t  we a l ready 
have some knowledge about  19, coming for instance f rom past  
experience.  Wi th  weak knowledge, we could choose ~(0) x 0 -1 (im- 
proper  distr ibution)~).  The Ut,n(O) would be proper  and of the 
G a m m a  type  (and even erlangian) as follows from 

ut,n(O) o¢One -Or 0 -1 = on-ie -Ot 

when n = Z n, > I. Here  n and t are integer.  Considering a G a m m a  
4 - 1  

funct ion with posit ive and  real pa ramete rs  ~, X, this means  tha t  
we make  a choice in the larger class of the G a m m a  dis t r ibut ion 
(with v/Z ~ n/t). As a l ready recalled, under  these condit ions the 
claim number  process is a P61ya process, where 

P{Nn = k} -- F(~)k! 0~+k-~e-O+X)°d0' k = o , I  . . . .  

t ha t  is 

P{Nn = k } -  (~)~ k! p * ( I - - p ) k ,  k = o , I  . . . .  (5) 

where (~ )~=  v(v + I) . . .  (~ + k - - i ) , ( v ) o =  i a n d p  = X / I  + Z .  

The  (5) are negat ive binomial  distr ibutions,  z ) 

2) The adoption of such improper distributions, failing past experience, 
has been suggested by H. Jeffreys. See, on this subject, also D. V. Lindley 
[8], [9] and A. Zellner [I4]. 
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b) Then we can approach the inference for the number of claims 
in the following terms. We have good grounds for considering the 
arrival process as Poisson's with a random intensity ®. If the risk 
is observed from the beginning (i.e. from the starting moment of the 
possible observations), and then an improper distribution u(0) ~ 0-1 
is assigned to the parameter ®, after t years (and with n claims in 
o, t) we should obtain a negative binomial distribution of the sub- 
sequent increments. That is the (5) with ~, = n and p = t / I  + t. 

Starting from the beginning of the (t + I) : th  year and thinking 
that  the past observation is not available, we could adopt the method 
previously illustrated (weighted Poisson process with u(0) oc 0-1) 
or, otherwise, assume that  the N n  are exchangeable with the 
distribution (5) whose parameters are now random and infer for 
them. 

c) Apart from the previous consideration, we now intend to infer 
for the process of the exchangeable r.v. N1, N2 . . . .  with distribu- 
tions 

Pk : P{N*  : k} = J" P { N t  = k]~, O} dU(~, O), k : o, i . . . .  

where 

P { N t  : kit, 0} : -k-T 0~(I - -  0)~' o < ~ < + oo, o < 0 < I, 

(5') 
and, as usual, U(~, 0) is the initial distribution, that  is supposed to 
be provided with density u(~, 0), on the parameters ~ and O. The 
N, can, as previously, count the number of claims relevant to a 
given risk in the i : th  year (i = I~2 . . . ) .  The model we are going to 
work out seems to be interesting especially when the observation for 
every period is slight (see § 3). 

If in t subsequent periods, n~, n~ . . . . .  nt arrivals respectively have 
been observed, the distribution of the N, becomes 

pr in t ,  n~ . . . . .  nt = ~ d~ S P { N ,  ---- kit, O} u(~, OIn~, n2 . . . . .  nt) dO 
0 0 

and, in particular, we have 

E(N~rnl,  n2 . . . . .  nt) = d~ ~ ~ u (~, Olnl, n2 . . . . .  nt) dO. 

o 0 
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The  basic p rob lem now lies in choosing the  initial  d i s t r ibu t ion  
U(~, 0). I t  is to be not iced for this purpose  t h a t  the  l ikelihood of the  
obse rva t ion  is 

L(n,, n~ . . . . .  ntiS, 0) oc (~)n," (~)n," . . .  " (~)n," 0 t¢ (I - -  0) n 
t 

with  n = E n,. Then  it is sensible for m a t h e m a t i c a l  convenience  to 

choose, for instance,  a dens i ty  of the  t ype  

u(~, 0) oo R(~)0T~*~'-I(I - -  0) ~-1, o < ~ < + oo, o < 0 < I ,  (6) 

where  R(~) is a sui table  ra t iona l  funct ion  of ~ and  a, ~, ¥ are real, 
non negat ive ,  numbers .  

Note  tha t ,  for a f ixed ~ and  when  y~ + ~ - -  I > o, ~ > I ,  the  
dens i ty  u(~. 0) reaches its m a x i m u m  value  a t  the  po in t  

0 k = 7 ~ + 0 t + ~ _ _  2 

and  this q u a n t i t y  converges  to I if ~ --> + oo. 

If, in our  opinion, the  expec ta t ion  
I - - 0  

E(NI~, O) = ~ 0 

is near  to a va lue  c we could choose 0~, ~, y, R(~) so . tha t  the  dens i ty  
becomes  concen t r a t ed  in a ne ighbourhood  of the  curve  ~(I - -  0) - -  
- -  cO = o in the s t r ip  o < 0 < I ,  ~ > o of the  (~, 0) plane.  

We  shall  a ssume u(~,0) oc 4 -1 0 ~'~÷~'-1 ( I - - 0 )  ~-1 wi th  x > o ,  
> o, y >_ o. We  have  

u(~, 01n~, n~ . . . . .  nt) oc~-~(~)~, (~)~, . . .  (~)~,.0"+~¢+ ~-~(x - -  0) ~+~-~ 

Such dis t r ibut ion  is p roper  (for n > I).  In  fact  Qn-x(~) = ~-1 
I 

lII (~)n, is a pol inomial  of the  (n - -  I) degree. On the  o ther  hand,  

we have  
1 

J" 0(t+~)~+~-~(I - -  0)n+~-~d0 ---- B[(t + ¥)~ + a, n + ~]. 
0 

Now we know tha t ,  if q remains  fixed, we have  

r (p + q) 
l im p - q  = i ,  
, ~  r ( p )  
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so that for 4 >~ ,  

r ( n  + 
B[(t + y)~ + u, n + ~] < (I + s) [(t + Y)4 + a]n+~- 

Hence, there exists the integral 

C ---- fQn- l (4 )  B[(t + y)~ + ~, n + ~] d~ 
0 

and it is finite when ~ > o, ~ > o and n > I. 

Note that also the initial distribution is proper if in the (6) the 
function R(~) is finite for every 4 > o and, for ~ ~ + oo, R(~) = 
= 

For the distributions of the N~, after the observations, we now 
have 

pk]nl, n~ . . . . .  rtt = P { N ,  = kin1, n2 . . . . .  nt} = 
o0 1 

0 0 

C - 1  oo 

--  k! j" (4)gQn_x(~) B[(t + Z + 1)4 + ~, n + f3 + k] at, 
0 

k = o , I  . . . .  ; i = t +  I , t +  2, . . . .  

Namely, taking into account the 
(q) k 

B(p,  q + k) = B(p,  q) (p + q) , 

# k t n ~ ,  n~ . . . .  n t  = 

k = o, I, 2, . . . ,  

(~)kQn-~(~) f~)] B E ( t + y +  I)4 + o~, n + ~] d~ 
[ ( t + y +  I ) ~ + ~ + n +  

0 

If, in particular, ~ is integer, taking into account the 

r(n + 
B ( p , n + ~ ) - -  (P)n÷~ 
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and put t ing  

W(' ] l aVe  

P k l n , .  n., . . . . .  * l , -  

with 

.... 

II , , (~;t)  = H ~" + t~7-. l /  
i o 

k I 
• ~ k ( ~ , ~ , 7 ; n t , n 2  . . . . .  n t )  

(7) 

f "k(~)Q'-'(~) 
o 

d4 

n;ii( b 
t~ 

Here is 

and  

n + ~ + ~ + ! )  rl,~a(~;t+i)' 
--] 4 +  t + y + i  

i , o  

,~o(4) = lnn.~(~;t+ x)" 

k = i , o  ~ o ° ° 

Apart  from per turbing factors Vk, the (7) are the probabilities of 
t + •  

a negative binomial distr ibution with parameters  n + ~, t + y + I" 

Note tha t  the Vk is the weighted average of the function v~c(4) with 
the weighting densi ty  Qn - 1 (4)/H n + ~ (4 ; t). 

For  every ~ in (o, + oo) we have .o(4) < I and '~k(~) ~ ~k+l(~) 
n + ~ + ~  

according to whether  k ~ ~- 
t + 7  

Therefore also the sequence ~k at first increases (and ~z0 < i) and  

then decreases if there exists k > t ~ -  7 ' 



INFERENCE FROM A BAYESIAN VIEWPOINT 51 

These results (valid if ~ is integer and  ~ > o), however, do not 
allow us to evaluate  the expectat ion E(Ni ln l ,  n2 . . . . .  nt) of the Ni 
after the observations. 

I t  is easy to s tate  tha t  E(N~I . . . .  ) exists if x > I (and ~ > o). 
Under  these conditions we have 

E ( N ,  Inl, nz . . . . .  he) = S dK } ~0-1(i  - - 0 )  u (L  01nl, n2 . . . . .  he) dO = 
o 0 

0 

fQn_~(~)B[( t  + ¥)4 + ~, n + ~] d~ 
0 

and since, if p > o, 
q 

B ( p , q + I )  = ~ B ( p + l , q )  

results 

n + ~ i f 0 t = i ,  E(Ni !n l ,  n2 . . . . .  nt) --  t + y 

for x > i 

E ( N ,  tnl, n2 . . . . .  nt) = 

i Cn + ~)~ 
(t + v)~ + ~ - - i  

O 

and 

Qn-l(~) BF(t + y)~ + ~, n + ~] d~ 

SQn-i(~) B[(t + y)~ + 0c, n + ~] d~ 
o 

The ratio in the right side is the average of the function 

(n + ~)~ 
~(~) = (t + v ) ~  + ~ - -  

with the densi ty Q•_ 1(~) B[(t + y)~ + 0~, n + ~] and, in o < ~ < + oo, 
n + ~  

we h a v e o  < ~(~) < t + y  

If the ratio nit converges to a limit X, when t (and n) diverge, then  
asymptot ica l ly  we have 

n + ~  
~(~)  ~ - - -  ~ x 

for ~ va o and  E ( N ,  lnl, n ,  . . . . .  nt) ,-~ X. 
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Note that  this conclusion and the one relevant to the whole 
distribution, are valid in the more general class of initial distribution 

P,(~) 
(6) if in R(~) -- pj(~), the degree, i, of the polinomial at the 

numerator, Pt(~), is smaller than j of the denominator. Instead of 
Qn-1(~), there is, in this case, the rational function R(~) II (~)n~, 
so that  only the weighting densities above considered vary. 

3" I N F E R E N C E  FOR THE NUMBER OF CLAIMS: PARTIAL 

EXCHANGEABILITY 

We propose the following model of partial exchangeability, whose 
calculations will not be given. 

Let us observe the numbers of claims, per year, relevant to two 
"similar" but differentiated risks. Let us assume that  for both, the 
distributions of the number of claims in a year are negative binomial, 
namely of the form (5'), but that  the parameters ~,, 0, are different 
for the two risks. 

We are under conditions of partial exchangeability, if, for instan- 
ce, the parameter ~ is random and common to both risks, while 
the parameters 01 and 03 are different and known. 

Alternatively we can consider 0 random and common to both 
risks and differentiate them by means of the known value of the 
parameters 41 and ~2. 

More generally, we could assume that  the common parameter is 
unknown too; we will deal with this case afterwards. 

a) Let then N[ 1~, N~ 1) . . . . .  

and N~ 2~, N~ 2~ . . . . .  

be the r.v. which count the numbers of claims per year of the two 
risks and assume that  

P{N~I ' =  k} = f f f  (~)k~ 0~(I--01)'u(~, 01, 02)d~dOld02 

and 

P{N~ ~} = k }  = f f f  (~)k -~ -  0~ (I --02)/Cff.$(~, 01, 02) d~ dO 1 dO 2 . 
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Here the u(~ ,  0~, 02) denotes the "initial" joint density of the r.v. 
E, 01, 02. When ~ is certain the parameters 01, ®2 must be sto- 
chastically dependent; in the opposite case we shall have, obviously, 
two different exchangeable processes. On the other hand, we could 
assume that  the parameter ~ is random and independent of the 
other two and then (according to our opinion and information) 
choose a density of the form 

u(~, 01, 02) = v(~). u(01, 02) 

The v(~) is definite (proper or improper) for o < ~ < + oo and 
the u(01, 02) (.proper or improper) on the square o < 01 < I, 
o < 0 2 < 1 .  

I f - - in  t subsequent years--n1, n2 . . . . .  nt claims for the first risk 
and ~1, v2 . . . . .  ~, for the second one respectively have been observed 
(on the whole n + ~ = En, + ~ ,  claims) the likelihood for the 
hypothesis ~, 01, 02 is the function L ( n l ,  n~ . . . . .  n t ;  vl,  ~3 . . . . .  vt[~, 

01, 0~) oc (~)n,'(~)n,'" " " (~)~," (~)~1 (~)~2 " ' "  ( ~ , )  0~ • 0~ (I - - 0 1 )  ~ 
(I - -  02) v = Qn ÷~(~) (01 02) t~ (I - -  01) n (I - -  02) ~, where Qn+, (~) is a 
polinomial in ~ of the (n + ~ degree. 

Also taking into account what said sub 2), a suitable choice of the 
u(~, 01, 02) is the 

u(~, 01, 03) oc R ~ P(0~, 0~) 

where P(01, 03) is a polinomial with non-negative values in the 
square domain of 01, 03; when P is set, the necessary correlation 
between the two parameters must be taken into account. 

Finally, in order to infer, for instance, .for N~ 1~ we need the 
marginal final distributions, whose the d.f. are 

U(~, 011nl, n2 . . . . .  nt;  "~1, "~2 . . . . .  ~t) = J" dx  J" d~ u(x,  ~, 02]...) d02. 
0 0 @ 

When we are interested only in evaluating the expectations, we 
have 

E ( N } h ) [ . . . ; . . . ) =  J'd~ ~0~ l ( i - -0h)  u ( ~ , 0 ~ [ . . . ; . . . ) d 0 h ,  h = l , 2 .  
0 0 

The other case can be dealt with formally in the same way. 

4. INFERENCE FOR CUMULATED CLAIMS 

With reference to one risk, it is now of interest to infer as well as 
for the claim frequency also for the distribution of a single claim. 
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We now assume tha t  the r.v. X1, X2 . . .  measuring the subsequent  
claims are bo th  independent  condi t ional ly  on any  hypothes is  about  
the arr ival  process and  exchangeable  ( that  is, even here, equal ly  
d is t r ibuted  condi t ional ly  on every  hypothes is  about  a pa rame te r  ® 
on which thei r  common densi ty  f(xlO) depends).  

If a Poisson mix tu re  process (with r andom arr ival  in tens i ty  A) 
is chosen as arr ival  process and an initial d is t r ibut ion on A and  ® 
with joint  densi ty  u(X, 0) is assigned, then the  dis t r ibut ion of cu- 
mula ted  claim in a year  is the mixture ,  weighted with tha t  densi ty,  
of the classical d is t r ibut ion of a compound  Poisson process. In such 

N~ 

way, the cumula ted  claim per year  $1, S~ . . . . .  wi th  St = Z Xn 
are exchangeable ,  h-1 

If the observat ions  in a year  are the X1 = x~, X2 = x2 . . . . . .  
X ~  = xn, the dis t r ibut ion of the cumula t ed  claim is the mix tu re  of 
the compound  Poisson process according to the final densi ty  
u(X, 0[x~, x~ . . . . .  xn), produc t  of the l ikelihood and  of the initial 
densi ty.  

The likelihood of the  hypotheses  X, 0 for t ha t  observat ion is 
n 

L(Xl, x~ . . . . .  xniX, 0) ocXne -x II f(x,10) 
i x @  

and a sufficient stat ist ic of finite dimension exists if f(xl0) is chosen 
in the exponent ia l  family (Gamma,  Pare to ,  etc.). 

When  choosing, then u(0, X) we can assume ei ther  the indepen-  
dence of the two paramete rs  or, what  seems more sensible, a 
s tochast ic  dependence  of t hem (which makes  the claim distr ibut ions 
depend on the arr ival  intensi ty) .  

Also because of the imaginable difficulties in the calculation,  we 
can general ly restr ict  ourselves to infer for E(Si )  and  var  (S,) in- 
s tead of the whole distr ibut ion.  

Under  our  hypotheses ,  af ter  the observat ions  x = (Xl, x2 . . . . .  xn) 
we have 

E(Slx) = f f  X E(XqO) u(X, 0ix) d Xd0 

and 

var  (Sl_x) = E { v a r  (SIX, 0)l_x} + var{E(SlX, 0)]_x} 
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where var (. l_x) means the variance relevant to the final distribution 
u(X, 0qx) and 

EEvar (SbX, 0)1 = E{X[var (X]X, 0) + E(X[X, 0)~3}. 

As a very simple example, that  we only mention without per- 
forming the easy calculations, we could state f (x]O)  = 0 e - ° z  and 
assume that  the density of the initial distribution is the product of 
two Gamma densities relevant to X and 0 respectively (independence 
of A and ®). The use of a Gamma bivariate distribution would be 
formally more complex but would allow us to introduce an a priori 
dependance between the two parameters. 

CONCLUSIVE REMARKS 

In conclusion, we would point out that, basically, our approach 
concerns the use of a bayesian adaptive process which, at least 
conceptually, seems to be worthy with respect to the theory of 
experience rating. And so, essentially, because it allows us to face 
different problems by means of a unitary approach. 

There would be no difficulties with respect to the assumption of 
exchangeability which, after all, induces us to suppose that  some 
increments of the risk processes are mixtures of independent r.v. 
and the mixture varies according to the information. The partial 
exchangeability concerns the possible heterogeneity of the risks 
individually observed. 

The very difficulty arises when we choose, case by case, both the 
initial distribution and (in the parametric analysis we have treated) 
the conditional distribution of the r.v. we are interested in (number 
of claims or cumulated claim per period). 

The greater the information based on the past experience is, the 
less difficult such choices are. On the other hand, when the observa- 
tion increases, the influence of the choice of the initial distribution 
(generally) fade out. Finally, of course, the unavoidable difficulties 
in calculation must be taken into account. 
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