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ABSTRACT

A new method for analysing and projecting mortality is proposed and exam-
ined. The method takes observed time series of survival probabilities, finds the
corresponding z-scores in the standard normal distribution and forecasts the
z-scores. The z-scores appear to follow a common simple linear progression in
time and hence forecasting is straightforward. Analysis on the z-score scale
offers useful insights into the way mortality evolves over time. The method
and extensions are applied to Australian female mortality data to derive pro-
jections to the year 2100 in both survival probabilities and expectations of life.
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1. INTRODUCTION

Mortality, and the likely progression of mortality, has been studied for many cen-
turies. Since age explains a large proportion of the variation in the probability
of death (or mortality), assessment of trends is usually done in terms of the mor-
tality at each age conditional on survival to the given age, called the age specific
mortality or hazard.

Figure 1 displays the observed log-hazard (log of the central “death rate”)
for Australian females at each age. Each curve corresponds to one of the cal-
endar years 1921 through to 2000. Generally higher curves correspond to the
earlier years and the data is indicative of a downward trend experienced in
much of the developed world. For each calendar year the log-mortalities have
the characteristic shape: an initial sharp drop from age 0, followed by a slight
“accident hump” (more pronounced for latter calendar years) around the late
teens and early twenties, followed by an unrelenting increase into the middle
and older ages. For each age, there is a discernable decrease in the log mor-
talities with time.

Traditional projection methods of forecasting the hazard include McNown
and Rogers (1989) which uses the functional form of Heligman and Pollard
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FIGURE 1: Log-mortality of Australian females, 1921-2000.

(1980) to explain across age behaviour and where the across time behaviour is
explained in terms of a time series model. Lee and Carter (1992) presented a
model that dispenses with a parametric explanation of the age effect. In its basic
form the model states that the difference between two adjacent calendar year’s
log-hazard is a constant l times a function of age, independent of time. Thus
l drives the evolution of the log-hazard and, indirectly, shifts in the lifetime
distribution.

A different approach to shifting arbitrary distributions is advocated in Wang
(2000) in the context of calculating risk adjusted insurance premiums. The
approach works on the exceedence probabilities of the distribution. These are
converted to z-scores having the same exceedence probabilities in the standard
normal distribution. These z-scores are then uniformly shifted by an amount l.
The shifted z-scores are then transformed back, again using the standard nor-
mal distribution, to the transformed exceedence probabilities. The transform
is called the Wang transform and depends on the single shift parameter l.
If the curve of exceedence probabilities is normal then the Wang transform cor-
responds to a shift l in the mean of the distribution.

This article considers the use of the Wang transform for monitoring and
forecasting mortality. The approach takes the log-hazards as in Figure 1 and
converts them to survival or exceedence probabilities. These survival proba-
bilities are then converted to z-scores and it is the shifts in the z-scores between
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FIGURE 2: Survival curves and z-scores for Australian females 1921-2000.

successive years which are modeled. It is shown that such shifts are virtually
constant over time. It is this constancy which is exploited in the forecasting.

2. IMPROVEMENTS IN MORTALITY

Let qit be the mortality rate in the ith year of life, i = 1,…, p and at time t = 1,
…, n. Thus there p ages and n calendar years. For the Australian female mor-
tality data of Figure 2, p = 101 and n = 80. Survival probabilities, and the cor-
responding lifetime probabilities are defined as

sit / jtq1
j

i

1

-
=

%_ i, pit / si –1,t – sit = qit si –1,t, (1)

where i = 1, …, p, t = 1,2,…,n and s0t / 1. Thus sit is the probability, at birth,
of survival to age i, supposing the life is subject to the calendar year t mor-
talities q1t,…, qpt. The pit are the probabilities, at birth, of dying in the ith year
of life. In the actuarial literature, the curve of pit as a function of age i is called,
somewhat ominously, the “curve of deaths.”
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Estimates of sit and pit for the Australian female mortality data of Figure 1
are displayed in the two top panels of Figure 2. Each curve represents one cal-
endar year’s data plotted against age i. Mortality improvements are indicated by
the rightward shifts in the curves with time t. Clearly, modelling improvements
in mortality by a linear shift independent of age in either the hazard curve, sur-
vival curve, or curve of deaths is inappropriate. For example a linear shift in
the curve of deaths would imply the hazard experienced in the first year of life
is translated to a higher age.

Moving from the qit to the sit may appear problematic since typically obser-
vations qit are statistically independent across age i implying for each t, the sit

across i are correlated. This correlation may be difficult to deal with statistically.
However with mortality forecasting the focus is on mortality progression over
time. Across age dependence is of less relevance and indeed may make for a
simpler statistical task in that smoothness across age is built in making for a
clearer perception of time trends.

Define zit such that sit = F (zit) where F denotes the (cumulative) standard
normal distribution. Thus zit / F–1(sit) where F–1 is the inverse mapping to F.
The bottom two panels of Figure 2 illustrate the behaviour of mortality on the
z-score scale. The lower left panel displays the relationship between z-scores and
age. Each curve corresponds to a calendar year, there being n = 80 curves in
total. The lowest curve is the year 1921, with successive curves progressing
upwards representing consecutive years in the data set, up to the year 2000
which is the highest curve. Generally, the trend is for the curve for year t + 1
to lie above the curve for year t, but this is not always the case: occasionally
curves cross over. Remarkably, all the curves seem to have the same shape and,
as a rough approximation, each consecutive curve from 1921 onwards appears
to be a vertical shift of the previous curve. Thus the z-scores for all ages appear
to grow by about the same amount over time.

The bottom right panel displays the average zi = n–1
t 1= it
n z! and the devia-

tions from the average zit – zi. Again each curve relates to a different calendar
year with the lower curves corresponding to the earlier calendar years.

This article deals with the modelling and extrapolation of the zit and, by
implication, the sit and qit and related quantities. Extrapolation occurs on the
time scale t. A cohort aged i at time t experiences age specific mortalities from
successive time periods: qit, qi +1, t +1 and so on. It is important to realize that
although the models and methods of the article project on a time scale, cohort
specific results are appropriately backed out by piecing together forecasts for
successive times t.

3. ANALYSIS OF MORTALITY Z-SCORES OVER TIME

The top left panel of Figure 3 displays zit / F–1(sit) for the Australian female
data when plotted against t. The top right panel and bottom left panel show
li and ln(si) for all the ages where
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FIGURE 3: z-score behaviour for Australian females 1921-2000.
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Thus li is the average change over the years 1921 through to 2000 in the z-scores
at age i, while si is the standard deviation of the changes at age i. The average
change li is effectively constant across age although there is evidence of non-
constancy at the very young and very old ages. The log standard deviation
graph indicates there is considerably more across time variation for the very
old ages. This may be due to the relatively small exposures at the higher ages
and recording issues. By definition, the z-score curves never intersect on the
cross-sectional scale since zi –1, t > zit, for all i and t.

The z-score age curves are distinctly linear, excluding the curves of extremely
high ages (95+). Furthermore, as a rough approximation, it appears that all of
the z-score age curves have approximately equal gradients over time. These broad
movements in the z-scores motivate the model explained in the next section.

It may be thought that the constancy across age of z-score improvement is
a consequence of the Wang transform rather than an intrinsic feature of human
mortality improvement. Figure 4 demonstrates that this is not the case. The
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FIGURE 4: Conditional z-score analysis for different starting ages.

figure displays, for Australian females, average z-score improvements at each
age when the z-scores are computed from conditional survival curves. These
conditional survival curves assume lives have reached a given age m = 0, 20, 50,
65 and 80 and then calculate the probabilities of surviving to each higher age.
The case m = 0 reproduces the analysis in the top right panel of Figure 3. The
results for m = 20, m = 50 and so on are the graphs starting at the corresponding
age. For example for ages in excess of m = 80 there has been a much higher
increase in the z-score over the period 1921-2000 for the very high ages com-
pared to the ages near 80. Thus a “Wang transform” analysis of the conditional
distribution of remaining lifetime, conditioning on age 80, does not suggest a
constant increase. To summarize, z-scores appear to linearly increase over time
with a constant increase for all ages, only when z-scores are computed relative
to the whole survival curve.

4. MODELLING MORTALITY Z-SCORES

A continuous model formalizing the notion that the z-score curve is driven by
a single trend and single source of error is for t > 0,

sit = F(xi�b + at + eit), i = 1, … p, dat = ldt + sdbt, (2)

where a0 = 0, bt is Brownian motion with zero drift and variance rate 1, l is a
superimposed constant trend and the eit are zero mean measurement errors.
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Further, similar to regression, the xi is a known regressor variable vector and b
an unknown regression parameter vector. Equation (2) implies

zit / F–1(sit) = xi�b + at + eit.

Extensions to (2) are discussed below.
The discrete form implied by (2) stated in vector terms is

zt = Xb + 1at + et, at + 1 = l + at + jt, t = 1,…,n, (3)

where 1 is a vector of ones, jt = s(bt + 1 – bt) is scalar noise with mean zero and
variance s2, uncorrelated to the zero mean measurement error vectors et. Com-
ponents eit of et are likely to be heteroskedastic. Ignoring the correlation yields
the covariance matrix cov(et) = s2qdiag(r1,…,rp) where the ri’s are relative vari-
ances. The parameter q scales the covariance matrix of et.

Form (3) is amenable to Kalman filtering (Harvey 1989) and hence estima-
tion. The Kalman filter takes the zt and transforms to serially uncorrelated incre-
ments given values of the unknown parameters l, b and the variances of the jt

and et. From the uncorrelated increments a normal based likelihood can be eval-
uated. Different parameters lead to different likelihood values and maximum
likelihood estimates are located with a numerical search. Given the maximum like-
lihood estimates diagnostics can be computed including estimates of the distur-
bances et and jt. Also model based projections and associated error variances
are easily derived. The technology is illustrated in the next few sections.

Model (3) has similarities to the Lee and Carter (1992) model (see also De
Jong and Tickle (2006)). The first equation in (3) replaces the Lee-Carter equa-
tion ln(mit) = ai + biat + eit where mit is the vector of age specific “central” mor-
tality rates and the ai and bi are age specific effects to be estimated. In the
Lee-Carter setup, a single dynamic process drives mortality improvements with
the differential impacts across age. These differential impacts are estimated.
With (3) the mortality index manifests itself equally in all the z-scores. Differ-
ential age effects result from the transformation sit = F (zit) which in turn are
converted to the qit.

It may be argued that z-scores are less natural than the log-hazards ln qt since
the latter form uncorrelated estimates at each age. However the log-hazard scale
magnifies features that are often irrelevant to the forecasting of broad aggre-
gates, such as the expectation of life or proportions surviving to the various
ages. For example consider the “accident” hump evident in Figure 1 between
the ages of about 14 to 20. In this range the log-hazard jumps from about –10
to –8, equivalent to a jump in the mortalities from 0.00005 to 0.00034, about
a 7 fold increase. While this may seem major, it is swamped by the changing
pattern of mortality between the ages of say 40 and 50.

Model (3) is related to the Probit model (McCullagh and Nelder 1989). In
particular suppose s = 0 in (3). Then sit = F(xi�b + lt + eit). Under this setup,
survival probabilities are explained by nonrandom and noninteracting age and
time effects.
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Possible extensions to (2) or its discrete equivalent (3) include:

1. The relative variances ri can be replaced with some smooth function of age i,
for example ri = xi�g. Also the ri could incorporate a measure of exposure
at the different ages.

2. The growth factor l may be vector with different components driving rates
of improvement at different ages. Different rates of improvement at different
ages does make for complications in that z-score curves may then crossover.

3. More intricate dynamics may be appropriate. For example l may depend
on time t leading to a more complicated stochastic differential equation
involving higher order differentials. For example (Arnold 1974) with the
Ornstein-Uhlenbeck process dlt = ƒ (lt – m)dt + sdbt the growth rate lt has,
if ƒ < 0, a tendency to return to an average value m. In discrete time the
model implies the growth rate follows an autoregressive model of order 1.
Estimation and assessment is again facilitated with the Kalman filter as dis-
cussed in De Jong and Mazzi (2001).

4. The fixed age shape profile xi�b can be generalized to an evolving profile xi�bt

where bt is a vector time series. Thus dzit = xi�dbt + l + sdbt and the age
profile of the z-scores changes over time. A vector time series, rather than
constant, description for bt is appropriate where the z-score age shape “tilts”
over time. Evidence of tilting appears in the application of the next section.

5. Particular time periods may have special characteristics. Examples include
the “Spanish” flu pandemic of 1918-1920, war periods, and the years of
the traffic fatality “hump.” These can be regarded as interventions or shocks
to the system. Dynamic models modifying (3) can be written to accommo-
date such shocks and the Kalman filter machinery is ideally set up to assess
and quantify such shocks (De Jong and Penzer 1998). This brings out a
further advantage of Wang transform: the transform molds the serial profile
of mortality to a linear scale and hence well developed technology based
on linearity is applicable.

5. APPLICATION TO AUSTRALIAN FEMALE MORTALITY DATA

In this application the matrix X interpolates second order b-splines (De Boor
1978) with knots at ages – 0.5, 9.5, 60.5, 95, and 105, the first knot being of
order 3. Thus there are 6 components in b. Using all the data, maximum like-
lihood estimation via the Kalman filter led to the estimates of l, s and q of
0.0141, 0.0261 and 232.758 respectively. The estimate of l differs negligibly
from the observed yearly average change in z-scores for each age i presented
previously. This is expected since the differences zit – zi,t – 1 contain all the infor-
mation for l.

Figure 5 displays the estimation results. The top left panel displays the actual
and estimated expected z-scores for calendar year 2000. The top right panel of
Figure 5 is the plot of the estimated value of at in each calendar year. The two
outer lines represent approximate 95% confidence bands. The estimate and
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FIGURE 5: Estimation results for Australian female data.

confidence bands are computed with the smoothing filter companion to the
Kalman filter (De Jong 1989). The graph indicates a steady improvement in
mortality with some tailing off in the 1960’s. The bottom left panel measures
departures between fitted and actual z-scores. The curves indicate little error
except at ages beyond 70. At these older ages the early decades indicate nega-
tive errors and hence actual z-scores and survival probabilities are lower than
expected. For the latter decades this pattern is reversed with observed older age
survival probabilities exceeding predictions. These latter years’ errors are dis-
played in the bottom right panel of Figure 5. This systematic lack of fit at the
higher ages suggest a slightly tilting age profile where mortality improves at a
faster rate at the higher ages.

6. IMPLICATIONS FOR FUTURE SURVIVAL PROBABILITIES

AND THE EXPECTATION OF LIFE

In this section suppose the sit and zit are theoretical population constructs of
which the previously defined sit and zit are measurements. Then sit = F(zit) where
dzit = ldt + dbt and initial conditions zi0 = xi�b. It follows from Ito’s Lemma
(Arnold 1974), for i = 1,…, p,
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where f denote the standard normal density. If s = 0 then dsit = lf(zit)dt and

si, t +1 . F(zit) + lf(zit) . (1 – l) F(zit) + lF(zit + l).

Hence improvements in survival probabilities are moderated by the normal curve.
More generally, provided s = 0,

si, t + k . F(zit) + klf(zit) . (1 – l) F(zit) + lF(zit + lk).

Significant changes in survival probabilities are only possible if zit is not far
from 0 or, equivalently, the survival probability is not far from 0.5. The max-
imum change in the survival probability occurs when sit = 0.5, where i is the
median lifetime age. For the median lifetime age i, zit = 0, f(zit) = / p1 2 , and
sit increases by about /l p2 per calendar year.

If s > 0 the drift in the survival curve (proportional to f(zit)) is reduced by
zit s2/2. For ages less than the median lifetime, zit > 0 so the reduction is positive.
For ages greater than the median age the reduction is negative, that is the pro-
portionate effect is greater than l.

A similar analysis can be given for the (curtate) expected number of years,
at birth, to be lived between ages 0 and p = 100 (Bowers, Gerber, Hickman,
Jones, and Nesbitt 1997) et = ii 1= s t

p! . From (4),

i i i i ,f fs z z t b z td d d d dl
s

s l2t t
i

p

t t t
i

p

t
i

p

1

2

1 1

= = - + =
= = =

e ! ! !
J

L

K
K^ ^

N

P

O
Oh h* 4

where the last equality holds if s = 0. Thus if l > 0 the expectation of life
increases. In discrete terms

et +1 . et + if zl t
i

p

1=

! ^ h (5)

The effect of noise, s> 0, is now more ambiguous. For the Australian female
mortality data l = 0.0141, implying z-scores for all ages are increasing by about
0.0141 per annum. Figure 6 displays the behaviour of l1�f(zt) as a function
of t. The rate of increase in life expectancy at birth is gradually declining over
time, from a value of roughly 0.3 years in 1930 to about 0.2 years in 2000.
Equation (5) indicates that the size of the annual addition to life expectancy
at birth depends on the magnitude of the z-scores for all ages and suggests that
the annual improvement in life expectancy will continue to decline.
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FIGURE 6: Observed and expected annual addition to Australian female life expectancy.

7. FORECASTING MORTALITY THROUGH TO 2100

In this section the Australian female mortality is projected out to year 2100.
Assuming s = 0, forecast survival probabilities are

si,n + k / F(zin + lk), i = 1,…, p, k = 1,…,100, (6)

where n = 80 corresponds to calendar year 2000. Here the zin are the fitted or
actual z-scores in 2000, sometimes called “jump off” rates.

Suppose the forecasts (6) are arranged into a p ≈ 100 matrix S with rows and
columns corresponding to i and k respectively. Then

1. Row i of S corresponds to forecast survival probabilities for age i across the
future calendar years through to year 2100.

2. Column k of S is the forecast “cross sectional” survival curve for calendar
year 2000 + k.

3. Cohort survival curves are arrived by first deriving from S the corresponding
death probabilities qik = 1 – sik /si –1,k. In turn these death probabilities are
converted to survival curves as in (1). If Q is the matrix of qik then survival
curves are arrived at by operating on the diagonals of Q. The main diago-
nal corresponds to the cohort born in 2000. Upper diagonal k corresponds
to those to be born in year 2000 + k while lower diagonal k corresponds to
those aged k in 2000.

The left panel in Figure 7 displays the two forecast cross sectional survival
curves for calendar years 2001 and 2100 as well as the 1921 cross sectional
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FIGURE 7: Actual and forecast survival probabilities and life expectancies.

curve and the forecast “cohort” survival curve for those born in 2000. The
bottom curve is that for 1921. The next curve up is for 2000. The highest curve
is the forecast for 2100. The curve just below and barely distinguishable from
the highest curve is the forecast cohort survival curve for those born in 2000.
The cohort survival curve closely follows the 2100 curve since the mortality is
negligible for all ages up to about 50. When they reach 50 they experience the
mortality of 2050 and so on. Thus the heavier mortality is experienced once
rates at the older ages have had plenty of time to improve. On the basis of
present trends, more than 1 in 5 will reach age 100.

The right panel in Figure 7 displays curtate remaining life expectancies up
to age 100 at different ages. The bottom curve is computed from the 1921 life
table. The next one up is from the 2000 table while the highest corresponds to
the projected year 2100 table. Barely distinguishable from the 2100 table are
the projected lifetime expectancies calculated for the 2000 cohort. Since the
curves do not count lifetime beyond age 100, actual lifetimes are forecast to
be on average, longer than those displayed, especially for the upper two curves
where the probability of surviving beyond age 100 is appreciable.

It was noted in §5 that mortality at age 70 and beyond is currently improv-
ing at a faster rate than at the younger ages. This spells even higher forecast
survival rates and life expectancies. Of course all of these predictions are based
on trends established over the last 80 years, and do not factor in trend rever-
sals or stabilization.

When s > 0 forecast survival curves will be less than under s = 0. Hence if the
current trend in the z-score progression remains but there is uncertainty about
the trend, then forecast survival probabilities and expectations of life will be less.
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