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ABSTRACT

This paper proposes a multivariate extension of the equilibrium pricing trans-
forms for pricing general financial and insurance risks. The multivariate Esscher
and Wang transforms are derived from Bühlmann’s equilibrium pricing model
(1980) under some assumptions on the aggregate risk. It is shown that the
Esscher and Wang transforms coincide with each other when the underlying
risks are normally distributed.
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1. INTRODUCTION

In the actuarial literature, there have been developed many probability trans-
forms for pricing financial and insurance risks. Such methods include the
variance loading, the standard deviation loading, and the exponential princi-
ple. Among them, the most popular pricing method is the Esscher transform
given by
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for a random variable Y representing risk, where q is a positive constant1 and
E is an expectation operator under a probability measure P. The Esscher trans-
form is a simple exponential tilting (or exponential change of measure) and has
a sound economic interpretation.

1 This paper treats risk as an asset. A liability with loss variable X can be viewed as a negative asset
with gain Y = –X. See Wang (2002).
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Recently, Wang (2000) proposed a universal pricing method based on the
following transformation:

F *(x) = F[F–1(F (x)) + l] (1.2)

where F denotes the standard normal cumulative distribution function (CDF
for short), F(x) is the CDF for the risk Y and l is a positive constant. The trans-
form is now called the Wang transform and produces a risk-adjusted CDF
F *(x). The mean value evaluated under F *(x) will define a risk-adjusted ‘‘fair
value” of risk Y at some future time, which will then be discounted to the cur-
rent time using the risk-free interest rate.

The Wang transform not only possesses various desirable properties as a
pricing method, but also has a clear economic interpretation which can be
justified by a sound economic equilibrium argument for risk exchange. For
example, the Wang transform (as well as the Esscher transform) is the only dis-
tortion function among the family of distortions that can recover CAPM (the
capital asset pricing model) for underlying assets and the Black-Scholes for-
mula for options. See Wang (2002) for details.

On the other hand, in the finance literature, the theory of asset pricing has
been developed; the theory is well-developed for the so-called complete mar-
kets while there are still many blanks for incomplete markets. The insurance
market is certainly incomplete; new attempts are required to develop a better
pricing method.

The pricing methods developed in the actuarial literature based on proba-
bility transformations (or distortions) are often criticized by finance researchers,
because they are not linear pricing functionals2, yielding arbitrage opportuni-
ties. See, e.g., Harrison and Kreps (1979) for details.

In order to develop a linear pricing method while maintaining probability
distortions, we need to develop a multivariate version of such existing methods.
To see this, suppose that the underlying risks are described by an n-dimensional
random vector, (X1, X2,…,Xn) say. The probability space is given by (W,F,P),
where F = s(X1, X2,…,Xn), the smallest s-algebra generated from (X1, X2,…,
Xn). According to the first fundamental theorem of asset pricing, there is no
arbitrage opportunity if and only if there exists a state price density3. Recall
that the state price density is an F-measurable random variable. Hence, sup-
posing that a state price density is given, j = j (X1, X2,…,Xn) say, the pricing
functional is defined as

p(Y ) = E [jY ] = j
W

# (w)Y(w) dP(w) (1.3)

270 MASAAKI KIJIMA

2 The pricing functional p is said to be linear if p(aX + bY ) = ap(X ) + bp(Y ) for all risks X,Y and
constants a,b.

3 The second fundamental theorem of asset pricing states that the state price density is unique if and
only if the market is complete. See, e.g., Pliska (1997) for details.
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for risk Y that is an F-measurable random variable. The pricing functional p
is linear due to the linearity of the expectation operator.

The classic Esscher transform (1.1) is a special case of (1.3) where j = e–qY /
E [e–qY ]. The Wang transform (1.2) can be derived from (1.3) under a set of
assumptions on the aggregate risk. See Wang (2003) for details. The aim of this
paper is to find an appropriate state price density that covers all the risks under
consideration, extending the Esscher and Wang transforms to the multivariate
setting4. These extensions are derived from Bühlmann’s equilibrium pricing
model (1980).

The present paper is organized as follows. In the next section, we review
Bühlmann’s equilibrium pricing model and derive a multivariate extension of
the Esscher transform. Of particular interest is the case of normally distrib-
uted risks. It is shown that the multivariate Esscher transform is consistent
with CAPM and distorts a normal distribution to another normal distribution
with mean vector adjusted by Cov (Y,lZ ), the covariance of risk Y and lZ,
where Z stands for the aggregate risk, which corresponds to the risk from the
market portfolio in CAPM, and l a risk aversion index. Section 3 develops a
multivariate version of the Wang transform. It is shown that, when the under-
lying risks are normally distributed, the multivariate Wang transform coincides
with the Esscher counterpart.

2. BÜHLMANN’S EQUILIBRIUM PRICING MODEL

Consider risk exchanges among a set of agents j = 1, 2,…, n. Each agent is
characterized by his/her utility function uj(x), where uj�(x) > 0 and uj�(x) ≤ 0,
and initial wealth wj. Suppose that agent j faces a risk of potential loss Xj and
is willing to buy/sell a risk exchange Yj. If agent j is an insurance company, the
risk exchange Yj is thought of the sum of all insurance policies sold by j. While
the original risk Xj belongs to agent j, the risk exchange Yj can be freely bought/
sold by the agents in the market.

In this pure risk exchange model, Bühlmann (1980) derived the following
equilibrium pricing formula for risk Y, which is an F-measurable random vari-
able, by assuming that each agent j has an exponential utility function uj(x) =
– e–lj x, j = 1, 2,…, n5:

p(Y ) = E [jY ], ;
E e

ej Z
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4 A similar attempt has been made by Wang (2005) to extend the Wang transform to a multivariate
setting, where the Radon-Nikodym derivative is given by the normalized exponential tilting with
special structures such as joint and separate distortions. In contrast, this paper assumes no such
structures and derives the multivariate extensions directly from Bühlmann’s pricing formula.

5 Because this paper considers the pricing of risky assets, the sign of l in the state price density j is
opposite to that in Bühlmann (1980).
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cf. (1.3), where jj 1=Z n
= X! is the aggregate risk and l is given by

jl l
j

n
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=
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=

! , lj > 0.

The parameter l is thought of the risk aversion index of the representative
agent in the market.

In what follows, we assume that the underlying risks are described by an
n-dimensional random vector X = (X1, X2, …, Xn) and the s-algebra is given by
F = s(X1, X2, …, Xn). Note that a particular risk, Y say, is an F-measurable ran-
dom variable. That is, there exists an n-variate function h(x), x = (x1, x2, …, xn),
such that Y = h(X ) in general. Particular cases include a singleton, i.e. Y = Xj

for some j, and a portfolio of (X1, X2, …, Xn ), i.e. jj 1=Y j
n

= Xw! for some
weights wj . Bühlmann’s equilibrium pricing formula is then given by
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The pricing functional p(Y ) is linear since
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where V = g(X ) for some g(x).

Remark 2.1. Consider a particular risk Y, which is so small that Y and Z – Y
are approximately independent. In this case, we have from (2.1) that
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which is the Esscher transform (1.1). Note however that the resulting func-
tional pl(Y ) does not satisfy the linearity, since
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unless Y and V are independent of each other. Also, pl(aY) = apal(Y) ! apl(Y).

For the n-dimensional random vector X = (X1, X2, …, Xn), suppose that the
moment generating function (MGF for short) exists, i.e.
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for all t at a neighborhood of the origin. If the MGF exists, the interchange
between the partial derivative and the expectation is permissible. Hence, from
(2.1), we have 

j
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where 1 denotes the vector with all components being unity, and where j2 des-
ignates the partial derivative with respect to the j th variable. Hence, if the risky
claim Y is a portfolio of X, i.e. jj 1=Y j

n
= Xw! , the equilibrium price of Y is

given by 

j .logY mp l1j X
j

n

1

=
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2w!] ]g g (2.3)

This means that, in this context, pricing of financial and insurance risks is
equivalent to determining the MGF of the underlying multivariate risks.

Remark 2.2. The pricing formula (2.1) rules out log-normal distributions,
because the MGF does not exist for any log-normally distributed random vari-
able. On the other hand, according to Iwaki, Kijima and Morimoto (2001),
when each agent has a power utility function uj(x) = g j

1– axa / a,gj > 0, in Bühl-
mann’s equilibrium setting for the same parameter a < 1, the state price den-
sity is given by j = Z– (1 – a) /E [Z– (1 – a)]. The resulting pricing formula is valid
for log-normal distributions.

The pricing formula (2.1) can be described in terms of the change of mea-
sures. Suppose for the sake of simplicity that the probability density function
(PDF for short) of X exists, which is denoted by f (x), under the original mea-
sure P. Let us define 
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Since f *(x) is nonnegative and satisfies
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the function f *(x) can be thought of as a PDF. Denoting the new probability
measure under which the PDF for X is f *(x) by P*, the pricing formula (2.1)
can be written as
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Therefore, we obtain Bühlmann’s equilibrium price as 

p(Y ) = E*[h (X )], Y = h (X ), (2.5)

where E* denotes the expectation operator associated with the new probabil-
ity measure P*; cf. Bühlmann (1980). We shall call the transformation (2.4) the
multivariate Esscher transform by an obvious reason6.

Remark 2.3. In the case of the univariate Esscher transform, i.e.

f *(x) = ,
E

f x
e

e
X

x

l

l

-

- ] g8 B l > 0,

the ratio f *(x) / f (x) is strictly decreasing in x. Hence, denoting the random vari-
able that follows the new PDF f *(x) by X*, we conclude that X* is smaller than
X in the sense of likelihood-ratio ordering. This ordering is stronger than the first
order stochastic dominance. See Kijima and Ohnishi (1996) for details. On the
other hand, from (1.2), we have F–1(F*(x)) > F–1(F(x)) so that F*(x) > F(x) for
all x. Therefore, in the case of the univariate Wang transform, we conclude that
X* is smaller than X in the sense of first order stochastic dominance. In either
case, we have E*[X ] < E [X ], suggesting a proper (i.e. positive) risk premium.

Of interest is then what will be the new PDF (2.4) under the multivariate
Esscher transform. Fortunately, we can determine the transformation explicitly
for the normal case, as we shall discuss below.

2.1. The case of normal distributions

When X follows an n-variate normal distribution, the pricing formula (2.3)
becomes extremely simple. Suppose that X has mean vector m = (m1, m2, …, mn)
and covariance matrix S = (sij). Then, its MGF is given by7

,expm t t t tSm 2X = +T
T] g ) 3 (2.6)

where T denotes the transpose. It follows that
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6 In Jensen (1995), the measure defined by
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is called an exponentially tilted measure, where T denotes the transpose. The Esscher transform (2.4)
is a special case of the exponential tilting with q = l1.

7 See, e.g., Tong (1990) for details of multivariate normal distributions.
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Therefore, in the normal case, the multivariate Esscher transform (or Bühl-
mann’s equilibrium price) for risk jj 1=Y j

n
= Xw! is given by 

p(Y ) = E [Y ] – lCov (Y,Z ), (2.7)

where

k / lCov (Y,Z ) = l i i
j

n

i

n

11 ==
jw s!!

is called the excess loading. Of course, when Z corresponds to the risk from
the market portfolio in CAPM, we have 

p(Z ) = E [Z ] – lV [Z ], (2.8)

which is the variance loading. It follows from (2.7) and (2.8) that
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where the right hand side is the beta of Y in the theory of CAPM. In other
words, the risk premium for Y, i.e. E [Y ] – p(Y ), is proportional to the market
risk premium, i.e. E [Z ] – p(Z ), and the coefficient is given by the beta for Y.
Summarizing, we have the following.

Theorem 2.1. Suppose that the underlying risks (X1, X2,…,Xn) follow an n-vari-
ate normal distribution. If risk Y is a linear combination of the underlying risks,
then the multivariate Esscher transform determines the price p(Y ) so that 

p(Y ) = E [Y ] – bY(E [Z ] – p(Z )); bY =
,

V Z
Cov Y Z] g6 @ , (2.9)

where bY denotes the beta for Y in CAPM.

Remark 2.4. Note that the pricing formula (2.9) does not depend on the risk
aversion index l of the representative agent. Also, since the beta bY is linear by
the definition, the formula (2.9) provides a linear pricing functional. That is,

p(aY + bV ) = E [aY + bV ] – baY + bV (E [Z ] – p(Z ))
= aE [Y ] + bE [V ] – (abY + bbV) (E [Z ] – p(Z ))
= ap(Y ) + bp(V ),

because Cov (aY + bV, Z ) = aCov (Y,Z ) + bCov (V,Z ).
Now, we consider the new PDF f *(x) defined in (2.4) for the normal case.

Recall that the PDF f (x) under P is given by

f (x) = Ke–Q / 2 ; Q = (x – m)T S –1 (x – m),
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for some normalizing constant K, which is determined such that f
R n
# (x)dx = 1.

Note that

(x – m – St)T S –1 (x – m – St) = Q – 2(x – m)T t + tTSt.

It follows from (2.6) that 

exp{– 2
1 Q + xT t} = mX(t) exp{– 2

1 (x – m – St)T S –1(x – m – St)}. (2.10)

In particular, when t = – l1, we conclude that

f *(x) = Ke– Q*/2; Q* = (x – m + lS1)T S –1 (x – m + lS1),

which is the PDF of the n-variate normal distribution with mean vector m – lS1
and the same covariance matrix S. The next theorem summarizes8.

Theorem 2.2. Suppose that the underlying risks X = (X1, X2, …, Xn) follow an n-
variate normal distribution with mean vector m and covariance matrix S. Then,
the multivariate Esscher transform distorts the normal distribution to another
normal distribution with mean vector m – lS1 and the same covariance matrix S.

Theorem 2.2 states that, when evaluating a derivative security, Y = h (X ) say,
each risk Xj should be adjusted by lCov (Xj ,Z ) for its mean mj. Hence, when
the underlying risks are normal, the price of the derivative is given by 

p(Y ) = E [h(X – lCov (X,Z ))], (2.11)

where X – lCov (X,Z ) denotes the vector whose components are given by Xj –
lCov (Xj ,Z). This extends a well-known result in the bivariate case to the mul-
tivariate setting9.

In particular, when the underlying risks (X1, X2, …, Xn) follow a standard
n-variate normal distribution with correlation matrix Sr = (rij), the multivari-
ate Esscher transform distorts the standard normal distribution to another
normal distribution with mean vector –lSr1 and the correlation matrix Sr. In
this context, suppose that an asset price in the next period under P is given by

i
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s
2i i i i
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= - + s X
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P
OO* 4 i = 1, 2, …, n,
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8 Alternatively, the theorem can be proved using the MGF given by (2.6).
9 For any bivariate normal random vector (X,Y ), we have

E [h (X )e–Y ] = E [e–Y ] E [h (X – Cov [X,Y ] )].

See, e.g. Kijima and Muromachi (2001) for more general results.
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where si denotes the volatility of asset i. According to Theorem 2.2, the current
price of asset i is given by 
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under the original probability measure P. Hence, the mean rate of return for
asset i must be given by

mi = lsiCov (Xi,Z ), i = 1, 2, …, n ,

in this equilibrium pricing context. This means that the market price of risk
for asset i (or risk Xi) is given by lCov (Xi,Z ), not just l.

Note that the asset price under the new probability measure P* is given by 

i ,expS s
s

0 2i i i i

2

= - + s X] g * 4 i = 1, 2, …, n . (2.13)

Hence, as in Gerber and Shiu (1994), the Black-Scholes formula (1973) is obtained
from (2.13) as the current price of a call option written on the asset Si. More
precisely, the pricing formula

p(Y ) = e–rE*[max{Si – K,0}]

provides the well-known Black-Scholes formula, where Si is given by (2.13)
under the risk-neutral measure P* and r denotes the risk-free interest rate over
the period.

Remark 2.5. Even when Y is a portfolio of X, we have

p(Y ) = E [h (Y – lCov (Y,Z ))] , j .Y j
j

n

1

=
=

Xw!

Hence, there is no such simple formula as (2.7) for the case of general payoff
function h(x). When Cov (Y,Z ) is small, however, we have from the first-order
approximation to (2.11) that

p(Y ) c E [h (Y )] – lCov (Y,Z )E [h�(Y )].
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Hence, the beta in Theorem 2.1 needs to be modified by the factor E [h�(Y)] for
the non-linear payoff function h(x) when the first-order approximation is applied.

2.2. Archimedean copulas

In general, the dependence structure of n-dimensional random vector X = (X1,
X2, …, Xn ) can be specified by copula. That is, suppose that each marginal
CDF of Xj is given by Fj (x). Then, Fj (Xj) follows a standard uniform distribu-
tion on [0,1]. The copula specifies the joint CDF of (F1(X1), F2(X2),…,Fn(Xn)).
Denoting the copula by c(x), x = (x1, x2, …, xn), we have 

P{X1 ≤ x1, X2 ≤ x2, …, Xn ≤ xn}

= P{F1(X1) ≤ F1(x1), F2(X2) ≤ F2(x2), …, Fn(Xn) ≤ Fn(xn)}

= c(F1(x1), F2(x2), …, Fn(xn)).

Hence, we can recover the joint CDF of X from the copula c(x). See, e.g., Nel-
son (1999) for details of copula functions.

The ordinary application of copula to multivariate distributions is to assume
a particular copula in an ad hoc manner. Note however that copulas with more
than two variables are limited, to the author’s best knowledge, to Gaussian
copulas, t copulas and Archimedean copulas. While this section considers an
Archimedean copula, we employ a Gaussian copula to derive a multivariate
Wang transform in the next section10.

For any positive random variable R, suppose that it has the MGF at a
neighbourhood of the origin. Let c(s) = E [e–sR ], s ≥ 0. It is readily seen that

(–1)nc(n) (s) > 0, s > 0,

where c(n)(s) denotes the nth derivative of c(s). Such a function is called com-
pletely monotone. We denote the inverse by c–1(s). Suppose further that c(0) = 1
and c (3) = 0. Then, the inverse function is decreasing in s with c –1(0) = 3
and c–1(1) = 0. Now, for any (x1, …, xn) ! (0,1]n, let 

c (x1, …, xn) = c(c –1(x1) + ··· + c–1(xn)), 0 < xj < 1. (2.14)

It is well known that the function c (x1, …, xn) defines an Archimedean copula.
The Archimedean copula can be generated as follows. Consider a family

of independent, exponentially distributed random variables with unit mean, Y1,
Y2, …, Yn say. It is also assumed that R and Yj are independent. Define

Xj = Fj
–1 [c(Yj /R )], j = 1, 2, …, n,

278 MASAAKI KIJIMA

10 Since there are no MGF’s for t-distributions, the multivariate Esscher transform does not apply for
t copulas in this framework.
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where we assume that each CDF Fj (x) is strictly increasing for the sake of sim-
plicity. According to Kijima (2002), the n-dimensional random vector X = (X1,
X2, …, Xn) has the Archimedean copula (2.14). Hence, given the Archimedean
copula, we can generate the random samples xk = (x1

k, x2
k, …, xn

k) from X = (X1,
X2, …, Xn), and evaluate the expectation (2.1) by Monte Carlo simulation as
follows.

Algorithm:

1. Generate independently random numbers rk and yj
k, j = 1, 2, …, n.

2. Set xj
k = Fj

–1 [c(yj
k /rk)], j = 1, 2, …, n.

3. Repeat this procedure for sufficiently large K, k = 1, 2, …, K, and evaluate
(2.1) approximately as
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Unfortunately, the Archimedean copula cannot produce a negative depen-
dence. See Marshall and Olkin (1988) for more detailed discussions about the
dependence structure of Archimedean copulas. In the next section, we consider
a Gaussian copula and show that a multivariate extension of the Wang trans-
form is derived under some conditions on the aggregate risk Z from Bühlmann’s
equilibrium pricing formula.

3. A MULTIVARIATE EXTENSION OF THE WANG TRANSFORM

In this section, we extend the discussions of Wang (2003) to the multivariate
case. For this purpose, we employ a Gaussian copula for the underlying risks
X = (X1, X2, …, Xn). That is, define

Uj / F–1 [Fj (Xj )], j = 1, 2, …, n ,

where F(x) is the standard normal CDF and Fj (x) is the marginal CDF for
Xj. It is assumed for the sake of simplicity that Fj (x) is strictly increasing in x
for all j. A Gaussian copula assumes that U = (U1,U2, …,Un) follows an n-vari-
ate standard normal distribution with correlation matrix Sr = (rij).

In this copula situation, the joint CDF F (x) for X is given by

F (x) = P{X1 ≤ x1, X2 ≤ x2, …, Xn ≤ xn} = P{U1 ≤ a1, U2 ≤ a2, …, Un ≤ an},

where aj = F–1[Fj (xj)], j = 1, 2, …, n. Denote by ƒn(x), x = (x1, x2, …, xn), the
PDF of the n-variate standard normal distribution with correlation matrix Sr,
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ƒ(x) the PDF of the univariate standard normal distribution, and fj (x) the
marginal PDF of Xj. Then, the joint PDF f (x) for X exists and is given by 

j

j

j

j
,A Af d

d
x n

j

n

n
j

j

n

1 1

= =
z= = a

xa

xz z
f% %] ] ] _
_g g g i

i
(3.1)

since F (aj) = Fj (xj).
Now, as in Wang (2003), suppose that the aggregate risk Z consists of many

individual risks Xj so that it can be approximated by a normal distribution. Let
Z0 = (Z – mZ) /sZ, where mZ = E [Z ] and sZ

2 = V [Z ], be the standardized normal
random variable. Then, from (2.1), we have

, .Y
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E h
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p l lsZ
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0] ]g g
8

8
B

B
(3.2)

Next, suppose that the standard normal variable Z0 is expressed as 

j jj , ,Z z Fj
j

n

j
d

0
1

1
+ =

=

- F Xw U U! _ i8 B (3.3)

for some constants wj and a random variable z, which is independent of Uj,
where d stands for equality in law. It follows from (3.2) that
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Since U / j 1= j
n l! Uj is normally distributed with mean 0 and variance lTSrl

with l = (l1, l2, …, ln), we obtain 

j 1=U ,Y E he eXp /s l2 j j
n2

=
- - U!] ]g g: D sU

2 / lTSrl. (3.4)

Remark 3.1. The decomposition (3.3) is always possible for normal random
variables due to the linearity. However, when considering the joint distribu-
tion of (h (X ), Z0), replacing Z0 by some Z� with Z d Z� may not result in the
same joint distribution. It is therefore of great interest to investigate the accu-
racy of the approximation (3.3) for the joint distribution of (h (X ), Z0) under
the Gaussian copula setting.

Using the approximation (3.3), the change of measure formula (2.4) becomes

f *(x) = j 1=Ue e/ as l2 j j
n2

- - ! f (x), aj = F –1 [Fj (xj)],
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in this setting. It follows from (3.1) that 

f *(x) = j 1=

j

j
U .Ae e/

n
j

j

n
s l2

1

j j
n2

z
- -

= a

x
a z

f%! ] _
_g i

i
(3.5)

Integrating (3.5) from -3 to yj for each component, we obtain the CDF under
P* as

j 1=

j

j* U ,AF e e dy x
y/

n
j

j

n
s l2

1

j j
n2

=
z

- -

= a

x
a z

f# %!^ ] _
_h g i

i
y = (y1, y2, …, yn).

We now employ the change of variables; uj = F–1[Fj(xj)]. Then, since aj = uj ,
we obtain 

j 1=* U ,F e e dy u u
b/ u

n
s l2 j j

n2

=
- - z# !^ ]h g bj = F –1 [Fj (yj)], (3.6)

with b = (b1, b2, …, bn). Note that, from (2.10), we have

r
j 1=U .e e u u S l/ u

n n
s l2 j j

n2

= +
- - z z! ] _g i

Therefore, we finally obtain from (3.6) that

r
* .F y Sb l= +nF^ _h i

More precisely, we obtain a multivariate extension of the Wang transform as
follows:

r rj j nn* , ..., .F x xx l lF Fj
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Fn FF ! !
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KK] ^ ^ N

P
OOg h h6 6@ @ (3.7)

Note that, when n = 1, (3.7) coincides with the Wang transform (1.2) since r11 = 1.

Remark 3.2. Since actual market data exhibit the fat-tailed character, it is
wise to replace the normal distribution with a fat-tailed distribution such
as t-distributions, as suggested in Wang (2002). However, according to the
above derivation, the n-variate standard normal distribution Fn used in (3.7)
comes from the Gaussian copula to specify the dependence structure of the
underlying risks. Because Bühlmann’s equilibrium pricing formula does not
apply for the case that the underlying risks follow a multivariate t-distribu-
tion, it is not possible to use t-copulas directly for (U1, U2, …, Un) in (3.3).
A further investigation is required to develop such pricing models in this
framework. See Kijima and Muromachi (2006) for some development in this
direction.
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3.1. The case of normal distributions

When the underlying risks follow an n-variate normal distribution, equation
(3.3) holds true, not just an approximation. Hence, in this special case, the
multivariate Wang transform (3.7) coincides with the multivariate Esscher
transform (2.4), as we shall see below.

Suppose that X = (X1, X2, …, Xn) has mean vector m = ( m1, m2, …, mn) and
covariance matrix S = (sij). Then, Uj = (Xj – mj) /sj , where sjj = sj

2, in this spe-
cial case. Since jj 1=Z n

= X! , we have

j j

Z Z
.Z

Z m mZ

j

n

0
1

=
-

=
-

=
s s

X!

Hence, taking wj = sj /sZ and z = 0, we obtain (3.3) with the ordinary equality, not
equality in law.

By the definition of lj, we have

lj = lsZ
j

Zs
s

= lsj , j = 1, 2, …, n,

so that

j
j

n

1=

l! rij = lCov (Ui ,Z ), i = 1, 2, …, n.

Hence, in the normal case, the Wang transform (3.7) is given by

nn* , , ..., , .F x Cov Z x Cov Zx s
l lF F n

n

1
1 1

1
1

1
= + +

- -F Xn XsFF] ^ ^ ^ ^bg h h h hl6 6@ @
(3.8)

Since Fj (xj) = F((xj – mj) /sj) in this case, we conclude that the multivariate
Wang transform (3.8) distorts the normal distribution to another normal dis-
tribution with mean vector m – lS1 and the same covariance matrix S, which
coincides with the multivariate Esscher transform; see Theorem 2.2.

3.2. The case of log-normal distributions

When the underlying risks X = (X1, X2, …, Xn) follow a multivariate log-normal
distribution, the Esscher transform cannot define the pricing formula, while
does the Wang transform (3.7). This is one of the advantages of the Wang trans-
form over the Esscher counterpart.

Suppose that (logX1, logX2, …, logXn) has mean vector m = (m1, m2, …, mn)
and covariance matrix S = (sij). In this case, contrary to the normal case, there
is no reason to specify wj = sj /sZ and z = 0. However, if we take the choice,
we then obtain the transform (3.8), with Xi being replaced by logXi, even for this
case. Since Fj(xj) = F(( logxj – mj) /sj) for log-normal distributions, we conclude
that the multivariate Wang transform (3.8) distorts the log-normal distribution
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to another log-normal distribution with mean vector m – lS1 and the same
covariance matrix S.

ACKNOWLEDGMENTS

The author acknowledges fruitful conversations with Dr. Shaun Wang and
and Dr. Yukio Muromachi. He is also grateful to anonymous referees for their
invaluable comments that improved the original manuscript considerably.

REFERENCES

BLACK, F. and SCHOLEs, M. (1973) The pricing of options and corporate liabilities, Journal of
Political Economy, 81, 637-654.

BÜHLMANN, H. (1980) An economic premium principle, Astin Bulletin, 11, 52-60.
GERBER, H.U. and SHIU, E.S.W. (1994) Option pricing by Esscher transforms, Transactions of

the Society of Actuaries, 46, 99-140.
HARRISON, M.J. and KREPS, D. (1979) Martingales and arbitrage in multiperiod securities mar-

ket, Journal of Economic Theory, 20, 381-408.
IWAKI, H., KIJIMA, M. and MORIMOTO, Y. (2001) An economic premium principle in a multi-

period economy, Insurance: Mathematics and Economics, 28, 325-339.
JENSEN, L.J. (1995) Saddlepoint Approximation, Oxford Science Publications, Oxford.
KIJIMA, M. (2002) Stochastic Processes with Applications to Finance, Chapman & Hall, London.
KIJIMA, M. and MUROMACHI, Y. (2001) Pricing of equity swaps in a stochastic interest rate

economy. Journal of Derivatives, 8, 19-35.
KIJIMA, M. and MUROMACHI, Y. (2006) On the Wang transform with fat-tail distributions. In

Preparation.
KIJIMA, M. and OHNISHI, M. (1996) Portfolio selection problems via the bivariate characteriza-

tion of stochastic dominance relations, Mathematical Finance, 6, 237-277.
MARSHALL, A.W. and OLKIN, I. (1988) Families of multivariate distributions. Journal of the

American Statistical Association, 83, 834-841.
NELSEN, R.B. (1999) An Introduction to Copulas, Springer, New York.
PLISKA, S.R. (1997) Introduction to Mathematical Finance: Discrete Time Models, Blackwell,

Cambridge.
TONG, Y.L. (1990) The Multivariate Normal Distribution, Springer, New York.
WANG, S.S. (2000) A class of distortion operators for pricing financial and insurance risks, Jour-

nal of Risk and Insurance, 67, 15-36.
WANG, S.S. (2002) A universal framework for pricing financial and insurance risks, Astin Bul-

letin, 32, 213-234.
WANG, S.S. (2003) Equilibrium pricing transforms: New results using Bühlmann’s 1980 eco-

nomic model, Astin Bulletin, 33, 57-73.
WANG, S.S. (2005) Normalized exponential tilting: Pricing and measuring multivariate risks,

Working Paper, Georgia State University.

MASAAKI KIJIMA

Daiwa Securities Chair,
Graduate School of Economics,
Kyoto University, Yoshida-Honmachi, Sakyo-ku,
Kyoto 606-8501, Japan.
Tel/Fax: +81-75-753-3511
E-Mail: kijima_daiwa@econ.kyoto-u.ac.jp

A MULTIVARIATE EXTENSION OF EQUILIBRIUM PRICING TRANSFORMS 283

8464-05_Astin36/1_11  29-05-2006  16:03  Pagina 283


