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ABSTRACT

Insurance premiums are calculated using optimal control theory by maximis-
ing the terminal wealth of an insurer under a demand law. If the insurer sets
a low premium to generate exposure then profits are reduced, whereas a high
premium leads to reduced demand. A continuous stochastic model is developed,
which generalises the deterministic discrete model of Taylor (1986). An attrac-
tive simplification of this model is that existing policyholders should pay the
premium rate currently set by the insurer. It is shown that this assumption
leads to a bang-bang optimal premium strategy, which cannot be optimal for
the insurer in realistic applications.

The model is then modified by introducing an accrued premium rate repre-
senting the accumulated premium rates received from existing and new cus-
tomers. Policyholders pay the premium rate in force at the start of their con-
tract and pay this rate for the duration of the policy. It is shown that, for two
demand functions, an optimal premium strategy is well-defined and smooth for
certain parameter choices. It is shown for a linear demand function that these
strategies yield the optimal dynamic premium if the market average premium
is lognormally distributed.
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1. INTRODUCTION

There is a considerable actuarial literature concerned with the development
of a robust premium calculation principle (Hürlimann 1998). The simplest
approach is the expected value principle, which sets the premium equal to the
expected claim size multiplied by a loading factor. However, this principle fails
to take account of the variability of the underlying risk. Consequently, many
premium principles have been proposed which use higher order moments of the
claims distribution or which use utility theory. Much of the research involves
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the development of premium principles which satisfy certain desirable proper-
ties such as scale invariance, translation invariance and stochastic dominance
(Wang 1996).

However, all these principles fail to account for the competitive nature
of insurance pricing and it is this problem that we address here. The demand
for an insurer’s policies is in part determined by their price relative to other
insurers. A lower relative price generates exposure within the insurance mar-
ket at the expense of lower profits to the insurer. We suppose that the premium
is set in order to optimise the wealth generated by selling insurance under a
demand law. Specifically we apply both deterministic and stochastic optimal
control theory (Gelfand & Fomin 2000; Sethi & Thompson 2000; Fleming &
Rishel 1975) to find the optimal premium which maximises the (expected) ter-
minal wealth of the insurer. Implicit in our formulation is that the insurance
market ignores the strategy adopted by the insurer under consideration. This is
reasonable as long as the insurer’s exposure is small relative to the rest of the
market.

Taylor (1986) was the first to consider how competition might affect an
insurer’s premium strategy. He observed violent changes in the premium rates
offered by insurers in the Australian insurance market. Pricing insurance at
an overall loss was often followed by a period of higher premium rates where
considerable profits were taken. Moreover, an individual insurer appeared to
follow the market rather than price its insurance based on its predicted claims
distribution. These ideas lead to the formulation of a model based on a demand
law as well as the distribution of claims. Taylor (1986) used a simple discrete
time deterministic model. We have generalised his approach and used a sto-
chastic model in continuous time, which we analyse using optimal control
theory.

Optimal control theory has found widespread application in insurance.
Such theory has been used for the determination of the optimal investment
for an insurer (Hipp & Plum 2003), for optimal proportional reinsurance (Høj-
gaard & Taksar 1997), and for the optimal choice of dividend barrier (Paulsen &
Gjessing 1997). General reviews of the application of control theory to insur-
ance can be found in Rantala (1988) and Brockett & Xia (1996).

In the following, we consider the continuous form of Taylor’s model. We
start in Section 2 by considering a deterministic premium strategy. By extend-
ing one strategy adopted by Emms, Haberman & Savoulli (2004) we show
that the optimal premium strategy for this model is bang-bang. Consequently
we extend the model in Section 3 by considering the range of premium rates
accrued by the insurer that arise in a continuous model if the premium rate
is fixed at the start of each policy. Again we consider a deterministic strategy
and find its optimal form in Sections 3.1 & 3.2 for two parameterisations
of new business generation. For both forms we examine the sensitivity of the
model’s predictions to the size of the parameters. In Section 4 we generalise
further by considering a dynamic premium strategy, that is, a strategy which
takes account of information available up to time t. Finally in Section 5 we
compare the qualitative form of the deterministic and dynamic premium
strategies.
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FIGURE 1: The insurer’s exposure as a function of time with policyholders paying the premium p (t) currently
in force for policies of mean length tm. Thick lines denote the duration of policies with the same start date.

The accrued premium income rate at time t from all policies in force is p(t)q(t).

2. EXTENDED DETERMINISTIC STRATEGY

Suppose at time t the insurer’s exposure is q, the insurer’s premium (per unit
exposure) is p, the market average premium (per unit exposure) is p, the wealth
process is w and the mean claim size (per unit exposure) is p. Consider the
continuous form of the Taylor model (1986) studied by Emms, Haberman &
Savoulli (2004):

dq = qg (p /p)dt, (1) 

dw = –awdt + q(p – p)dt, (2)

where the demand function is exp(g) and a represents the loss of wealth due
to returns paid to shareholders. Taylor (1986) determined the optimal control
if p is deterministic while Emms, Haberman & Savoulli (2004) specified a log-
normal process for p. For the moment we assume that p is a positive random
process with finite mean at time t. We shall also leave the distribution for the
mean claim size process p unspecified. Notice that we specify a premium rate
at time t so that all premiums have units per unit time per unit exposure. With
this formulation w is an accurate reflection of the wealth of the company at
time t since each policyholder pays a premium pdt per unit exposure for each
dt of cover. Consequently there are no outstanding liabilities at the end of the
planning horizon T.

The principal assumption of this model is that all new and existing policy-
holders are required to pay the current premium rate p. Figure 1 shows how
the writing of policies affects the premium income of the insurer in discrete
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terms. The change in wealth at time t due to premium income is denoted by
the term pqdt in the wealth equation. Such an assumption is attractive since
it means that all the random processes are Markov. It is reasonable if the pre-
mium rate does not change substantially over the course of a policy.

The demand parameterisation g(p /p) in Taylor (1986) took two forms:

g = a (1 – p /p), (3)

g = –a log(p /p), (4)

corresponding to an exponential or constant elasticity demand function. Here
a is a constant which determines how much exposure is generated by a change
in relative premium. The first of these forms was discussed solely in Taylor
(1986), whilst the second has found widespread use in the financial literature
(Lilien & Kotler 1983). Emms, Haberman & Savoulli (2004) considered two pre-
mium strategies and maximised the expected total utility of wealth. A similar
analysis can be performed by specifying the simpler objective function

V = max
p

{� [w(T) | S(0)]},

that is maximising the expected wealth at the end of the planning horizon T given
information on the state S at time t = 0. The adoption of a fixed form for the
strategy effectively places a constraint on the variation of the premium.

We can generalise one of the premium strategies adopted in Emms, Haber-
man & Savoulli (2004) by considering the premium strategy

p = k(t)p. (5)

Emms, Haberman & Savoulli fixed k as a constant while here we maximise the
objective over the functional k(t). The deterministic function k(t) need not be
smooth and so it is useful for the analysis of models such as (1)-(2). Given the
optimal relative premium k(t), the corresponding optimal premium is sto-
chastic and for the premium to be non-negative we require k ≥ 0.

The demand functions and the form of strategy ensure that the exposure
q(t) is deterministic. This considerably simplifies the model and is one reason
for adopting a strategy such as (5). If we adopt the terminology of optimal con-
trol theory then the control variable is k and the state variable is the exposure
q which is governed by

q = qg(k).

For both the constant elasticity and exponential demand functions g is a
decreasing function of k. Note the forthcoming arguments still apply if we
split up the exposure equation into new business generation and negative drift
(representing policy termination) as long as the parameterisation of new busi-
ness is of a similar form to the demand functions (3) and (4).

Taking the expectation of the wealth equation given information up until
t = 0 we obtain
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� [w(T)] = e–aT w F dt0
T

0
+ #] g; E,

where

F = F (q,k,t) = eatq(kmp – mp). (6)

Here we adopt the notation

mX(t; s) = � [X(t) |S(0) = s], (7)

where S is the state of the system. Consequently the problem can be written
in one of the standard forms for control theory (Sethi & Thompson 2000).
We wish to determine the value function

, , ,maxV J F q k t dt
k

T

0 0
= =

$
# ^ h' 1 (8)

where the optimal control k* is denoted with an asterisk. The value of this objec-
tive function determines the maximum value of the expected terminal wealth.

The necessary conditions for an optimal control are determined by the Maxi-
mum Principle which can be stated in terms of the Hamiltonian defined by

H(q,k,l, t) = F (q,k, t) + lqg (k), (9)

where l is a Lagrange multiplier. The Maximum Principle states that

H (q*,k*,l, t) ≥ H (q*,k,l, t),

for all k ≥ 0. For the exponential demand function g = a (1 – k) and therefore
the Hamiltonian is linear in the control. The optimal control is bang-bang:
for l ≤ 0, k* = 3 while for l > 0, k* = 0 or 3 depending on the parameters of
the model. If l > 0, k* = 0 then this is the ultimate loss-leader: an insurer gives
away insurance in order to capture the whole market and then charges those
customers an infinite premium at t = T in order to generate infinite wealth.
If k* = 3 for t ! [0,T ] then it is optimal not to sell insurance.

For the constant elasticity demand function g = –a logk and the Hamilto-
nian is

H(q,k,l, t) = eatq (kmp – mp) – laq log k. (10)

If we suppose that the maximum of H over k ! (0,3) is given by Hk = 0 then
using (10) yields

eatmp – la /k = 0. (11)

Since k must be positive this requires l to be positive also. This equation when
coupled to the adjoint equation
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l̂ = – Hq = – eat(kmp – mp) + la log k (12)

determines an optimal control and ultimately leads to the Euler-Lagrange
equation of the Calculus of Variations (Gelfand & Fomin 2000). However, for
a maximum of H the second-order condition is Hkk ≤ 0 at k = k*. From (10)
we find 

Hkk = 
k
aql

2
> 0.

for k > 0, so that the turning point is a minimum. Looking at the form of the
Hamiltonian it is clear that the optimal control is degenerate and not unique:
if l ≤ 0 then k* = 3, while if l > 0 then k* = 0 or 3.

We have shown that for both demand functions (3) and (4) the optimal
control is degenerate. Although for some demand functions it is simple to write
down an equation that an extremal must satisfy, it is important to ensure that
we actually have a maximal extremal. This applies to both deterministic and
stochastic dynamic strategies, the latter of which are determined by a Bellman
equation. Since the deterministic strategy generates infinite terminal wealth
the solution to the Bellman equation for the (unconstrained) problem is also
bang-bang.

A bang-bang strategy is optimal because of the principal assumption of the
continuous model (1)-(2), that is, an insurer requires all existing customers to
pay the current premium rate. However, there is a restriction on just how big
an increase existing policyholders will be prepared to pay for insurance before
terminating their cover. The optimal strategy is dependent on the value of this
increase. One solution to the problem is to place a constraint on the premium
strategy so that premium rates cannot change substantially over the policy (see
Emms, Haberman & Savoulli 2004). An alternative approach is to change the
assumptions of the model and this is the approach we adopt next.

3. ACCUMULATED PREMIUM INCOME

We describe a simplified continuous version of the model proposed by Gerrard &
Glass (2004). We split up the change in exposure into that lost due to policy
termination and that gained due to new business (or renewals). To do this we
need a parameterisation for the rate of generation of new business n. Motivated
by the previous demand functions (3) and (4) we adopt a relationship of the
form

n = qG (p /p), (13)

where G is a non-negative demand function. This parameterisation reflects the
idea that the reputation of a company is proportional to its exposure in the
market and that it is in part the reputation of an insurer which increases its
likelihood to generate new business. New business generation is also deter-
mined by the premium that the insurer sets relative to the market, which is
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FIGURE 2: The insurer’s exposure as a function of time with the premium set at the start of the policy and
held constant over its duration. The accrued premium income is  .Q p s n s ds

t

t t
=

- m
# ] ]g g

represented by the demand function G. We shall consider two forms of this
demand function in the work to follow.

Let us denote the mean length of an insurance policy (including renewals)
by tm. The change in exposure at time t is dependent on the generation of new
business from t – tm up to t (see Figure 2). Therefore the process q is non-Markov,
which considerably complicates the modelling. In order to keep the model
Markov and use conventional control theory we parameterise the loss of expo-
sure due to policy termination: we suppose that this loss is proportional to kq
where k = tm

–1.
We cannot require that all existing customers pay the current premium rate,

so instead we suppose that clients pay the premium rate in effect at the start
of their policies. This means that at time t there is a range of premium rates
being paid to the insurer and so we introduce the accumulated premium income
rate Q. Figure 2 shows that the change in the accumulated income depends on
new business generation and premium rates between t – tm and t, so that Q is
also non-Markov. For a Markov model we suppose that the loss in accumu-
lated premium income due to policy termination is proportional to the current
accumulated premium income i.e. kQ.

Finally, Emms, Haberman & Savoulli (2004) suppose that the mean claim
size p is constant and that the market average price is lognormally distributed.
This is unrealistic in that it assumes that the market average price and the
mean claim size are independent. If the market uses the expected value prin-
ciple then p should be proportional to p. Thus we shall assume

p = gp, (14)

PRICING GENERAL INSURANCE USING OPTIMAL CONTROL THEORY 433



where the constant g is a measure of the market loading factor. It is expected
that g K 1 so that the market, on average, makes money selling insurance. We
may consider the case that g is a deterministic or stochastic function of time
in subsequent work.

With these assumptions the modified model is

dq = (n – kq)dt, (15)

dQ = (pn – kQ)dt, (16)

dw = –awdt + Qdt – gpqdt. (17)

Again, we adopt the deterministic strategy (5) so that the exposure q and the
rate of generation of new business n are deterministic. We assume that there
is an explicit expression for mp independent of the other state variables so that
there are now two unknown state variables: q and mQ. For example, if p is log-
normally distributed with drift m then mp = p(0)emt using the notation defined
in (7).

The first state equation is (15) whilst the second comes from taking the expec-
tation of (16), which yields

dt
dmQ = qkG (k)mp – kmQ,

using (5) and (13). On integrating this equation we obtain

,

m t m e m s n s ds

m e m s b db

0

0

Q Q
s tt

p

Q
s b tB t

p

k

k

0

0

= +

= +

-

-

#

#

] ]
]

] ]

]
]]

]

]^

g g
g

g g

g
g g

g

gh

(18)

where B(t) = n s
t

0
# ] gds is the total amount of business generated over time t.

Here we have supposed that B is a strictly increasing function of t so that its
inverse t = t (B) is well-defined.

Figure 3 shows the profile of premium rates that this model might deliver
at time t. The correct premium profile depends on the history of the premium
rates between t – tm and t. By making the model Markov, we have from (18)
that this profile is a weighted function of the entire premium history from [0, t]
albeit in such a way that only those premium values in the range [t – tm, t] are
important. However, we note that this does impose artificially a premium struc-
ture which differs from that actually received except in the case that the pre-
mium rate is constant. If mp is constant taking the expectation of (15) and
(16) and integrating yields mQ = qmp using mQ(0) = q(0)mp, which is the accumu-
lated premium income an insurer obtains from exposure q.

Taking the expectation of the wealth equation (17) and integrating gives

a a q .m t e m e m s m s dsg0t st

0
= + --

w Qw p#] ] ] ]^g g g gh; E
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FIGURE 3: The mean premium rate profile received at time t where the premium rate is set at the start of
the policy and held constant over its duration. Individual policies are represented by the solid lines.

If the premium rate were constant then the accrued premium Q (t) is given by the shaded region.
The actual accrued premium income in a continuous model is that enclosed by the dotted lines.

We define the value function in Lagrange form as

,maxV J F dt
k

T

0
= = #' 1

where

F (x, t) = eat (mQ – gqmp), (19)

and we write the state vector as

x = (q, mQ)T.

Alternatively we could define a value function in linear Mayer form at the
expense of an extra state equation for mw. For this system we write the state
equations as

, , .f x k t
q G k

qkG k m m
k
kx

Qp
= =

-
-]

]^

]
dg

g h

g
n (20)

The Hamiltonian is defined by

H (x,k,l, t) = F +l f = eat (mQ – gqmp) + l1q (G(k) – k) + l2 (qkG (k)mp – kmQ),

where the Lagrange multiplier vector is l = (l1,l2).
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We suppose the optimal control k* is given by the first order condition for
a maximum of H, the state equations and the adjoint equations:

Hk = 0, (21)
x = Hl, (22)
l̂ = –Hx. (23)

We must also ensure the second order condition holds: Hkk ≤ 0 at k = k*. The
last two equations are the canonical Euler equations (Gelfand & Fomin 2000)
and reduce to the Euler-Lagrange equation if the control is sufficiently smooth.
The boundary conditions for this system are

x(0) = (q(0), mQ(0))T, l (T ) = 0,

the last of which is the transversality condition. In general, for two state vari-
ables, this is a fourth-order boundary value problem. However, H is linear in
the state variables and Hk = 0 only depends on mp so that the system decouples
independently of the particular parameterisation for G. In order to determine
the optimal control k* we need only solve the initial value problem consisting
of the adjoint equations (23) and the transversality condition.

The second of the adjoint equations is independent of the choice of demand
function G. From (19) and (20) we have

l̂2 = – HmQ
= kl2 – eat, (24)

with boundary condition l2(T) = 0. This can be integrated immediately to
obtain

l2(t) =
a

e
k

a

-

t

(1 – e(k – a) (t –T )). (25)

Consequently for 0 ≤ t ≤ T we have l2 ≥ 0.

3.1. Power law demand function

The demand function G must be a non-negative decreasing function of the
relative premium price. Therefore a suitable parameterisation, which is defined
for all positive premiums, takes the form of a power law:

G = b1k– a1, (26)

where a1, b1 > 0: a1 is dimensionless while b1 has units per unit time. Although
G is defined for all k > 0, (26) is an unrealistic parameterisation as k becomes
large. If the optimal strategy depends upon new business generation for large
relative premium rates then this is not a good model for the demand func-
tion.
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The Hamiltonian for this demand function is

H = eat (mQ – gqmp) + l1q (b1k– a1 – k) + l2(qb1k– a1+1mp – kmQ),

which has derivatives 

Hk = qb1k
– a1 –1 ((1 – a1)l2mpk – a1l1),

Hkk = a1b1qk– a1 –2 ((a1 + 1)l1 – (1 – a1)l2kmp).

Suppose the extremum of H is at an interior point ki*, that is ki* ! (0,3). There-
fore the optimal strategy is given by Hk = 0:

ki* = ,a
a

m l
l

1 p1

1

- 2

1
d n (27)

which yields a maximum providing that

Hkk = a1b1qki*
– a1 –2l1 < 0.

Consequently there is an interior maximum of H if l1 < 0 and ki* ! 0. Further
from (25) and (27) we must have a1 > 1. If there is no interior maximum the
optimal strategy is at either end-point of k. The optimal behaviour can be
summarised by the following table for a1 > 1:

l2 = 0 l2 > 0

l1 < 0 k* = 3 interior
l1 = 0 undefined k* = 0
l1 > 0 k* = 0 k* = 0

The remaining Lagrange multiplier is determined by

l̂1 = gmpeat + l1k + l1b1 ,a a
a m

l
l

1
1 1 a

p

1 1

2

-

-

1

1
1

b
]
dl

g
n (28)

using (25) with boundary condition l1(T ) = 0. This is similar to a Bernoulli
equation but it is non-homogeneous and so in general it does not have an ana-
lytical solution.

We nondimensionalise the market average premium using its initial value.
The remaining scales are taken as

b1l2 = w, b1l1 = p(0)l, t = T (1 – s), â = aT,

k = Kb1, e = (b1T )–1, mp = p(0)M(s).

Substituting these scales into (28) we obtain the non-dimensional adjoint equation:
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ds
de l = –gM(s)eâ(1– s) – Kl – ,a a

a M s
l

w
1

1 1 a

-
-

1 1

1
1

b
] ]
dl

g g
n (29)

where from (25)

,
a

s
K
e ew 1

a
a

s
s

1 K
e=

-
-

-
-

e
]

]
]`g

g
g j

and the optimal strategy is

ki* = .a Mw
l

1
1
- 1

b l (30)

At s = 0, l = w = 0 so that ki* is undefined. We can only find the limiting behav-
iour numerically since substituting Taylor series expansions for l and w about
s = 0 leads to the algebraic equation:

el�(0) = –gM (0)ea – ea a
a M e

l1
1

0
1 0

�

a a

1

1

-
-

1

1

b
]

] ]
fl

g

g g
p .

Given the numerical root of this equation we can integrate (29) numerically with
initial value l(ds) = l�(0)ds.

If we suppose e % 1 then to leading-order we have w ~ eâ (1 – s)K and an alge-
braic equation for l:

gM(s)eâ (1 – s) – K (–l) + .a a
a

K
M s e

l1
1 1

0
a s a

1

1

-
-

-
=

-

1

1

1

b c
]

]
]

fl m
g

g
g

p (31)

In general the solution to this equation can only be determined numerically.
For simplicity, we suppose p is constant so that M / 1. In order to gener-

ate a parameter set we shall suppose that if the insurer sets its premium at 80%
of the market value then this leads to a 40% increase in the insurer’s exposure
after one year. Thus we choose a1 = 2 and obtain b1 = 0.256 p.a. from (26). The
mean policy length is set at one year and the planning horizon is 10 years.
Depreciation of wealth is taken as 6% and the premium ratio g = 0.67. Figure 4
shows the numerical solution to (29) and (31) for comparison using the sam-
ple data in Table 1. The strategy proceeds from s = 1 corresponding to t = 0 to
s = 0 at time t = T. Notice that there is a region of thickness e where the alge-
braic equation does not give a good approximation to the adjoint differential
equation. From (15) the state equation for the exposure is

dq = qb1(k –a1 – K )dt. (32)

It can be seen in Figure 4 (ii) that the optimal strategy ki* is always above
K –1/a1 so that exposure is decreasing exponentially with increasing time t. Thus
for this parameter set the optimal strategy represents a withdrawal from the
market.
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(i)

(ii)

FIGURE 4: The optimal strategy for a power law demand function G with parameters as in Table 1.
The first graph (i) shows the numerical solution for the adjoint variable l1 and its approximate value,

whilst graph (ii) shows the optimal interior relative premium ki*.
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Time horizon T 10 yr
Demand growth a1 2
Demand parameterisation b1 0.256 p.a.
Demand growth a2 2 p.a.
Demand Parameterisation b2 1
Depreciation of wealth a 0.06 p.a.
Ratio of break-even to initial market average premium g 0.67
Mean length of policy t = k –1 1 p.a.

TABLE 1: Typical parameter values.



(i)

(ii)

The optimal control is a function of the parameters g, K, a1, e, and â.
Numerical experiments and previous sensitivity analyses (Emms, Savoulli &
Haberman 2004) suggest that we should expect a reasonable optimal strategy
for e % 1 and â ~ 1. Figure 5 shows how the optimal control varies if we vary g,
K and a1 in turn. As we increase g the optimal relative premium increases and
the insurer withdraws from the market. The optimal strategy is insensitive to
K because from (31), l /w is independent of K = k /b1 at leading order. If K is
sufficiently small (corresponding to long policies) then (32) shows that expo-
sure can grow exponentially but that the optimal relative premium is still larger
than the market average premium. Of course when the mean policy length is
longer than the planning horizon T then very few policyholders leave the insurer
no matter what premium is set: they continue to pay the premium rate set at
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FIGURE 5: Sensitivity of the optimal strategy to model parameters for a power law demand function G.
One parameter is varied while the remaining are taken from Table 1. The optimal control is shown for for

g = 0.1-0.9 in steps of 0.2 in (i), K = 1-4 in steps of 1 in (ii), and for a1 = 2.0-10.0 in steps of 2.0 in (iii).

(iii)

the start of their policies. This highlights a limitation of the model: the mean
policy length is independent of the premium rate. It is simple to add a parame-
terisation for tm(k) to the model at the expense of increasing the parameter
space.

From Figure 5(iii) we can see that as the demand parameter a1 is increased
the optimal premium decreases below the market average premium. How-
ever, for the parameter range examined the optimal relative premium is above
K –1/a1 c 0.5 so that this premium strategy leads to market withdrawal. It is
clear that the the optimal strategy is strongly dependent on the demand parame-
terisation. Notice also that for the chosen parameter set the optimal relative
premium ki* > g, which implies that p > p, so that none of these strategies are
loss-leading.

3.2. Linear demand function

We simplify the parameterisation for new business by taking

,
> ,G

a b k k b
k b

if
if0

2 2 2

2

#
=

-] g
( (33)

where a2 > 0 has dimension per unit time and b2 is dimensionless. Linear
demand functions are often used in the economics literature (Lilien & Kotler
1983). Note that this is a different parameterisation to g in (3) since G is a
non-negative function characterising the demand for new business rather than
the fractional change in exposure.
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The Hamiltonian in this case is

H = eat(mQ – gqmp) + l1q(a2(b2 – k) – k) + l2(qka2(b2 – k) mp – kmQ),

which has derivatives 

Hk = –a2ql1 + l2qmp a2(b2 – 2k),

Hkk = –2l2qmp a2,

if k ≤ b2. Therefore we have a maximum for H at

ki* = ,b m l
l

2
1

p
2

2

1-d n (34)

which gives the optimal interior strategy providing that 0 ≤ ki* ≤ b2 and l2 > 0.
The remaining adjoint equation determines the optimal interior control:

l̂1 = gmpeat – l1(a2(b2 – ki*) – k) – l2a2ki*(b2 – ki*) mp, (35)

with boundary condition l1(T ) = 0. The second Lagrange multiplier is just a
function of t so we can substitute (34) into (35) to obtain

l̂1 = gmpeat – ,
a b m a b

m
al

l k l
l

4 2 4
p

p

2 2

2
2 2 2

2

2
2

- - -1
1

c m (36)

which is a Riccati equation.
Next we rescale using the following change of variables:

t = T (1 – s), a2l1 = p(0)l, a2l2 = w, mp = p(0)M(s) (37)

and introduce the following nondimensional parameters:

k = Ka2, e = a T
1
2

, â = aT.

Note that the definition of K and e has changed from the previous section because
of the change in demand function. From (15) the exposure is governed by

,
> .dq

qa b k K
qa K

k b
k b

if
if

2 2

2

2

2

#
=

- -
-
] g

( (38)

If K ≥ b2 then policies expire at a rate greater than the rate at which new busi-
ness is generated irrespective of the level of the relative premium. This is clearly
unrealistic so we must have K < b2.

The nondimensional Riccati equation is
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l w
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2
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2
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c

] ]
]

]g g
m
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g
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with

,
a

s
K
e ew 1

a
a

s
s

1 K
e=

-
-

-
-

e
]

]
]`g

g
g j (40)

and the boundary condition is l(0) = 0. In terms of these new variables the opti-
mal interior strategy is

ki* = ,b Mw
l

2
1

2 -b l (41)

providing that |l | < Mw. Since both l = w = 0 at s = 0, this expression is undefined
at end of the time horizon. However, if we suppose that l is sufficiently smooth
near s = 0 then a Taylor series expansion substituted into (39) gives

ki* =
2
1 (b2 + g), as s " 0+. (42)

This expression gives the terminal optimal relative premium rate.
Let us suppose e % 1. To leading-order w ~ e â (1 – s) /K and

,M
Ke

K b K b K K
l

g2 2
/

a s 1

2
2

2

1 2

+
- - - +

-

J

L

K
KK ]

`
N

P

O
OOg

j
(43)

providing that

g ≥ gc = b2 – K. (44)

Again, we suppose that if the insurer sets its premium at 80% of the market
premium then that leads to a gain in exposure of 40% over one year. Thus we
choose a2 = 2 p.a. and obtain b2 = 1 from (33). The other parameters are taken
from Table 1 and yield gc = 1/2. If g < 1/2 then the optimal control does not equi-
libriate. In this case there is the possibility that the optimal control becomes
negative or even that there is a spontaneous singularity for s ! (0,1]. Using (43)
the approximate optimal interior strategy is

ki* = b2 – K – (K2 – b2K + Kg)1/2. (45)

The leading-order value of ki* is independent of both M and s. It should be
remembered that these approximate expressions only remain valid if the solution
to the Riccati equation does equilibriate. In the following numerical calculations
we find that as the solution tends towards a bang-bang control then these approx-
imations become invalid.
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(ii)

(i)

Figure 6 shows the approximate premium strategy along with the numeri-
cal solution of the Riccati equation (39) using the parameters in Table 1. For
the moment we set b2 = 1 so that there is no demand for insurance if the
insurer’s premium is above market average. We shall relax this assumption in
the forthcoming sensitivity analysis. In addition, we set M / 1 so that there is
no drift in the market average premium. Figure 6 (i) reveals that there is an inner
region where the approximate expression for l does not satisfy the boundary
condition however, this region appears unimportant, when we plot the approxi-
mate optimal premium ratio ki*. Note that the strategy proceeds over time
from s = 1 to s = 0 and, the exposure is always decreasing as s decreases (since
k > b2 – K) so that this strategy effectively represents a gradual withdrawal from
the market. In contrast to the power law demand function, the optimal control
ki* for a linear demand function increases over time.

The optimal control is a function of six parameters: g, K, b2, M, â and e.
The last of these parameters, e, is a measure of how fast the adjoint l1 reaches
its equilibrium (should it do so). Figure 7(i)-(iv) show how the optimal control
varies as we vary each of these parameters in isolation.
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FIGURE 6: The optimal premium strategy for a linear demand function G with parameters taken from
Table 1. Graph (i) shows the adjoint variable l while (ii) shows the optimal relative premium ki*.
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FIGURE 7: Sensitivity analysis of the optimal premium strategy for a linear demand function G.
For each figure one parameter is varied with the others held constant and taken from Table 1.

The optimal control is shown for g = 0.40-0.80 in steps of 0.1 in (i), for K = 0.2-0.4 in steps of 0.05 in (ii),
for b2 = 1.0-1.4 in steps of 0.1 in (iii), and for m̂ = 0.1-0.9 in steps of 0.2 in (iv).

Figure 7(i) and 7(ii) show how the optimal strategy varies with g and K
respectively. As g decreases the initial loss increases until, for g K gc given by
(44), the optimal strategy is determined by the constraint k ≥ 0. Similar behav-
iour occurs as K is decreased, corresponding to increasing the mean length of
the policies. Furthermore, for K K 0.35 the exposure increases over the initial
course of the strategy, so that this condition might be taken as that required
to enter the market. Initially the insurer makes a loss to build up exposure
which increases the company’s reputation. Towards the end of the time horizon
the premium is raised in order to make a profit. Notice also that for sufficiently
small K the optimal strategy is loss-leading because ki* < g.

Figure 7(iii) shows how the optimal control varies as we increase b2, which
corresponds to increasing the cutoff relative premium: if k > b2 there is no demand
for insurance. We see that as b2 increases so does the bound on the critical loss
ratio gc given by (44). Therefore, if there is demand for a high relative premium,
the optimal control is likely to be limited by the constraint that the premium
must be non-negative. Moreover, if we set g > gc then the terminal optimal rela-
tive premium increases with b2. Clearly, more wealth is generated by selling
insurance at these high relative premium rates even though they generate lit-
tle exposure. Of course, it is implausible that new business would be generated
at such high premium rates: the rate of generation of new business would be
zero if the premium is set too much above the market average. We must ensure
that the demand parameterisation reflects this feature if we wish to obtain a
realistic optimal strategy.

Finally, Figure 7(iv) shows the variation of the optimal strategy if we sup-
pose p is lognormally distributed, which gives M = e m̂(1 – s), where m̂ = mT is the
nondimensional drift. As predicted from the leading-order outer solution, the
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variation of this parameter has little effect on the optimal strategy. The mean
of the market average premium M(0) cancels in the inner region so that there
is little variation in the optimal control over the entire time horizon. The optimal
control shows little variation with â so the results are not shown.

4. PURE STOCHASTIC STRATEGY

We have found smooth deterministic optimal strategies for an accrued pre-
mium model for certain parameter choices. Using the linear demand function
we look next for the dynamic optimal premium and derive the correspondence
between this premium and the deterministic premium strategy.

Let us suppose the process for the market average premium follows an Ito
process

dp = mtdt + stdZt, (46)

where Zt is a standard Brownian motion and the drift mt and the volatility st
depend on time and the current state but not the insurer’s premium. We use
the relative premium k = p/p as the control and define the value function to maxi-
mise the expected terminal wealth:

V(p,q,Q,w, t) =
max

k
{� [w(T ) | p(t) = p,q(t) = q,Q(t) = Q,w(t) = w]}.

(47)

Bellman’s principle of optimality states that

V(p,q,Q,w, t) =
max

k
{� [V (p + dp,q + dq,Q + dQ,w + dw, t + dt) | (48)

p(t) = p,q(t) = q,Q(t) = Q,w(t) = w]}.

Therefore rearranging on the right-hand side we obtain the Bellman equation

.max� dt
dV

0
k

t =: D

For the insurance model (46) and (15)-(17) the Bellman equation is

Vt + mVp +
2
1 s2Vpp + Vw(–aw + Q – gpq ) +

max
k

{q (G – k)Vq + (pqG – kQ)VQ} = 0, (49)

with boundary condition

V (t = T ) = w, (50)

providing the value function is sufficiently smooth.
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The first order condition for a maximum gives

G�Vq + VQ p (G + kG�) = 0.

For the demand function (33), G� = –a2 providing k ≤ b2 so that this condition
becomes

Q

q ,k b V
V
p2

1
2= -d n (51)

which is similar in form to (34). If the value function is sufficiently smooth and
we write the “shadow prices’’ Vq = l1 and VQ = l2 then the optimal premiums
have the same form (see p. 229, Yong & Zhu 1999). This demonstrates the wider
correspondence between the Maximum Principle and Dynamic Programming.
Substituting (51) into the Bellman equation removes the maximum operator:

Vt + mVp +
2
1 s2Vpp + Vw(–aw + Q – gpq ) +

Q

q

Q

q
q Q .q a b V

V
V

a q
b

V

V
Q Vk kp

p
p2 4

02 2

2

2 2

2

+ - + - - =2 2

J

L

K
K

J

L

K
Kde

N

P

O
O

N

P

O
On o (52)

This is a quasi-linear partial differential equation with four space variables.
Given its high dimension and nonlinearity this problem appears difficult to
solve numerically. However, by assuming a particular form for the value function
motivated by the deterministic optimisation problem, we can find a solution
of (52) and apply a verification theorem (Fleming & Rishel 1975).

On the boundary t = T, V = w and therefore Vq = VQ = 0 so that the pre-
mium given by (51) is undefined in the same way as it was for the deterministic
strategy. If we approximate Vt by a first-order difference then

t ,V t
V T V T t

d
d

.
- -] ]g g

where dt is a small time step. Substituting into the Bellman equation (52) yields

V(T – dt) = w + (–aw + Q – gpq)dt, (53)

so that VQ = dt and Vq = –gpdt at t = T – dt providing the spatial boundary con-
ditions are consistent with the finite difference approximation (53). Conse-
quently the terminal premium is well-defined as t " T – and is given by

pT – =
2
1 p (b2 + g). (54)

This should be compared with the optimal deterministic strategy given by (42):
near the boundary the terminal premium is identical to the deterministic optimal
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premium strategy as long as the control is sufficiently smooth. The result holds
irrespective of the distribution of p.

Given the structure of (53) we further restrict the process for p by suppos-
ing m = m(p,t) and s2 = s2(p,t). Now we look for a value function of the form

V = e–aT(eatw + L1(p, t)q + L2(t)Q ), (55)

with L1(T) = L2(T) = 0. Consequently, from (51) a candidate for the dynamic
optimal control is

kc( p, t) =
,

,b t
t

L
L
p

p
2
1

2

1
-2

]

^
d

g

h
n (56)

as long as the control is interior. Substituting (55) into (52) yields a PDE for
L1 and an ODE for L2:

L1t + m(p,t)L1p +
2
1 s2(p,t)L1pp + a b k

2
1

2 2 -b lL1+
4
1 a2 pb2

2L2 +
a

L
L

p4 2

2 1

2

= geatp. (57)

L̂2 = kL2 – eat. (58)

The equation for L1 is a semi-linear PDE and, in general, can only be solved
numerically. The equation for L2 is identical to (24) so that its solution is given
by (25).

We can make further progress by supposing p is lognormally distributed
so that its drift and volatility are linear in the state variable: m(p,t) = mp and
s2(p,t) = s2p. Consequently L1 takes the form 

L1(p,t) = mp pl1(t), (59)

where l1 satisfies

l̂1 = gmpeat –
4
1 a2 b2

2L2mp – l1 .a b m
a

k
l
L42

1

p
2 2

2

2
2

- - 1
b l (60)

Now the candidate dynamic premium strategy is of the form pc = k(t)p from
(56) and (60) is identical to (36).

The deterministic strategy (5) is of a similar form to the candidate dynamic
premium in the case that the market average premium is lognormally distri-
buted and the control is smooth. In (7) we take the expectation of the governing
processes based on information up until t = 0. However, we could instead take
conditional expectations using the information available up until time t. The
analysis in Section 3.2 would be identical and the optimal premium strategy
would be the same except that the state equations must be integrated using
the current state rather than that at time t = 0. Consequently, if we evaluate the
deterministic premium strategy then this yields the candidate optimal dynamic
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premium in the form pc = ki*p if we use the current value of the lognormally dis-
tributed market average premium. However, if p has some other distribution then
we must solve the PDE (57) numerically with boundary condition L1(p,T) = 0.

It remains to ascertain under what conditions the candidate premium strat-
egy (56) is optimal. If the market average premium is lognormally distributed
then we can apply the verification Theorem 4.1 of Fleming & Rishel (1975) p. 159.
Let us restrict the set of feedback controls to 

U = {k(t) !C1(t) : 0 ≤ k(t) ≤ b2, 0 ≤ t ≤ T}

so that the exposure equation (15) has smooth bounded coefficients. We assume
that there exists a sufficiently smooth unique solution to (60) over [0,T ] which
leads to a control k(t)! U. The value function defined by (55) and (59) is twice
continuously differentiable in the state variables because it is linear in those vari-
ables and L2(t) is a smooth function of time. The value function is also once
continuously differentiable in time so V ! Cp

2,1(Q) where the domain Q = �4 ≈
(0,T ) using the notation of Fleming & Rishel.

By construction V satisfies the Bellman equation (49) and boundary con-
dition (50) providing the first order condition yields the maximum in the equation.
The expression inside the maximum operator is a quadratic function of k where
the coefficient of k2 is

– eaTa2 pqL2(t) ≤ 0

so that the maximum is given by the first order condition as long as kc! U.
It remains to determine whether the feedback control kc = kc(t) leads to a well-
defined state trajectory, that is, we must verify that the control is admissible.
If we substitute the control into the state equations (15)-(17) then we obtain
a system of linear stochastic differential equations:

dp = mpdt + spdZt,

dQ = (k(t)q(t)G (k(t))p – kQ)dt,

dw = –awdt + Qdt – gq(t)pdt.

The exposure, q (t), is deterministic and governed by a linear equation with
bounded smooth coefficients so that it is integrable over [0,T]. Therefore, by the
uniqueness and existence Theorem 4.1 of Fleming & Rishel (1975) p. 118 there
is a unique state trajectory corresponding to the optimal control. The linearity
and the smoothness of the coefficients ensure that both the Lipschitz and linear
growth conditions are satisfied over the domain Q. Consequently the conditions
of Theorem 4.1 of Fleming & Rishel (1975) are satisfied and kc(t) ! U is the
optimal control.

The verification of optimality reduces to the existence of a smooth solu-
tion of the Riccati equation (60) which yields a control in the set U. It is well
known that Ricatti equations may blow-up in finite time (see Bender & Orszag
1978). We can see this behaviour in Figure 7(i)-(iii) as g, K are decreased or
b is increased. The validity of the optimal control depends implicitly on the
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parameters through the solution of (60): if for a given parameter set the com-
puted control lies in U then it is the optimal control. This is the case for a
number of the controls in Figure 7. In the absence of an analytical solution,
the range of parameters which lead to either negative controls or blow-up must
be determined numerically.

5. CONCLUSIONS

Emms, Haberman & Savoulli (2004) found the optimal insurance premium given
that the relative insurer to market average premium was constant: p /p = k.
They found that the insurer should set k so that p is just above the breakeven
rate if there is no drift in the market average premium. We have modified their
model in a number of ways.

First, we suppose that the loss ratio g = p /p is constant. Emms, Haberman &
Savoulli (2004) supposed that the breakeven premium rate was constant, which
complicates the behaviour of the optimal control. Specifically, if the market aver-
age premium drifts above breakeven the optimal control is necessarily a loss-
leader. However, one would expect the main reason for greater premiums is that
claims are higher so that there is a direct correlation between the market aver-
age premium and the expected mean claim size (or breakeven premium rate).

Second, we have generalised the deterministic premium strategy to be of the
form p /p = k(t). In an unconstrained model we find that the optimal control
k(t) is bang-bang. This is a direct consequence of the assumption that the
insurer can force existing customers to pay the current premium rate. The opti-
mal control strongly depends on how much the insurer can raise the premium
rate during the course of a policy. We are led to a modification of the model
which fixes the premium rate at the start of a policyholder’s contract. For
two choices of the demand function a smooth optimal control was calculated.
We find that withdrawal from the market, setting a premium above break-even
or loss-leading can be optimal and that the qualitative form of optimal premium
strategy is sensitive to the form of the demand function. A loss-leading premium
strategy is optimal for a linear demand function when the loss ratio is sufficiently
small or the mean contract length is sufficiently large. If we adopt a para-
meterisation which increases the demand for insurance with a high relative
premium then this leads to an unsmooth optimal control with a high terminal
premium rate.

The premium strategy of loss-leading followed by profit-taking is one pos-
sible cause of the observed actuarial cycle (Daykin et al. 1994). Many insurance
companies prohibit loss-leading which imposes a restriction on the premium
charged to policyholders. Taylor (1986) modelled this restriction by modifying
the demand function. However, using optimal control theory the requirement
becomes a constraint on the relative premium and may lead to a non-smooth
control. Deterministic premium strategies can be investigated numerically for
a variety of constraints including those which involve the state of the insurer.
This is a further reason for the study of this class of control and forms the sub-
ject of ongoing research.
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In the last section we compared the optimal deterministic strategies for a
linear demand function with the dynamic premium strategy predicted by a
Bellman equation. If the market average premium rate is modelled as a log-
normal process we find that the deterministic premium strategy and dynamic
premium are of the same form. In addition, since we have found a smooth
optimal deterministic control under parametric restrictions, the deterministic
control is the optimal dynamic control using a verification theorem (Fleming &
Rishel 1975). A similar analysis can also be carried out if we consider the objec-
tive of maximising the expected total utility of wealth with a utility function
which is linear in the wealth process. Further work is aimed at generalising
the loss ratio g (here assumed constant) to include both deterministic and sto-
chastic models.
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