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ABSTRACT

The purpose of this paper is to show that, for the classical risk model, explicit
expressions for survival probabilities in a finite time horizon can be obtained
through the inversion of the double Laplace transform of the distribution of
time to ruin. To do this, we consider Gerber and Shiu (1998) and a particular
value for their penalty function. Although other methods to address the problem
exist, we find this approach, perhaps, more direct and simple. For the analytic
inversion, we have applied twice, after some algebra, the Laplace complex
inversion formula.
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1. INTRODUCTION

In this paper we assume that the counting claims process is a homogeneous
Poisson process and that the Laplace transform of the density function of the
single amounts is known. In the following, we shall use the model and nota-
tion of Bowers et al. (1987, Chapter 12), although with slight modifications.
Thus, we consider that the company has an initial reserve of U(0) = u, whose
surplus at time t is 

U(t) = u + ct – Y(t), t≥ 0, (1)

where c is the constant premium income per unit of time and {Y(t)}t≥0 is a com-
pound Poisson process with parameter l, where Y(t) is the aggregate claims
amount up to time t and Y(0) ≡ 0.

1 This research is partially supported by Fundaçao para a Ciência e a Tecnologia, program POCTI,
partially funded by FEDER.
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Let g(t) be the density function of the time between two consecutive claims,
so that g(t) = lexp(–lt).

A single claim amount is denoted by the random variable X with distribu-
tion function F(x) and density function f (x) = F �(x).

The distribution and density functions of the aggregate claims amount up
to time t are denoted by Ft (x) and ft(x), respectively.

The Laplace transform of a non-negative function h(y) will be denoted by
h (s), defined in the complex plane by

.exps sy h y dyh
0

= -
3

#] ^ ^g h h (2)

Unless otherwise specified, the abscissa of convergence will be denoted by s.
If the function has two independent variables (x,y), we will maintain the

previous definition with respect to each of them, that is,

, , ,expx s sy h x y dyh
0

= -
3

#] ^ ^g h h

and

, , .expy x h x y dxh d d
0

= -
3

#^ ] ^h g h

The double Laplace transform will be defined by

, , .exps x sy h x y dxdyh d d
00

= - -
33

##t
] ^ ^g h h

The finite time ruin probability of the company, up to time t, considering an
initial reserve u, will be denoted by c(u,t) and the corresponding survival prob-
ability by s(u,t) = 1 – c(u,t). The ultimate ruin probability will then be c(u) =
c(u,∞) and the non-ruin probability s(u) = 1 – c(u).

Following Gerber and Shiu (1998) and Dickson and Hipp (2001), we denote
by T the time to ruin and we define a function ƒ by 

ƒ(u) = E [e –dTI (T < ∞) | U(0) = u ], (3)

where I denotes the usual indicator function and d is a parameter defined in
the complex plane with a non-negative real part. ƒ(u) can then be considered
the Laplace transform corresponding to the random variable T. For d = 0, we
get ƒ(u) = c(u).

We remark that ƒ can be written as 

ƒ(u) = e t
td

0 2
23

-# c(u, t)dt = c(u,0) + dĉ(u,d). (4)

The purpose of our work is to find formulae for finite time survival proba-
bilities, by means of the complex inversion of the corresponding Laplace trans-
forms.
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We start the research by capturing the double Laplace transform given by
Gerber and Shiu (1998), which is the basis of our future developments. To help
the reader and keep the sequence of the text we derive in a simple way the
referred formula, taking the opportunity to introduce and explain some aspects
we will need later.

Part of the present work was presented by the author at the I:ME confer-
ence in Lisbon in 2002, namely our formulae for the exponential and Erlang(2)
cases. Since then we added some other developments, like considering the mixed
exponential amount distribution case and other authors have also done addi-
tional research on the matter. Namely, Drekic and Willmot (2003) considered
the density of the time to ruin for exponential distributed claims, Dickson et al.
(2003) consider a Sparre Andersen model and derive an expression for the den-
sity of the time to ruin for exponential claims and Dickson and Willmot (2004)
invert the Laplace transform of the time to ruin in the classical model and
give a formula which can be used to calculate some of the results we present.

In Section 2 of this paper the Laplace transforms of ƒ(u) and s(u,t) are
derived. In Section 3 we then work the complex inversion of the double trans-
form ŝ̂(d,s), and explicit results for exponential, Erlang(2) and mixed expo-
nential distributed claims are achieved. For the complex inversion, we suppose
that the reader is familiar with the residue theorem and with the Laurent series
expansion for complex functions. At the end of the section we present some
numerical results and, for comparison purposes, we compute the exact formulae
obtained and the well known Seal’s formula,

s(u, t) = Ft(u + ct) – c f
t

t
0
# (u + ct) s(0, t – t)dt,

where 

s(0,y) = y .cy F x dx1 cy

0
# ] g

The numerical evaluation of the integrals has been done using the dichotomic
algorithm considered by Lima et al. (2002).

2. THE LAPLACE TRANSFORMS OF ƒ AND s(u, t)

Considering the instant and the amount of the first claim we may write

.

u g t F u ct e dt

g t e f x u ct x dxdt

1 t

t
u ct

d

d

0

0 0

= - +

+ + -

z

z

3

3

-

-
+

#

# #

] ] ]

] ] ]

g g g

g g g

6 @

(5)

Changing the integration variable and differentiating with respect to u we get
the relation

cƒ�(u) = (l + d)ƒ(u) – l [1 – F (u)] – l f x
u

0
# ] gƒ(u – x)dx, (6)
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which is equation (2.16) of Gerber and Shiu (1998) with their w (x, y) = 1 for
all x and y.

Taking the Laplace transform of both sides of (6) and simplifying we get 

ƒ̂(s) = .
cs s

c s

f
f

l d l

0 1s
l

- - +

+ -z

]

] ]

g

g g7 A
(7)

Note that the zeroes of the denominator of (7) are the solutions of the Lund-
berg’s fundamental equation 

l + d – cs = l f (s). (8)

Following Gerber and Shiu (1998), we verify that (8) has a non-negative root r,
which is zero for d = 0 and, for a large class of claim amount distributions,
also has a negative root denoted by R. We note that for d = 0 the absolute
value of R is Lundberg’s adjustment coefficient. Considering in (7) s = r the
denominator vanishes, so that r must also be a zero of the numerator and 

ƒ(0) = c
f

r
l r1 - ^ h7 A

(9)

and

ƒ̂(s) = .
cs s

s

f
f f

l d l

r1 1s
l

r
l

- - +

- - -

]

] ^

g

g h7 7A A
(10)

Consider now the defective density under expression (4). We may write 

s(u, t) = 1 – c(u, t) = 1 – , ,v u v dvc
t

0 2
2# ] g (11)

so that, considering the properties of Laplace transforms, the double transform
of s(u, t) can be written as

ŝ̂(s,d) = s
s

d d
1

-
zt ] g

. (12)

Replacing (7) in (12) and simplifying we get 

ŝ̂(s,d) = .
s cs s

cs cs
fd l d l

d 0
-

- - +

- + + z

]_

]

gi

g
(13)

Taking the same arguments used for expression (9), we get 

ƒ(0) = 1 – .cr
d (14)
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The substitution of (14) into (13) gives 

ŝ̂(s,d) = ,
s cs s

s
fr l d l

r
- - +

-

]_ gi
(15)

an expression obtained by Gerber and Shiu (1998), using a different approach.

3. THE COMPLEX INVERSION OF ŝ̂

3.1. Exponential distributed claims

If the single claim amount distribution is exponential with mean 1/�, we have 

f (s) = ,
�

�
s+

Re(s) > – �,

the Lundberg equation becomes

l + d – sc = �
�s

l
+

, (16)

and

ŝ̂(s,d) = .
�

�

s a s s cs cs
s s

r d d l
r

2- - - + +

- + +

_

^ ]

i

h g
(17)

The first inversion ŝ̂(s,d) with respect to s (the counterpart of u) is simple and
ŝ(u,d) can be determined by the complex inversion formula for Laplace trans-
forms, so that,

ŝ(u,d) = ! (residues of eus ŝ̂(s,d) at each of its singularities in C), (18)

(Marsden 1999, page 471). We can see that the implicit integrand function in
(18) is analytic, with respect to s, except for the poles s = 0 and s = R. Note that
s = r is a removable singularity. The residues r(s) will then be evaluated by the
relation 

r(s) = eus ,
� �

�

s s cs cs
s s

rd rd rl r r
r

2 2 2 3 2- - - + +

- + +^ ]h g

giving

ŝ(u,d) = .
� �

�
e

R R cR cR
R R

d rd rd rl r r
r1

2 2 2 3
uR

2
+

- - - + +

- + +^ ]h g
(19)

The inversion of ŝ(u,d) is not that simple. The inverse transform of 1/d, the first
part of (19), is 1. However, for the second part, we must consider the residues
of the function 
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e dt+uR .
� �

�

R R cR cR
R R

rd rd rl r r
r

2 2 2 3 2- - - + +

- + +^ ]h g
(20)

If we substitute R and r by their expressions as functions of d, extracted from
Lundberg’s equation (16), the integrand function is not analytic in any half
complex plane. But, we may change the integration variable d through its nat-
ural relation with R from that equation, that is

d = cR – l + �
�R

l
+

. (21)

If we multiply the new integrand function by dd /dR we get 

– exp ,
�

� �
� �
� � �R R

t tc tcR u uR
c cR R

c c R cRl
l

l 22 2

+
- + + + +

- + +
- + + +

b
]

l
g

(22)

where r has been substituted by – R – (– d – l + c�) / c (from the relation between
the two roots of Lundberg’s equation). The new integrand is analytic, except
for three singularities: {0}, {r} and {– �}, which respect the relations 

– � < r < 0.

We note that |r | is Lundberg’s adjustment coefficient.
The first two singularities are simple poles, but {– �} is an essential singu-

larity. However, notice that when, under Lundberg’s fundamental equation,
d progresses from 0 to +∞, R decreases from r until – �. For d = 0, the integral
that defines ŝ(u,d) is divergent, so that this transform and the first inversion
already made, is only valid for Re(d) > 0. We conclude that {r} and {0} must
be excluded for the second inversion. Besides, we can verify that the consider-
ation of any of these poles, would result in an expression that would not give
probabilities at all. The analysis of the new contour of integration presents
some additional difficulties, since {– �} corresponds to d = ∞. However, it can
be avoided, because the limit of the contour can precede the limit of the improper
integral considered, so that the singularity {– �} shall be considered inside the
contour.

To evaluate the residue at {– �} it is necessary to develop the integrand func-
tion into a Laurent series expanded about the point R = – �. Considering R +
� = z, expression (22) becomes 

,exp
� �

� �cz z
cz z z

t tcz uz
l

l l2

- - +
-

- +
- -

] ]
]b

g g
g l

or, using partial fractions, we get 

.
� �

�e cz z e el
l1

1 ( )� � �t u tc u tc tl lz
1

- +
-

+
- +

- + + + z] b ]g l g (23)

Considering that 
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2 3

2 3
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! ! ...,

�
�
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�
� �

cz z
c z c z c z

e u tc z
u tc

z
u tc

z

e t z
t

z
t

z

l
l

l l l

l
l l

1 1
1 1 1

1
2 3

1
2 3

�

u tc z
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2 2

2
2

3 3

3
3

2 3

1 2 3z
1

- +
-

+
- +

= + + + + + + +

= + + +
+

+
+

+

= + + + +

+

- - -

b c c

] ]
] ]

] ]

l m m

g g
g g

g g

and taking the product of these series, we obtain the residue at z = 0, which
is the coefficient of z –1 in the result obtained. After simplification, we get

k k

k j k

1

1

+

+ +j j

, ! !

! ! .

�
�

� �
�

u t e
k k

u ct t

e c
k j k

u ct t

s
l

l
l

1
1

1
1

� �

� �

c t u

k

c t u

j k

l

l

0

0 0

= +
+

+

- +
+ +

+

3

3 3

- + +

=

- + +

= =

!

! !

]
]

]

] ]

]

b b
^

] ]

g
g

g

g g

g

l l
h

g g

5

5
<

?

?
F

(24)

3.2. Erlang(2) distributed claims

If a single claim amount has an Erlang(2) distribution, with Laplace transform 

f (s) = 2 ,
�

�

s

2

+] g
Re(s) > – �, (25)

the Lundberg fundamental equation will then be 

d + l – cs = l 2 .
�

�

s

2

+] g
(26)

This equation has three roots – Q, R and r respecting the relations 

Q < – � < R < 0 ≤ r.

Note that r = 0 if and only if d = 0. Substituting (25) in (15) we get

ŝ̂(s,d)
s s cs

s
fr l d
r

1
=

- + -

-

]__ gi i
(27)

.
� � � �

�

s s s as s cs cs cs
s s

r l l d d d
r

2 2 22 2 2 2 2 3

2

=
+ + + + - - -

- +

^

^ ]

h

h g

The first inversion of (27) with respect to s (the counterpart of u in the com-
plex plane), gives the first Laplace transform ŝ(u,d) of s(u,t) with respect to t
and can be obtained through the inversion formula (18) .

We can see that the integrand function in (27) is analytic with respect to s,
except for the poles s = 0, s = R and s = Q. Note that s = r is a removable
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singularity and that Q is outside the domain of f (s). The residues should then
be evaluated by the relation 

,
� � � �

�
r s e

s s as s cs cs cs
s s

rl rl rd rd rd r r r
r

3 4 3 2 6 44
us

2 2 2 2 2 3

2

=
+ + + + - - -

- +
]

^ ]
g

h g

giving ŝ(u,d) in the form

.
� � � �

�
e

R R aR R cR cR cR
R R

d r l l d d d
r1

3 4 3 2 6 44
uR

2 2 2 2 2 3

2

+
+ + + + - - -

- +

_

^ ]

i

h g
(28)

As in the last example, the inversion of ŝ(u,d) is not that simple. The inverse
transform of 1/d, the first part of (28), is 1. However, for the second part, we
must consider the residues of the function

.
� � � �

�
e

R R aR R cR cR cR
R R

r l l d d d
r

3 4 3 2 6 44
t uRd

2 2 2 2 2 3

2

+ + + + - - -

- +
+

_

^ ]

i

h g

We note that when d, the implicit integration variable, progresses from 0 to ∞,
R decreases from r until – �.

To proceed with the inversion, we must change the integration variable d
through its natural relation with R, that is 

d = – l + cR + l 2 ,
�

�

R

2

+] g
(29)

and multiply the result obtained by the derivative of d with respect to R. After
some simplification we get

2

2
.

exp

exp

�

� � � � �

�

� � � � �

R
R

t t R tc tcR tcR u u R uR
R

R
R

t t R tc tcR tcR u u R uR

l l

l l
r

2 2 2 1

2 2 2 1

2 2 2 2

2 2 2 2

- -
+

+ - - - - - -

+ -
+

+ - - - - - -

]
e

]
e

g
o

g
o

(30)

Using the same arguments as for the exponential distribution example, we can
conclude that, again, – � is the only singular point to be considered. To deter-
mine the residue of the first part of (30) let us expand it into a Laurent series
of powers of (R + �). For that purpose we take R = z – � obtaining

.

exp

exp exp exp

� � �
�

� � �
�

t tc u ztc zu
z

t z

t tc u u ct z t z z

l l

l l

1 1

1

2
2

2 2

- - - + + +
- +

= - - - +
- +

-

b

] ] _

l

g g i6 7@ A& 0

(31)

Each of the last three factors can be expanded in a series of powers of z. Multi-
plying this series and collecting the coefficient of z –1 we get
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! ! ,

exp � �
�

�

t tc u
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a b
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a b

l 1
2 1 1

1
2 2 1

j

j

k k j

k

j k k j

k

2 1

1

2 1 1

1

2 2 2 1

1
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- + -

+
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3 3

3

-

=

- + -

=

- + -

=

! !

!

] b
] ^

b
] ^

g l
g h

l
g h

(

( 3

(32)

where a denotes u + ct and b denotes tl�2.
To determine the residue of the second part of (30) it is necessary to express

1/r as a function of R. Writing Lundberg’s fundamental equation (26) in the
form

� � � �

�

s c c s c c s

c s a s a s a

d l d l

d

2
1 1 2 2

1
0

3 2 2

2 3
1

2
2 3

+ - - + - - -

= + + + =

b bl l

and considering that the sum of the three roots is – a1 and that its product is – a3,
we have 

r = – a1 – R – R1 = – a1 – R + R
a
r

3 = – a1 – (z – �) +
�z

a
r -

3

] g
.

Considering that d expressed as a function of z is 

,� �
z

z cz czd l l
2

2 3 2 2

= -
- + -

we get

.
� � � � �cz z cz

cz
r l rl l r

r1
22 2 2

2

=
- - - + - +_ i

(33)

Solving the last equation for 1/r, we can see that it has two roots but only one
represents 1/r, which is 

.
� �

� �
h z

cz z

cz cz
r l l

l l l1
2

1 2 4

2

2 2 2 3

= =
- -

- + - +
]

_

_

g
i

i

(34)

Expanding this expression into a Maclaurin’s series, we may write 

,c zr
1

k
k

k 0

=
3

=

!

where

! .c k dz
d h z1

k

k

z 0

=
=

] g; E

SOLUTIONS FOR SURVIVAL PROBABILITIES IN THE CLASSICAL RISK MODEL 121



Considering now the second part of (30). It can be written as 

.exp exp exp� � �t tc u u ct z t z c zl l k
k

k

2 2

0

- - - +
3

-

=

!] ] _g g i6 @( 2

Expanding the exponential functions between brackets in powers of z and tak-
ing the product of the three series, the coefficient of z –1 becomes 

! ! ! ! ,c
k k j

a b c
k k j

a b
2 1 1 2 2 1j
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j
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k
2 2
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g
g h
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where a = u + ct and b = tl�2 as before. Finally, for this part of the residue,
we get
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Putting all together, we have,
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Substituting a and b and simplifying, we get
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3.3. Mixed exponential distributed claims

If the individual claim amount has a mixed exponential distribution with two
weights, b and (1 – b), the Laplace transform is 

f (s) = .
�

�b s b sb
b

1
+

+ -
+

] g (36)
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FIGURE 1.

Supposing that, without loss of generality, b > �, the transform will be defined
only for s > – �.

It is interesting to see the graphic corresponding to both sides of Lundberg’s
equation

d + l – cs = l f (s),

Considering d = .5, l = 1, � = 1/2, b = 2, c = 1.1 and b = 1/3, the graphic has
the following shape:
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The substitution of f (s) in (15) gives, after simplification,

ŝ̂(s,d) = ,
�
h s

s s sr b- - + +

]

^ ] ^

g

h g h
(37)

Where

s
h s
r
] g = cs3 + (–l – d + c� + cb )s2 + [�(bl – d – l + cb ) – bbl – bd ]s – db� (38)

As it can be seen, equation h(s) = 0 has a null root and three roots more: Q, R
and r, each of them depending on d and respecting the inequalities

– b < Q < – � < R < 0 ≤ r. (39)

We can see that when d moves from zero to infinity, r also goes from zero to
infinity and R varies from right to left starting from r until – �. The root Q is
outside the domain of f (s) and consequently must not be considered for inver-
sion purposes.

The first inversion of expression (37) with respect to s can be obtained
through the inversion formula (18), already used for the previous distributions.



We can see that the implicit function defined in relation (37) is analytic with
respect to s, except for the singularities s = 0 and s = R. Notice once again that
s = r is a removable singularity.

Considering that the above singular points are simple poles, the correspon-
ding residues r(.) can be determined by the relation 

.
�

r s h s
s s sr b

�
=

- - + +
]

]

^ ] ^
g

g

h g h
(40)

Considering the complex inversion formula we get 

ŝ(u,d) = d
1 + euRr (R). (41)

The inversion of this transform needs the evaluation of an integral with respect
to d of the function

e dt ŝ(u,d) = e
d

td

+ e dt+uRr (R). (42)

The inverse transform of 1/d, the first part of (41), is 1.
For the second part we must consider the residues of the function 

exp(dt + uR)r(R).

Expressing d as a function of R, that is,

d = – l + cR + l f (R),

multiplying by the derivative of d with respect to R and simplifying,

exp [(– l + cR + l f (R)) t + uR]r(R)d�(R)

becomes

.exp R
�

� � � � � �

R R R
t tR tc tRc tRc tcR t b t b u uR uR uR

r b

l l b b l lb b b1 1
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_

] ]
i

g g
9 C (43)

As in the previous examples, the singularities to be considered are in the expo-
nential part of the integrand function and they are two essential singular points:
one corresponding to R = – � and the other resulting from R = – b. As the order
does not matter, we will start with R = – � and with the second part of (43)

exp R
�

� � � � � �

R R R
t tR tc tRc tRc tcR t b t b u uR uR uR

b

l l b b l lb b b1
2 2

-
+ +

- - + + + + + - + + + +

] ]g g
9 C

If we write R = z – �, the above expression becomes 

.exp
�

�
�

� � �
z z

z z
t z tc z tc z tcz t b t b u z u z uz

b
l b l lb b1

2 2
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= G
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Expanding the exponent in simple fractions we get

.exp exp exp exp
�

� � �
�z t tc u ct u z t b z t z
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1 1
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- - - + -
+ -
- +

] ] b cg g l m6 @

Expanding each component of this expression in powers of z, we get
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We must note that the last exponential does not have a development as simple
as the others, though the coefficients ck may be obtained through the corres-
ponding derivatives,

! .exp
�

c k dz
d t z

bb l b
1 1

k k
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- +
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After the product of the four series, the coefficient of z –1 is
j k l 1+ + - l 1-k
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so that, the first component of the residue corresponding to the root � is 
j k l 1+ + - l 1-k

j ! ! .exp � �
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(44)

For the other component of (43), we must express 1/r as a function of R, fol-
lowed by the development into a Laurent series as we have just made. For the
purpose, we start with the Lundberg’s fundamental equation written as

.
� � � � �

�

s a s a s a

s c
c c

s c
b b c

s c
l d b d l lb l db b

d
b

0 3
1

2
2 3

3 2

= + + +

= -
+ - -

-
- + + + -

-

Considering that the sum of the three roots is – a1 and its product is – a3, we have

r = – a1 – R – R1 = – a1 – (z – �) +
�z

a
r -

3

] g
,
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or,
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Expressing d as a function of z through the relation

,
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substituting in (45) and considering r = 1/x, we obtain a second degree equa-
tion in x,

b0x2 + b1x + b2 = 0,

Where

b0 = b�cz2 + (– b�2c + b2�c – b�l)z + b�2lb – b 2�lb

b1 = (cb + c�)z2 + (cb2 – lb + lbb – c�2 – lb�)z + lb�2 – �lbb

b2 = – cz� + czb + cz2.

Considering the two roots of the last equation, we conclude that only one rep-
resents 1/r, which must be that one that gives x = 0 for z = 0, once for R = – �,
we know that r = ∞. Solving for instance, for the parameters considered in the
graphic of Figure 1, we have,

.x z
z z

z z z z z z
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105 10 110 5481 3180 6908 100 4356
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Expanding x(z) in a Maclaurin series we get,
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and, as in the first part of the residue, taking the product of the four series and
isolating the coefficient of z–1, we get an expression similar to the previous one,
just with the changes resulting from the series corresponding to 1/r instead 1/R.

After simplification we get
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(46)

Putting both components together, the value of the residue corresponding to – �
comes:
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For the root b, taking similar steps we get

(48)
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where the coefficients {ek} are obtained from the following Maclaurin’s devel-
opment:

,e e z�t
k

k

kl

0

� z
b

b =
3

=

+ - !

and the coefficients { fk} from the new development of 1/r in powers of z.
Summing up the three residues we finally have for s(u, t) the expression
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3.4. Some numerical results

We have computed the explicit formulae for survival probabilities derived in the
previous subsections for the three distribution cases presented and also the
corresponding Seal’s formulae. The results presented consider four different
initial reserves (0, 1, 2 and 10) and ten consecutive time intervals (1, 2,...,10).

In the tables below, in column (1) we present the results from explicit formulae
and in column (2) the numerical results obtained with Seal’s integral formulae.

Some numerical differences between the first column and the second are due,
in our opinion, to the complexity of the integral approximation using Seal’s
formulae and the implicit error committed with this type of approximation. The
results obtained from the explicit formulae, should be in principle more accu-
rate, once we have used some auxiliary functions such as Bessel functions and
generalized hypergeometric functions that simplify significantly the necessary
programs and that are built-in functions in the software used (Maple).
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t (1) (2) (1) (2) (1) (2) (1) (2)

1 0,536599341 0,536599370 0,761944014 0,761944092 0,880294317 0,880294304 0,999691627 0,999691547

2 0,407136174 0,407136102 0,645431014 0,645430961 0,794327577 0,794327496 0,998650012 0,998649994

3 0,344789020 0,344789042 0,574022178 0,574022082 0,731540865 0,731540858 0,906770312 0,996770207

4 0,306693192 0,306693119 0,524715500 0,524715467 0,683592552 0,683592414 0,994104657 0,994104585

5 0,280402460 0,280402236 0,488107054 0,488106927 0,645580747 0,645580699 0,990767006 0,990766857

6 0,260881492 0,260881422 0,459570548 0,459570485 0,614551659 0,614551572 0,986885328 0,986885022

7 0,245661758 0,245661567 0,436536063 0,436535882 0,588632685 0,588632504 0,982580343 0,982577390

8 0,233373726 0,233373573 0,417448330 0,417448064 0,566579259 0,566578870 0,977957564 0,977932668

9 0,223188948 0,223188773 0,401304257 0,401304371 0,547530320 0,547530579 0,973105567 0,973070064

10 0,214573156 0,214572985 0,387424252 0,387424120 0,530869718 0,530869574 0,968096976 0,968031681

u = 10u = 0 u = 1 u = 2

t (1) (2) (1) (2) (1) (2) (1) (2)

1 0,488408329 0,488408329 0,751323376 0,751323571 0,897816146 0,897816210 0,999982332 0,999982321

2 0,364106058 0,364106058 0,635115445 0,635115467 0,814990211 0,814990259 0,999833305 0,999833287

3 0,307657089 0,307657089 0,565020725 0,565020650 0,753321999 0,753321990 0,999407099 0,999407088

4 0,273761441 0,273761441 0,517044703 0,517044698 0,705940773 0,705940754 0,998610508 0,998610486

5 0,250576368 0,250576368 0,481626155 0,481626066 0,668289058 0,668289121 0,997410280 0,997410231

6 0,233457960 0,233457960 0,454130089 0,454129892 0,637525634 0,637525569 0,995815550 0,995815446

7 0,220164930 0,220164930 0,432005863 0,432005642 0,611822732 0,611822549 0,993859724 0,993858203

8 0,209465851 0,209465851 0,413720023 0,413719840 0,589956294 0,589956068 0,991587492 0,991570632

9 0,200620565 0,200620562 0,398288708 0,398288104 0,571075787 0,571075558 0,989046753 0,989029026

10 0,193154096 0,193154049 0,385049822 0,385046060 0,554571624 0,554570268 0,986284040 0,986245934

u = 10u = 0 u = 1 u = 2

TABLE 1

POISSON (1) / EXPONENTIAL (1) / c = 1.1

TABLE 2

POISSON (1) / ERLANG (2) / c = 1.1



4. ADDITIONAL REMARKS

In this paper we have shown that, in the classical risk model, it is possible to
obtain explicit expressions for survival probabilities in a finite time horizon
when the individual claims are mixed exponential or Erlang distributed. The
same techniques used could also be extended to other particular claim amount
distributions.

The extension of these techniques to other risk models depends, in first
place, on the possibility of obtaining an explicit or implicit formula for the dou-
ble Laplace transform corresponding to formula (13) and, in second place, on
the analytic properties of this transform.
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