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ABSTRACT

In this paper we consider the problem raised in the Astin Bulletin (1999) by
Prof. Benktander at the occasion of his 80th birthday concerning the choice
of an appropriate claim size distribution in connection with reinsurance rat-
ing problems. Appropriate models for large claim distributions play a central
role in this matter. We review the literature on extreme value methodology
and consider its use in reinsurance. Whereas the models in extreme-value
methods are non-parametric or semi-parametric of nature, practitioners often
need a fully parametric model for assessing a portfolio risk both in the tails
and in more central portions of the claim distribution. To this end we propose
a parametric model, termed the generalised Burr-gamma distribution, which
possesses such flexibility. Throughout we consider a Norwegian fire insurance
portfolio data set in order to illustrate the concepts. A small sample simulation
study is performed to validate the different methods for estimating excess-of-
loss reinsurance premiums.

1. INTRODUCTION

The topic raised by Professor Benktander on the occasion of his 80th birthday
concerning the choice of an appropriate claim size distribution in connection
with a (multi-layer) rating problem is indeed a very fundamental area of dis-
cussion, both in the academic as in the practical (re-)insurance world.

On the one hand, modelling extreme events through Pareto-type and other
heavy-tailed distributions attracts more and more attention. The number of
statisticians working in extreme value methodology and the number of publi-
cations in this area is systematically growing; see the reference list for some
recent books and papers with special emphasis on actuarial applications.
Several important methods in this area were influenced by methods devel-
oped in the actuarial literature, not in the least by the paper by Benktander
and Segerdahl On the analytical representation of claim distributions with spe-
cial reference to excess-of-loss distributions (the XVIth International Congress
of Actuaries, Brussels, 1960). Indeed, in that contribution the concept of the
mean excess (or mean residual life) function was illuminated, which turned
out to be quite a useful tool in extreme value statistics. Professor Benktander
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was also one of the first to introduce the concept of probability and quantile
plotting in actuarial statistical practice, which, in our opinion, is the right way
to view the data with the aim of tail modelling.

On the other hand, actuaries working in a reinsurance context are some-
times feeling uneasy with this material. One of the main problems is that the
statistical extreme value models concern only the ultimate tail section of the
distribution while a practitioner faced with reinsurance rating will need to
model also more central areas of the distribution in order to handle the differ-
ent layers in a flexible way. This, we believe, leads to another important merit
of the abovementioned paper by Professor Benktander: the Benktander I and
II distributions offer a nice compromise between statistical flexibility and effi-
ciency, and computational simplicity with regard to premium rates. These classes
contain all popular heavy-tailed models ranging from the Pareto distributions,
over lognormal-type models to Weibull-type tails. At the same time the elegant
expressions of their mean excess functions makes them especially attractive for
the actuarial practitioner.

In this text we present a personal view on the link between statistical
extreme value methods and the selection of appropriate statistical claim size
models on the one side, and actuarial concepts, in particular the mean excess
function, on the other. Proposals for statistical models that are able to capture
both central and tail characteristics of the distribution will be presented. Finally,
recent new directions in extreme value statistics, again motivated mainly by
actuarial applications, will also be discussed. In Section 2 the relation between
quantile plotting and the mean excess function is explained. In Section 3 we
add the connection with extreme value methods. We order the presentation of
the different approaches from non-parametric techniques over semi-parametric
ones to a final fully parametric model in Section 4. The implications to pre-
mium rating are clarified along the way.

Throughout the text we use the fire claim data from a Norwegian portfolio
in 1990 (taken from [1]) to illustrate the different methods and to give an idea
of the typical problems with claim data modelling.

2. QUANTILE PLOTTING AND THE MEAN EXCESS FUNCTION

Let x1, x2, ..., xn be claim data that come from a random sample X1, X2, ...,Xn
with distribution function F and survival function F(x) = P (X > x), denoting
the probability to obtain a claim larger than x. The ordered data will be
denoted by

x1,n ≤ x2,n ≤ ... ≤ xn,n,

which are the sample values of the order statistics X1,n ≤ ... ≤ Xn,n.
In case the expected value of X exists, i.e. E(X) < ∞, the mean excess function
is given by

( ) ( > ),m x E X x X x= -

the expected excess claim size.
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FIGURE 1: Plot of mk,n as a function of xn–k,n for the Norwegian fire insurance data.

This function plays a central role in the rating of an excess-of-loss reinsurance
in excess of a retention or priority level R, as the corresponding risk premium
P(R) for the layer from R to infinity is given by (a multiple of)

P (R) = F(R)m (R) = E ((X – R)+).

It is a well-known fact that the most efficient way to derive m from F is by using
the expression

( )
( )
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while the inverse operation is given by
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where B denotes the left limit of the support of F.

In practice, the mean excess function m is easily estimated at x = Xn – k, n for
some k = 1, ..., n – 1 by the (empirical) average excess of the k data points higher
than Xn–k,n :
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The hazard rate m(x) defined by
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FIGURE 2: Exponential quantile plot for the Norwegian fire insurance data.

is closely linked to the mean excess function through the expression

( ) ( )
( )

.x m x
m x

m
1 �

=
+

So far for the recapitulation of the basic notions from (re)insurance mathemat-
ics. On the statistical side the potential of quantile plotting through quantile-
quantile or QQ plots (or, alternatively, of probability plotting) for the graphical
description and for the analysis of claim data has been stressed by several authors
considering extreme value methods, see for instance [1], [17]. What may look
innocuous or only somewhat suspect in a density comparison may become quite
glaring in a QQ plot. Starting from the point of view that a heavy-tailed distrib-
ution is a distribution for which the tail is heavier than any exponential tail, i.e.

( )
( )

lim
exp

x
xl

Fx

-

"3
= 0, for any l > 0,

the degree of deviation can be depicted through visual inspection of an expo-
nential quantile plot of points with coordinates

( ), .log n
j

X
1 ,n j n1-

+ - +d n
Here the empirical quantiles Xn–j+1,n appear as estimates of the unknown quan-
tiles ( )Q 1 n

j
1- + , defined as the claim levels that are surpassed in n

j
1+ 100% of

the cases. Hence, a straight line pattern in the exponential quantile plot will
direct the practitioner to a model of the type

( ) ( )logQ p a pl1
1

- = + -

for some a and l > 0, and hence to

( ) ( ( )), >expx x a x alF = - -

i.e. an exponential model, perhaps shifted over a distance a.
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FIGURE 3: Non-parametric estimator of the excess-of-loss net premium as a
function of the retention level R for the Norwegian fire insurance data.

By the definition of the exponential quantile plot itself, namely that the verti-
cal coordinates of the plotted positions are given by the data themselves, it
follows that in case of a distribution with a tail heavier than any exponential,
the plot will bend upwards away from a linear fit which is ‘in line’ with the
exponential model. Rephrasing the expression ‘bend upwards’ more rigorously,
we are led to stating that for such ‘sub-exponential’1 distributions the slope or
the derivative of the exponential quantile plot increases as we increase the
claim level.

One very naive way to estimate the slope of the exponential plot to the
right of a point, say the position ( ),log X ,n

k
n k n1

1- +
+

-` j, is to use the quotient of the
average vertical and horizontal excesses over this position:
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or, even simpler,
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since the denominator of the first expression is very closely approximated by
1 (as it is an approximation of the mean excess function of the unit exponen-
tial distribution, which is constantly equal to 1).

Hence we conclude that the empirical mean excess function m defined above
is a naive derivative function for the exponential quantile plot. It also follows
easily that the mean excess function of distributions with tails heavier than the
exponential model all have an increasing mean excess function. The strongest
increase is found for Pareto distributions for which the increase is linear.
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Further, this relationship shows that the exponential quantile plot is not
only useful in the statistical validation of a claim model, but also in the calcu-
lation of a risk premium for a layer from R = xn–k,n to ∞, which can be esti-
mated by m ,n

k
k n1

1
+
+ in a purely non-parametric way, i.e. without assuming any

parametric part in the statistical claim model.
Finally, to clarify the relationship between quantile plotting and the hazard

rate m, observe that the exponential quantile plot is the graph of the function
Q(1 – e–x), which has derivative e–x /F�(Q(1 – e–x)) or (1/m) (Q(1 – e–x)). Hence
the reciprocal of the hazard rate follows exactly from the derivative of the expo-
nential quantile plot at a plotting position.

3. QUANTILE PLOTTING, MEAN EXCESS AND EXTREME VALUE METHODS

In contrast to the previous fully non-parametric approach for premium calcu-
lation for an upper layer, extreme value methods typically use a semi-para-
metric approach, containing one or two parameters next to a functional part
which is not specified. This seems reasonable from the fact that these methods
are designed to make extrapolations outside the sample, for instance to esti-
mate an extremely large quantile Q (1 – p) with p < n

1. Using a fully parametric
model would then induce a second extrapolation from the sample towards the
statistical population, and hence bias risk would only become larger.

3.1. Pareto-type distributions

The most famous example of such a semi-parametric extreme value model is
the Pareto-type model, which is deduced from limit theory for the maximum
Xn,n of a sample:

F(x) = x–a� (x),

where � is a slowly-varying function (at infinity), i.e. which satisfies,

�
�

( )
( )
x
tx → 1, as x → ∞, for every t > 0.

Here the tail index a is the important, decisive parameter, while � is a nuisance
function. Working under this model amounts to assuming that the survival
function behaves in first order as a power law. Examples of popular claim size
models which belong to this class are, of course, the (strict) Pareto model itself
(and hence the Benktander distribution with the parameter B equal to 0),
next to the Burr, the generalised Pareto, the loggamma, the log-logistic and
the Fréchet distribution, among others.

The estimator of a which has received by far the most attention (and still
does attract a lot of research) was proposed by Hill (1975) [15] and was
shown by Mason (1982) [18] to be consistent under the complete Pareto-type
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FIGURE 4: Pareto quantile plot for the Norwegian fire insurance data.

model, and in that sense appears to be a perfect semi-parametric estimator at
first sight:

/ .log logk X Xa1
1

, , ,k n n j n
j

k

n k n1
1

= -- +
=

-!

The Hill statistic is nothing else than the mean excess estimate of the log-
transformed data at Xn–k,n, and hence can be deduced from a Pareto quantile
plot, which is the exponential quantile plot of the log-transformed data. Indeed,
under the Pareto-type model such a Pareto quantile plot can be shown to be
ultimately linear with slope approaching 1/a above some high threshold Xn–k,n,
i.e. for small enough k and large enough n.
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Remark that we have in fact as many estimates of a as we have data points;
for each value of k we obtain a new estimate of a. Plots of ak,n as a function
of k are often quite volatile. In [20] it is mentioned that it is helpful to plot the
Hill estimates as a function of logk (in fact, this is equivalent to using the
same horizontal scale as in the Pareto quantile plot). For the Norwegian fire
claim data, however, there is no apparent gain with this approach.

Several authors have tried to guide the practitioner in choosing k, leading
to an adaptive choice k such that an estimate of the mean squared error of
the Hill estimator is minimised at k. This was done by bootstrap methods (see,
for instance, [9]) or by regression diagnostics on a Pareto quantile plot in [2].
A somewhat different solution was proposed in [12]. In case of the Norwegian
fire insurance portfolio the method indicated in [3] yields the value k = 290,
which results in the estimate 1 / a = 0.62.

Other problems are for instance the non-invariance of the Hill estimator
with respect to shifts that could be applied to the data, and most importantly,
the bias that the Hill estimator exhibits in certain cases. This can be under-
stood from the fact that for certain Pareto-type distributions (as it is the case
for the loggamma distribution, for instance) the influence of the slowly-varying



FIGURE 6: Plot of 1/ak,n as a function of logk for the Norwegian fire insurance data.

FIGURE 7: Plot of an estimator (see [3]) of the asymptotic mean squared error of the Hill estimator
as a function of k for the Norwegian fire insurance data. A minimum is found at k = 290.

FIGURE 5: Plot of 1/ak,n as a function of k for the Norwegian fire insurance data.
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FIGURE 8: Plot of the POT estimates (ML) as a function of k for the Norwegian fire insurance data.

part � is still imminent near the top end of the Pareto quantile plot. As a
consequence, confidence intervals for a will not show the required coverage
probability in such cases. This puts a serious restriction on the reliability of
these methods.

Next to methods based on high order statistics, such as the Hill estimator,
an alternative is offered by the peaks-over-threshold approach (POT). This method
consists of fitting the generalised Pareto distribution (GPD) to the distribu-
tion of the excesses Y = X – u (if X > u) over a high threshold u, for instance
by maximum likelihood methods [23], the method of moments [16], or modern
Bayesian estimation methods [8]. By its nature this approach has a natural link
with excess-of-loss reinsurance replacing the retention level R by the statistical
threshold u ; for a discussion, see [19], [22]. This approach is based on a limit
result of Pickands (1975) [20] stating that as u → ∞, the survival function of
the excesses tends to the survival function of the GPD given by ( )��

x
1 + with

the scale parameter s = su depending on u. Again, every choice of u leads
to another estimator of a and of course su. Smith has advised to choose u =
Xn–k,n at the smallest value of Xn–k,n to the right of which the mean excess plot
remains approximately linear as a function of the ordered data. Pure adaptive
algorithmic choices have not yet been explored systematically, however. The
POT method possesses some advantages over the methods based on extreme
order statistics such as the ones derived from the Hill estimates: it is invariant
with respect to shifts and the plots of the estimates of a as a function of k are
often more stable, apparently because of the use of the second parameter s.
However, also here the asymptotic result of Pickands can set in really slowly,
leading to biased estimates of a for this method too. In case of the Norwegian
fire insurance data, the POT method does not lead to a more stable graph
when the estimates are plotted as a function of k; see Figure 8.

Let us now consider again the estimation of the risk premium for a layer
from R to ∞ with the semi-parametric approach. Using the concept of the
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FIGURE 9: Plot of x ,n k n n
k

a 1
1

1
1

k - - +
+b l as a function of R = xn–k,n for the Norwegian fire insurance data.

(log-scale on Y-axis).

Hill estimator, we arrive at the following approximation based on the famous
Karamata theorem (see for instance [7]) for a > 1:
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When the priority R is situated within the sample, i.e. when claims at the mag-
nitude of R have previously been observed and R is taken equal to xn–k,n for
some k, this leads to the estimate P̂ ( )x x, ,n k n n k n n

k
a 1

1
1
1

k
=- - - +

+` j. Figure 9 presents
these estimates for the fire insurance data.

If R is not fixed at one of the sample points, extreme value formulas for
estimation of F(R) in the expression for P(R) can be applied (see for instance
[1] or [12]): F̂(R) = n X

Rk a
1
1

,n nk+
+ -

-
` `j j with k denoting an appropriate adaptive choice

for the number of extreme order statistics used in the procedure, which can be
obtained with the methods mentioned above. This is shown in Figure 10 for
our example.

Alternatively, the POT approach suggests substituting the conditional
expected value of the GPD for the mean excess function at a high priority R
(for R > u ) : ( )m R s 1u

R u
a

a
a s1u

u
u u= --
-` j, while F(R) will be estimated with the for-

mula 1n
k R u

as
a

1
1

R-+
+ - -` j when k observations exceed the threshold u. Replacing au

and su by their estimates then leads to an estimate of the risk premium as in
Figure 11.

When estimating the premium at a retention level within the sample, i.e.
R = xn–k,n, one can fix the threshold u at R and then the POT approach leads
to an estimate n

k
Ra

a
1 1

1

R

R v- +
+t . This is of the same form as the first estimation
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FIGURE 11: Plot of POT-based premium estimates as a function of retentions R situated
beyond the threshold u = xn – 290,n for the Norwegian fire insurance data.

FIGURE 10: Plot of R n X
R

a
k a

1
1

1
1

,n nk k

k

- +
+ -

-
b bl l as a function of R for the Norwegian fire insurance data.
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FIGURE 12: Plot of the POT based premium estimates n
k

Ra
a

1 1
1

R

R v- +
+t as a function of R = xn–k,n for

the Norwegian fire insurance data. (log-scale on Y-axis).



method based on the Hill estimator, replacing xn–k,n by âRŝR. A plot of these
estimates for the Norwegian fire insurance data is shown in Figure 12.
A summary of all above estimation methods can be found in Table 1.

3.2. Bias reduction in estimating the Pareto index

The abovementioned problems with systematic biases appearing in the ‘classi-
cal’ extreme value methods have only recently led some authors [3], [14] to
look in more detail at important (parametrised) subclasses of the set of all
slowly-varying functions. The following class was first indicated by Hall (1984):

� ( ) ( ( )) ,x C Dx o1 1 1
b

= + +
-` j

(with C, D and b denoting positive constants) to which belong for instance
the Burr, the generalised Pareto and the Fréchet distribution. Another helpful
subclass is given by

� ( ) ( ) ( )logx C x o1 1
b

= +^ h
to which belongs for instance the loggamma distribution.

It is then shown that for k not too large the scaled logarithmic spacings Zj :=
j (logXn–j+1,n – logXn–j,n), j = 1, ..., k, can be modelled by the following gener-
alised regression models:

a power regression model

, , <Z b k
j

f j k k na
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1
1,j n k j

r

# #= +
+

de n o
with bn,k and r(> 0) depending on C, D and b, and f1, f2, ... denoting independent
and identically distributed unit exponential random variables; respectively,

a logarithmic regression model
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where ej denote centered exchangeable error random variables. The latter model
is to be used when the parameter r in the power regression model is close to 0.

Again for every k another estimate of a is obtained, e.g. by joint maxi-
mum likelihood estimation of a, r and bn,k, or b, but typically the plots of the
estimates as a function of k are much more stable. Also, the covariate terms

b ,n k k
j r

1+a k , respectively logjb
log

log

j
n

j
n

1
1

1

+
+

+

, remove the bias of the original Hill-type

estimators to a high extent. Finally, the problem concerning the non-invariance
of the original estimators with respect to shifts has also been lifted up, i.e. one

48 J. BEIRLANT, G. MATTHYS AND G. DIERCKX



FIGURE 14: Plot of estimates of a
1 based on the logarithmic regression model as a function of k

for the Norwegian fire insurance data.

FIGURE 13: Plot of estimates of a
1 based on the power regression model as a function of k

for the Norwegian fire insurance data.

can add or subtract values up to the third quartile of the underlying distribu-
tion while the bias-corrected estimates remain stable. On the other hand the
standard deviation has inflated in comparison with the simpler estimators but
it stays of order / k1 .

Of course, a practitioner has to choose between the two estimates of a
obtained by each of these two generalised regression models. In the Norwe-
gian fire insurance example, the estimates obtained from the power regression
model seem to be more stable than those from the logarithmic model. Here
again the value around 0.6 appears as an estimate of 1/a. The estimates cor-
responding to k < 290 indicate the possibility of a mixture with even a heavier
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FIGURE 16: Plot of x ,n k n n
k

a 1
1

1
1

k - - +
+b l as a function of R = xn–k,n with â the ML estimator from the

logarithmic regression model for the Norwegian fire insurance data. (log-scale on Y-axis).

FIGURE 15: Plot of x ,n k n n
k

a 1
1

1
1

k - - +
+b l as a function of R = xn–k,n with â the ML estimator from the

power regression model for the Norwegian fire insurance data. (log-scale on Y-axis).

tail at the extreme right end of the distribution. In the whole, the logarithmic
model does not appear to fit well in this case, which gives rise to a larger vari-
ability in the estimates over the range of k-values.

The different ways to estimate a premium for an excess-of loss reinsurance
contract with retention R covered above, namely P̂(xn–k,n) = x ,n k n n

k
a 1

1
1
1

k- - +
+` j

for a retention R = xn–k,n, respectively R n X
R

a
k a

1
1

1
1

,n nk k

k
- +

+ -

-
` `j j when R > xn–k,n, can

now be recomputed replacing the Hill estimate â of a by the new estimates
based on the power or logarithmic regression model. The results for the Nor-
wegian fire claim data are given in Figures 15 through 18.
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FIGURE 18: The Norwegian fire insurance data: plot of R n X
R

a
k a

1
1

1
1

,n nk k

k

- +
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b bl l as a

function of R with âk obtained from the logarithmic regression model.

FIGURE 17: The Norwegian fire insurance data: plot of R n X
R

a
k a

1
1

1
1

,n nk k

k

- +
+ -

-
b bl l as a

function of R with âk obtained from the power regression model.

3.3. The Gumbel maximum domain of attraction

Next to the Pareto-type models, important claim distributions such as the
lognormal and the Weibull distributions (which are included in the framework
of the Benktander I and II classes of distributions) have to be available in a
practitioner’s toolbox. Formally, this class is defined as the set of distributions
for which maxima are attracted in distribution to the Gumbel distribution
with distribution function exp(–exp(–x)) for large sample sizes. In extreme
value methodology this group of distributions is modelled with an extension
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of the Pareto-type distributions through the extreme value index g = 1/a, defin-
ing the extreme value index g to be 0 for this large class of distributions with
exponentially fast decreasing tails. Remark that the lognormal distribution is
then really on the borderline between the Pareto-type distributions and the g
= 0 class, as the first order approximation (for x → ∞) of the survival func-
tion of the lognormal distribution is given by F(x) ~ C1exp(–C2(logx)2) for
some positive constants C1, C2.

The difficulties encountered by the extreme value methods can be illustrated
by the POT approach, for which the Gumbel class approximation is obtained
formally by letting a → ∞ in the definition of the GPD, leading to an expo-
nential fit exp(–x/su). In general the goodness of fit of an exponential distri-
bution to the excess distribution over a high threshold u will only appear to
be accurate for extremely large thresholds u, which are only useful in practice
for very high sample sizes.

Extensions of the Hill estimator are also available. Here we mention the
moment estimator [10] of f given by

,M
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M
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with M ,
( )
k n
1 being the Hill statistic.

An extension to the case g ≥ 0 of the graphical support that was offered by
the Pareto quantile plot for the Pareto-type distributions appears to be a nat-
ural question. In [4] it was shown that in this general case, the mean residual life
function m satisfies m(Q(1 – p)) = p–g�(1/p) for some slowly-varying function
� (in case 0 ≤ g < 1). Hence the the quantile – mean excess plot, or QM plot,

, ,log logn
k k nm

1
1

2,k n # #-
+
+b l

will be ultimately linear with slope g. This then leads to an estimator of g as it
was done on the basis of the Pareto quantile plot in case of g > 0 which
entailed the Hill estimator and other bias reduced estimators. So, here the mes-
sage is to plot the log-transformed empirical mean excess values logmk,n
against the log-scale k in order to estimate the value of g and to capture the
Pareto versus non-Pareto behaviour of the tail of the distribution: ultimately
horizontal QM plots point in the direction of an exponentially decreasing
tail.

This technique can be adapted so as to work without the restriction g < 1 by
replacing logmk,n in the QM plot by ( )log log logX X X, , ,n k n k n j n n k nj

k1
11

-- - + -=
!a k.
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FIGURE 19: Adapted QM plot for the Norwegian fire insurance data.

FIGURE 20: Simulation study based on 100 simulated data sets of size 500 from a Burr distribution:
exact P(R) (solid line); median P̂(R) for methods (4) and (6) (dashed line);

median P̂(R) for method (2) (dotted line).

3.4. Comparing the different premium calculation techniques

The different semi-parametric ways to estimate excess-of-loss premiums that are
covered above are summarised in Table 1. They do yield quite different results
in our case study. In order to inspect this in more detail, a small sample simu-
lation study was performed using a Burr distribution with

( ) .F x
x

1
1

1
2

= -
+

f p
We focus on the methods developed for estimating P(R) when the retention
satisfies R > Xn–k,n with k chosen to minimise the mean squared error of the
Hill estimator, i.e. (2), (4) and (6). The results based on the POT method (4)
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and the regression model estimates (6) are almost identical and are in fact quite
satisfactory. The simplest method based on the Hill estimator typically over-
estimates the correct P function and entails a strong positive bias. In Figure 20
the median curves P̂ as a function of R are given, based on 100 simulated data
sets of size n = 500.

4. CAPTURING CENTRAL ÁND TAIL CHARACTERISTICS

Having explained the difficulties and merits with nowadays’ methods from
extreme value statistics, we clearly recognise the need for completely parametric
claim models that are capable to fit well both the tail and more central parts
of the claim domain. However, fitting any such model, if existing, cannot
be performed in a classical statistical way, e.g. by the use of x2 goodness-of-fit
techniques. The parameters linked with the tail behaviour need to be estimated
by methods from extreme value statistics as described above.

One such class of distributions was recently proposed in [5], termed the
generalised Burr-gamma distribution. The distribution function is given by

( ) ( )F x p e u duG
1 ( ) u pu x 1

0

z
=

- -#
where

( ) ( ( ))logu x u xz z1
1z = +

with ( ) / .u x x t 2b
1

=
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TABLE 1

OVERVIEW OF THE DIFFERENT NON- AND SEMI-PARAMETRIC ESTIMATION METHODS

FOR AN EXCESS-OF-LOSS REINSURANCE

Retention beyond threshold
Estimation method Retention within sample R > xn–k,n (= u)

â R = xn–k,n (= u) with k obtained by minimizing
AMSE (1/â)

Hill estimator P̂ ( )x 1,n k n n
k

a 1
1

1
1

k
= - - +

+a k P̂ ( )R 2n X
R

a
k a

1
1

1
1

,n nk k

k
= - +

+ -

-
a ak k

POT ML P̂ ( )3R n
k

a
a

1 1
1

R

R= v- +
+t a k P̂ ( )1 4u n

R u
a

a k
a

a
1 1

1 1

u

u

u u

u
= +v- +

+ - -

v
t

ta ak k
Regression model ML P̂ ( )x 5,n k n n

k
a 1

1
1
1

k
= - - +

+a k P̂ ( )R 6n X
R

a
k a

1
1

1
1

,n nk k

k
= - +

+ -

-
a ak k

2 In fact, in [5] u(x) is modelled by ( ) ( )exp p pc c�
( )log x
s

m
+

+' 1, with c, resp. c’, denoting the digamma,

resp. the trigamma function. For simplicity we introduce the parameters b and t here.



It can be seen that the parameter bz equals the extreme value index for this
parametric model. Several sub-models have appeared in the discussion above
and show the flexibility of this model:

• If z = 0 then X is distributed as a generalised gamma distribution. Remark
that in this case uh is to be read as u and hence this model provides a gen-
eralization of the Weibull distribution

( ) ( ) .x p e u duGF 1 u p 1
/x b

t
1=
3 - -#

The Weibull distribution is obtained choosing p = 1.

• If z = 0 and p → ∞ this model approximates a lognormal distribution (see [5]).

• In case z > 0 we find that for p a positive integer

( ) ! .logx x
j

xz t z
z tF 1

1 1
1

/ / /b

j
j

b

j

ph1 1 1

0

1

= + +
-

=

-

!e efo op
Hence important actuarial claim models such as the Burr model (which
includes the GPD) and the loggamma distribution are special cases of, or
can be mimicked by this model.

How can one proceed to estimate the different parameters p, z, b and t in this
model? First, as bz is the extreme value index for this model, it can be esti-
mated with the methods discussed in the preceding section. This part of the
estimation procedure is then based on a number k of extreme order statistics,
i.e. the number k of highest claims in the sample, which is to be chosen adap-
tively as discussed above. In fact, supposing for instance that g > 0, one finds
that for this model the extreme value regression model

,log log
log

log
Z j j

j
j j ka b e1 1

1j
j
n

j
n

j
1
1

1

# #=
+

+ +
+
+

+J

L

K
K d N

P

O
On

holds for k/n → 0 with a = 1/(bz) and b = p – 1. This allows for estimation of bz and
p, for instance by a least-squares method based on the k highest claim data.

In Figure 21 we show the result for p for the fire claim data, which indi-
cates the choice p = 1 and confirms the validity of a model without logarithmic
factors. Hence, in this case the generalised Burr-gamma model reduces to

( )x xz tF 1
/ /b z1 1

= +
-e o

which is in fact a Burr model. The method of moments yields the following
estimates for b and t

b = 0.195,

t̂ = 8.94·1014,

leading to an estimate ẑ = 3.197 for z.
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FIGURE 21: The Norwegian fire insurance data: plot of p – 1 as a function of k.

FIGURE 22: The Norwegian fire insurance data: QQ plot of empirical quantiles versus
fitted Burr quantiles.

The goodness of fit of this model is analyzed in Figure 22 using a QQ plot
that shows the empirical quantiles versus the corresponding theoretical quan-
tiles from the fitted Burr distribution. A point of inflection appears, which
confirms our previous supposition of a mixture of distributions in the tail. This
of course complicates the analysis.
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Finally, the premium P(R) for the fitted Burr model is easily computed
numerically for different values of R. The result, given in Figure 23, is situated
a bit lower than the results obtained in Figures 17 and 18. This can be under-
stood from the fact that – partly due to the complication of the tail mixture –
less weight is given to the tail section in this fully parametric analysis.



FIGURE 23: The Norwegian fire insurance data: plot of P as a function of R based on the
fitted Burr model.

5. CONCLUSION

In this paper we have tried to overview the different stages in a claim modelling
process and risk premium calculation, starting with a completely non-para-
metric, over a semi-parametric, towards a completely parametric approach.
A constant theme throughout this approach is the inspection of the tail behav-
iour, which is a prerequisite for accurate premium calculations, especially with
reinsurance layers which cover the highest risks. Of course this discussion is
certainly not the final answer but a description of the state-of-the-art in an active
field of research.
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