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ABSTRACT 

A claims reserving method is reviewed which was introduced by Gunnar  
Benktander in 1976. It is a very intuitive credibility mixture of Bornhuetter/ 
Ferguson and Chain Ladder. In this paper, the mean squared errors of all 
3 methods are calculated and compared on the basis of a very simple stochastic 
model. The Benktander method is found to have almost always a smaller mean 
squared error than the other two methods and to be almost as precise as an exact 
Bayesian procedure. 
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1. INTRODUCTION 

This note on the occasion of the 80st anniversary o f G u n n a r  Benktander focusses 
on a claims reserving method which was published by him in 1976 in 
"The Actuarial Review" of the Casualty Actuarial Society (CAS) under the 
title "An Approach to Credibility in Calculating IBNR for Casualty Excess 
Reinsurance". The Actuarial Review is the quarterly newsletter of the CAS and is 
normally not subscribed outside of North America. This might be the reason why 
Gunnar 's  article did not become known in Europe. Therefore, the method has 
been proposed a second time by tile Finnish actuary Esa Hovinen in his paper 
"'Additive and Continuous IBNR",  submilted to the ASTIN Colloquium 1981 in 
Loen/Norway. During that colloquium, Gunnar  Benktander referred to his 
former article and Hovinen's paper was not published further. Therefore it was 
not unlikely that the method was invented a third time. Indeed, Walter Neuhaus 
published it in 1992 in the Scandinavian Actuarial Journal under the title "Another  
Pragmatic Loss Reserving Method or Bornhuetter/Ferguson Revisited". He 
mentioned neither Benktander nor Horvinen because he did not know about 
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their articles. In recent years, the method has been used occasionally in actuarial 
reports under the name "Iterated Bornhuetter/Ferguson Method".  The present 
article gives a short review of  the method and connects it with the name of its first 
publisher. Furthermore,  evidence is given that the method is very useful which 
should already be clear from the fact that it has been invented so many times. 
Using a simple stochastic model it is shown that the Benktander method 
outperformes the Bornhuetter/Ferguson method and the chain ladder method in 
many situations. Moreover,  simple formulae for the mean squared error of  all 
three methods are derived. Finally, a numerical example is given and a 
comparison with a credibility model and a Bayesian model is made. 

2. REVIEW OF THE METHOD 

To keep notation simple we concentrate on one single accident year and on paid 
claims. Furthermore,  we assume the payout  pattern to be given, i.e. we denote 
with Pi, 0 < Pt < P2 < . . .  < Pn = | ,  the proport ion of  the ultimate claims 
amount  which is expected to be paid after j years of  development. After 
n years of  development, all claims are assumed to be paid. Let U0 be the 
estimated ultimate claims anaount, as it is expected prior to taking the own 
claims experience into account. For instance, U0 can be taken from premium 
calculation. Then, being at the end of a fixed development year k < n, 

R s F = q x U o  with q~-= l - p k  

is the well-known Bornhuetter/Ferguson (BF) reserve (Bornhuetter/Ferguson 
1972). The claims amount  Ca- paid up to now does not enter the formula for R B F  , 

i.e. this reserving method ignores completely the current claims experience of  the 
portfolio under consideration. Note that the axiomatic relationship between any 
reserve estinaate /~ and the corresponding ultimate claims estinaate t) is always 

O =  Ck + R and R = O -  Ca. 

because the same relationship also holds for the true reserve R = C,, - Ca- and 
the corresponding ultimate claims U = C,, i.e. we have 

U = C~. + R and R = U -  Ck. 

For the Bornhuetter/Ferguson method this implies that the final estimate of  the 
ultimate claims is the posterior estimate 

UBF = Cl¢ -[- RBF 

whereas the prior estimate U0 is only used to arrive at an estimate of  the reserve. 
Note further that the payout pattern {pj} is defined by pj = E(C~)/E(U).  

Another well-known claims reserving method is the chain ladder (CL)  
method. This method grosses up the current claims amount  Ck, i.e. uses 

UCI_ = Ck/pk  
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as estimated ultimate claims amount  and 

RCL : UCL -- Ck 

as claims reserve. Note that there 

RCL = qkUcL 

holds. This reserving method considers the current claims amount  Ck to be fully 
credibly predictive for the future claims and ignores the prior expectation U0 
completely. One advantage of CL over BF is the fact that with CL different 
actuaries come always to similar results which is not the case with B F  because 
there may be some dissent regarding U0. 

B F  and CL represent extreme positions. Therefore Benktander (1976) 
proposed to replace the prior U0 with a credibility mixture 

Uc = cUcL + (I - c)U0. 

As the credibility factor c should increase similarly as the claims Ck develop, he 
proposed to take c = Pk and to estimate the claims reserve by 

Rc, R = R S F  Up~ 
Uo" 

This is the method as proposed by Gunnar  Benktander (GB). Observe that we 
have 

and 

i.e. 

RGB = qk Upk 

Upk = Pk UCL + qk Uo = Ck + RBF = UBF, 

RCs = qk Uet:. 

This last equation means that the Benktander reserve ROB is obtained by 
applying the BF procedure in an additional step to the posterior ultimate claims 
amount  USF which was arrived at by the normal BF procedure. This way has 
been taken in some recent actuarial rcports and has there been called "iterated 
Bornhuetter/Ferguson method".  

Note again that the resulting posterior estimate 

9 
Uc,8 = Ck + R6~ = (I - q~)UcL + q~Uo = Ul_q~ 

for the ultimate claims is different from Ups. which was used as prior. 
Esa Hovinen (1981) applied the credibility mixture directly to the reserves 

instead of the ultimates, i.e. proposed the reserve estimate 

REH = CRcL -k- (] -- C)RBF, 
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again with c = Pk. But the Hovinen reserve 

REH = Pkqk UCL + ( I -- Pk)qk Uo = qk Up, = RaB 

is identical to the Benktander  reserve. 
We have already seen that the functions R( U) = qkU and U(R) = Ck + R are 

not inverse to each other  except for U = UCL. In addition, Table I shows that 
the further iteration o f  the methods  o f  BF and GB for an arbi t rary starting 
point  U0 finally leads to the chain ladder method.  

We want  to state this as a theorem: 

Theorem 1. For  an arbi t rary start ing point  U (°1 = U0, the iteration rule 

R ( m ) = q k U  (m) and U ( ' ' ' + l ) = C k + R  (''), m = 0 ,  1, 2, ..., 

gives credibility mixtures 

d " ' )  = ( l  - d / ) U c L  + ¢; 'Uo, 

R ("0 = (1 - q; ')RcL + q'~'RB,~- 

between B F a n d  CL which start at B F a n d  lead via GB finally to CL for m = oe. 

T A B L E  I 

ITERATION OF BORN|IUETTER/FERGUSON 

Ultimate U( R) = Ck + R Connection Reserve R( I~  = q,  U 

S 
U (I) = UBF : Ck -}- RBF 

= ( I - qk)  U c z  + qk Uo 

U (2) = Uc~ = Ck + Rat1 

(1 ' q~) UcL =-  - + q~- U o  

u¢'") = ( I - q~'.')UcL + ¢ ; ' U o  

U ('''+=) = Ck + R ( ' ' )  

= (I - C ÷~ ) GeL + C +~ Go 

U (~) = UCL 

RBF = qk UO 

R ( t )  = RGB = qkUBF 

= ( I  - -  qk)RcL + qkReF 

R(, ,O = q~. U (''') 

= ( I  - q~')Rct. +q'[.'RB,. 

R (oo) = Rct " 
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Walter Neuhaus (1992) analyzed the situation in a full Biihlmann/Straub 
credibility framework (see section 6 for details) and compared the size of the 
mean squared error mse( Rc) = E( R~ - R) 2 of 

Rc ---- CRcL -t- (l - C)RBF 

and the true reserve R = U -  Ck = C,, - Ck especially for 

c = 0 (BE)  

c = Pt,- (GB, called PC-predictor by Neuhaus) 
c = c* (optimal credibility reserve), 

where c* C [0; I] can be defined to be that c which minimizes rose(Re). Neuhaus 
did not include c --- I ( eL )  explicitely into his analysis, 

Neuhaus showed that the mean squared error of  the Benktander r e s e r v e  RGB 
is almost as small as of the optimal credibility reserve Rc. except if Pk is small 
and c* is large at the same time (cf. Figures I and 2 in Neuhaus (1992)). 
Moreover, he showed that the Benktander reserve RGB has a smaller mean 
squared error than RBF whenever c* > pk/2 holds. This result is very plausible 
because then c* is closer to c = Pk than to c = 0. 

In the following we include the CL into the analysis and consider the case 
where U0 is not necessarily equal to E(U), i.e. consider the estimation error, too. 
This seems to be more realistic as in Neuhaus (1992) where U0 = E(U) was 
assumed. Instead of the credibility model used by Neuhaus, we introduce a less 
demanding stochastic model in order to compare the precision of Rm:, RcL and 
RGB. We derive a formula for the standard error of RBF and RGB (and RCL) 
and show how the parameters required can be estimated. A numerical example 
is given in section 4. Moreover, there is a close connection to a paper by 
Gogol (1993) which will be dealt with in section 5. Finally, the connection to the 
credibility model is analyzed in section 6. 

3. CALCULATION OF THE OPTIMAL CREDIBILITY FACTOR c* AND 

O F T H E  MEAN SQUARED ERROR OF R e 

In order to compare RBF, RCL and RGI~, we use the mean squared error 

mse( Rc) = E( Rc - R) 2 

as criterion for the precision of the reserve estinaate R~ (for a discussion see 
section 5). Because 

Rc = CRcL -k- (1 -- C)RBF "= c( RcL -- RBF) -'[- RBF 

is linear in c, the mean squared error rose(Re) is a quadratic function of c and 
will therefore have a minimum. 

In the following, we consider U0 to be an estimation function which is 
independent from Ck, R, U and has expectation E(Uo) = E(U) and variance 
Var(Uo). Then we have 
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Theorem 2. The optimal credibility factor c* which minimizes the mean squared 
error mse(R~.) = E(R~ - R) 2 is given by 

c* = P__~k . Cov( Ck, R) + Pkqk Var( Uo) 
qk Var( Ck ) + p~. Var( Uo ) (1) 

Proof 

E(R~ - R) 2 = E[c(RcL - RBF) + R B F -  R] 2 

= c2E(RcL - RBF) 2 -- 2cE[(RcL - RsF) (R  - RBF)] + E ( R t n , -  R) 2. 

0 
0 = m E ( R e  - 

Oc " 
R) 2 : 2cE( RcL - R B F )  2 - -  2E[( RcL - RSF)( R - R B F ) ]  

yields 

c* E[(RcL - RsF) (R  - RBF)] Pk 

E( RcL - RBF) 2 q~" 

= p___~. Cov(Ck - pkUo, R - qkUo) 

q~- Var(Ck - pkUo) 

, E[(C~. - p k U o ) ( R  - qk Uo)] 

E(Ck - Pk Uo) 2 

Pk Cov(Ck,R)  + pkqkVar(Uo) 

va,.( ck ) + V,,(  Uo ) 

Here, we have used that E(Ck) =pkE(Uo)  according to the definition of  the 
payout pattern (and therefore E(R)  = qkE(Uo)). Q.E.D. 

In order to estimate c*, we need a model for Var(Ck) and Cov(C , ,R ) .  The 
following model is not more than a slightly refined definition of  the payout 
pattern: 

E ( C k / U  I U) = Pk, (2) 

Var(Ck/UJ U) = pkq~.~2(U). (3) 

The factor qk in (3) is necessary in order to secure that Var(Ck[U) ~ 0 as k 
approaches n. A similar argument holds for Pc in case of very small values. 
A parametric example is obtained if the ratio Ck/U,  given U, has a 
Beta(apk,aqk)-distribution with a > 0; in this case ~2(U) = (a + 1) - t .  Thus, in 
the simple cases,/32(U) depends neither on U nor on k. If the variability of C k / U  
for high values of U is higher, then ~ 2 ( U ) =  (U/Uo) . ,62  is a reasonable 
assumption. 

From assumptions (2) and (3) and with aZ(U) := U2~2(U) we gather 

E(CkJ U) = pk U, 

Var( gk[ U) = P k  qko ~2 (V), 

E(Ck) = pkE(V), 

Var(Cg) --- pkqkE(~v2(V)) + p~ Var(U) 

= pkE(o~2(U)) +p~(Var (U)  - E(c~Z(u))), (4) 
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CO,'(Ck, U) = CO~(E(Ckl U), U) = Pk Va,'(U), 

Col,( Ck, R) : Cov( Ck, U) - Var( Ck ) = Pkqk( Var( U) -- E(a2(U))) ,  

E(R) = E(U) - E(c~) = qkE(U), 

Var(R) = Var(U) - 2Cov(Ck, U) + Var(Ck) 

= Var(U)(I  - 2pk +p~)  +pt , .qkE(~z(u))  

= q2 Vat(U) + pkqkE(cf l (U))  

= qkE(Ct2(U)) + q2k(Var(U ) - E(ct2(V))). 

By inserting (4) and (5) into (1), we immediately obtain 

(5) 

Theorem 3. Under the assumptions of  model (2)-(3), the optimal credibility 
factor c* which minimizes rose(Re) is given by 

~'(o,2(u)) 
c * -  Pk with t =  (6) 

p~. + ~ va,.(tJ0) + v , , . (u )  - E(~2(u)) • 

Some further straightforward calculations lead to 

Theorem 4. Under the assumptions of model (2)-(3), we have the following 
formulae for the mean squared error: 

mse(RBF) = E(a2(U) )qk ( l  + qk/t) ,  

mse( e~,.) = e ( ~ (  u))  qk/Pk, 

rose(Re) = e(~2(U))  ~ + - - +  q~. qk )- 

Proof 

mse(  R~F) = 

ms4Rc , . )  = 

E ( R ~ , : -  R) ~ = w , . ( e ~ -  R) = V , , ( R ~ )  + Va,.(R) 

q~V.r(Vo) + q~(V~,.(v) - E(o:~(v))) + q ~ e ( ~ ( g ) )  
E(ct2( U) ) (qk -I- q~/t) ,  

E ( R c L  - R)  2 = V a r ( R c L  - t?) 

Wa,'( Rcc) - 2Cov( RcL, R) + liar(R) 

= Elk Var(Ck) /p  2 - 2qkCov(Ck, R)/pk n t- Vat(R)  

= E ( ~ ( V ) ) q ~ l p k ,  

. ,~(R,:) = E(cRc~ + (I - c ) R ~ F -  R) 2 

= E[c(Rcz. - R) + (I - c)(RuF -- R)] 2 

= c2ms4RcL)  + 2c(l - c)E[(RcL - R ) ( R B F -  R)] + (1 - c)2ms4R~F), 
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E[(Rcc - R ) ( R B F -  R)] = Cov(Rcl. - R, RSF -- R) 

= --Cov(RcL, R) + Var(R) 

= Var(R) - qkCov(Ck, R)/p~- 

= qkE(ct2(U)). 

and putt ing all pieces together leads to the formula  stated. Q.E.D. 

An actuary  who is able to assess Pk = E(Ck/U]U) and U0 (i.e. E(Uo)) should 
also be able to estinaate Var(Uo) and Var(G/UlU) or E(Var(Ck[U)) as well as 
Var(U). Therefrom,  he can deduce E ( a . 2 ( g ) ) = E ( V a r ( C k [ U ) ) / ( p k q k ) -  or  
E(c~2(U)) = Var(Ck/UlU)E(U2)/(p~.qk)if  Va,'(Ck/U[U) does not depend on U 

- and finally the parameter  t. Then he has now a formula for the mean squared 
error  o f  the BF method and a very simple formula for the CL method (where t is 
not  needed) and can calculate the best estimate Rc including its mean squared 
error  as well as the one o f  RGB. 

Regarding the very simple formula for mse(RcL) we should note that this 
formula  deviates from the cor responding  one (i.e. for the uncondit ional  mean 
squared error  with known payou t  pattern) o f  the distribution-free chain ladder 
model o f  Mack (1993). The reason is that  the models underlying are slightly 
different: Here we have 

and the model o f  Mack  (1993) can be written as 

' 
E Ck p~. 

Using theorem 4, we now compare  the mean squared errors o f  the different 
methods  in terms of  p~. and t. First, we have 

mse(RBF) < mse(RcL) ~ Pk < I, 

i.e. we should use BF for the green years Ok < t) and CL for the rather mature  
years (]J~-> 0. This is very plausible and the au thor  is aware that some 
companies  use this rule with t = 0.5. But the volatility measure t varies from one 
business to the other  and therefore the actuary should try to estimate t in every 
single case as is shown in the next section. 

Fur thermore,  we have 

mse(Rae) < mse(RBF) <===¢ t < 2 - p#, 
mse(RGB) < mse(Rcg) ~ t > pkqk/(l +p/,-), 

i.e. GB is better than BF except t is very large and is better than CL except t is 
very small, see Figure 1 where for each o f  the three areas it is indicated which of  
BF, GB, CL is best. In the numerical example below, it will become clear that t is 
almost  always in the GB area. 
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FIGURE 1: A r e a s  o f  s m a l l e s t  m e a n  squared e r r o r .  

4. NUMERICAl.  EXAMPLE 

Assume that the a priori expected ultimate claims ratio is 90% of  the premium, 
i.e. U0 = 90%. Assuming further Pk = 0.50 for k = 3, we have RBF = 4 5 %  (all 
% ages relate to the premium).  Let the paid c l a i m s r a t i o  be C# = 55%, then 
Ucc = 110% and RcL = 55%. Taken together, we have Rcz~ --- 50%. 

In order  to calculate the s tandard  errors, we have to assess Var(U), Var(Uo) 
and E(~2(U)) .  For  Var(U), we can use a considerat ion o f  the following type: 
We assume that the ultimate claims ratio will never be below 60% and only once 
every 20 years above 150%. Then, assuming a shifted Iognormal  distr ibution 
with expectation 90%, we get Var(U)= (35%) 2. This rather high variance is 
typical lbr a reinsurance business or  a small direct portfolio.  

Regarding E(cfl(U)), we consider here the special case where 
/32(U) =/32 does not depend on U (e.g. using a Beta distribution), i.e. 
E(cfl(U))=E(U2)32=E(U2)Var(Ck/UIU)/(p~.qk). Therefore,  we have to 
assess Var(Ck/U[U), i.e. the variability o f  the payment  ratio C~./U around  its 
inean pk. If  we assume - e.g. by looking at the ratios Ck/U of  past accident 
years - that  Ck/U will be almost  always between 0.30 and 0.70, then - 
using the two-sigma rule from the normal  distr ibution - we have a 
s tandard deviation o f  0.10, i.e. Var(fk/UlU)=O. lO 2, which leads to 
32 = Var(Ck/U[ U)/(pkqk) = 0.202 and E(c~2(U)) = E(U2)32 = 0.1932. 

Finally, the most  difficult task is to assess Var(Uo) but this has much less 
influence on t than Var(U) (which is always larger) and E(c~2(U)). Moreover ,  an 
ac tuary  who is able to establish a point  estinaate U0 should also be able to 
estinaate the uncertainty Var(Uo) of  his point  estimate. Thus,  there will be a 
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certain interval or  range o f  values where the ac tuary  takes his choice o f  U0 from. 
Then he can take this interval and use the two-sigma rule to produce the 
s tandard  deviation ~ .  Let us assume that in our  example 
V~,,'(Uo) = (15%) 2. 

N o w  we can calculate t = 0.346 and all s tandard errors ( =  square root  o f  the 
estimated mean squared error) as well as the optimal credibility reserve R~.: 

R~F = 45% 4- 21.3% 

RCL = 55% 4- 19.3% 

Rcm = 50% 4- 17.3% 

Re = 5 0 . 9 % 4 - 1 7 . 2 %  with c * = 0 . 5 9 1 .  

Note  that these s tandard  errors are based on the uncondit ional  mean squared 
error  (cf. discussion in the next section) and on a known pattern {pj}. Including 
the uncer ta inty o f  the P/wil l  increase the s tandard error. 

For  the purpose  o f  compar ison,  we look at a more  stable business, too: 
Assume that Va,'(U) = (10%) z, Va,'(Uo) = (5%) 2 and Var(C~./UIU ) = (0.03) 2. 
Then,  everything else being equal, we obtain /32= 0.062, E(c~2(U)) = 0.0542, 
t = 0.309 and 

RgF = 45% 4- 6.2% 

RCL = 55% 4- 5.4% 

RaB = 50% 4- 4.9% 

R~. = 51.2% 4- 4.9% with c* = 0.618. 

In both cases, GB has a smaller mean squared error  than BFand CL, and the 
size o f  t has not changed much,  because the relative sizes o f  the three variances 
Vat(U), Var(Uo), Var(Ck/UIU ) are similar. A closer look at formula (6) shows 
that  the size o f t  is changed more  if E(oe2(U)) (i.e. Var(Ck/U[U)) is changed than 
if Var(U) or Var(Uo) are changed.  In the first example, for instance, we had 
Var(Ca./UIU) = 0.102 and GB was better than CL and BF. If  we change the 
variability o f  the paid ratio to Var(Ca./U]U) >_ 0.1532 , then t _> 1.51 and BF is 
better than GB and CL. If  we change it to Var(C~./U]U)<_ 0.074 z, then 
t _< 0.164 and CL is better than GB and BF, see Figure 1. But in the large range 
o f  normal  values o f  Var(Ck/U]U), GB is better than CL and BF. Because 
Var(Uo) is always smaller than Vat(U), the size o f t  is essentially determined by 
the ratio Var( Ck / U] U) / Vat'( U). 
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5. APPLICATION OF AN EXACT BAYESIAN MODEL TO THE NUMERICAL EXAMPLE 

I f  we make  dis t r ibut ional  a ssumpt ions  for U and CkIU, we can de termine  the 
exact  dis t r ibut ion of  UICk according to Bayes'  theorem. This  was done  by 
Gogo l  (1993) who assumed that  U and CklU have Iognormal  dis t r ibut ions 
because then UICk has a Iognormal  distr ibution,  too. 

Applied to our  first numerical  example ,  this model  is: 

U N Lognorma l  (# ,o  -2) with E(U) = 90%, Vat(U) = (35%) 2, 

C k l U ~  L o g n o r m a l  ( u , r  2) with E(CklU) ---- pkU, Var(CklU) = pkqk/32U 2 

where/32 = 0.202 is as before,  i.e. such that  Var( Ca. / U[ U) = 0.102. 
This  yields 

02 = ln(I + Var(U)/(E(U)) 2) = 0.3752, 

tt = ln(E(U))  - 02/2 = -0 .176 ,  

7 -2 = ln( l  + fl2qk/pk ) = 0.1982. 

Then (see Gogol  (1993)), 

UIC~. "~ L o g n o r m a l  (t.tl, a~) 

with 

ttl = z(7- 2 + ln(C~-/pk)) + (I - z)Ft = 0.067, 

= z7- 2 = 0.1752 , 

z = 02/(0 -2 + 7-2) = 0.782. 

This yields (at CA- = 55%) 

E(U[Ck) = exp(# ,  + a~/2) = 108.6%, 

E(RIC~) = E(e lck)  - Ck = 53.6%, 

Var(RlCk) = Va,'(UlC~) = (E(UlG. ) )Z (exp (~ ) -  I) = (19.2%) 2. 

If  we c o m p a r e  this last result with the mean squared errors  obta ined  in section 4, 
we should recall that  E(RICk) minimizes  the conditional mean squared error  

e((R- e)21c,) = v ,.(elck) + ( k -  e(RIC,.)) 2 

a m o n g  all estinaators R which are a square  integrable function o f  Ck as well as it 
minimizes the uncondit ional  mean squared error  

E(R - R)2= E(Var(RICk)) + E(R - E(RICk)) 2 

because the first term o f  the r.h.s, does not depend on /~. But the resulting 
m i n imum values Var(RICk) and E(Var(RICk)) are different. 
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Basically, in claims reserving we should minimize the conditional mean 
squared error, given Ck, because we are only interested in the future 
variability and because Ck remains a fixed part of  the ultimate claims U. 
But if E(RICk) is a linear function of Ct- (like Re), this function can be 
found by minimizing the unconditional (average) mean squared error. More- 
over, the latter can often be calculated easier than the conditional mean 
squared error as it is the case in model (2)-(3). The unconditional mean 
squared error is the appropriate  measure to compare the precision of different 
reserving methods. 

Altogether, it is clear that the mean squared errors calculated in section 4 
are average (unconditional) mean squared errors, averaged over all possible 
values of  Ck. Therefore, in order to make a fair comparison of  the various 
methods in our numerical example, we must calculate the unconditional mean 
squared error E(Var(R]Ck)) in the Bayesian model, too. 

For this purpose, we have to integrate Var(R]Ck) over Ck and therefore 
need the distribution of Ck which we obtain by mixing the distributions of  
CkIU and U: 

Ck/pk  ~ Lognormal (IL - T 2 / 2 ,  O .2 + 7"2), 

exp(2z l n ( C k / p k ) )  "~ Lognormal (2z11 - z ' r  2, 4z2(O. 2 + T2)). 

This yields 

E(Var(RICk)) = E(exp(2#, + a~)(exp(~)- I)) 

-- E(exp(2z In(Ck/p~))) exp(3ZT 2 + 2(I -- Z)I.L)(exp(ZT 2) -- I) 

---- exp(2tz + 2a 2) (@X['(ZT 2) - -  ]) 

= ( 1 7 . 0 % )  2. 

This shows finally, that the exact Bayesian model on average has only a slightly 
smaller mean squared error than the optimal credibility reserve Re. and the 
Benktander reserve RoB. But if we recall that, with the exact Bayesian 
procedure, we assume to exactly know the distributional laws without any 
estimation error, then the slight improvement  in the mean squared error does 
not pay for the strong assumptions made. 

6. CONNECTION TO THE CREDIBILITY MODEL 

Finally, we establish an interesting connection between the model (2)-(3) and the 
credibility model used in Neuhaus (1992). There, the Bfihlmann/Straub 
credibility model was applied to the incremental losses and payouts: For 
j =  1, ..., n (where n is such that p, = I) let 

m] = p j  - p j - i  
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be the incremental payout pattern and 

Sj = C j -  Cj-i 

be the incremental claims (with the convention P0 = 0 and Co = 0). Then the 
Biihlmann/Straub credibility model makes the following assumptions: 

SILO, ..., S,,IO are independent, (7) 

E(Si/mtlO ) = I~(0), I < j < n, (8) 

Va, ' (S /mj le )  = a2 (e ) /m j  1 <_j <_ n, (9) 

where O is the unknown distr ibut ion qual i ty of  the accident year. Assumption (7) 
can be crucial in practise. Model  (7)-(9) can be set up wi thout  refering to pj by 
just requiring n b > 0 and ml + ... +m,,  = 1. Then the fol lowing formulae still 
hold using pa. := ml + ... + ink .  

From (7)-(9) we obtain 

E(Ck le )  = pk t4e ) ,  

Va,-(ckle) = pk~, 2(e).  

The latter formula shows, that the credibi l i ty model is clifl'erent from 
model (2)-(3) where we have Var(C~IU ) =p~,ql~.c~Z(u), i.e. we do not have 
O = U .  

In the credibility model (7)-(9) we obtain further 

E ( G )  = p , f ( ~ , ( e ) )  = p~.E(C,,) = pkE(U) ,  

w,,.(ck) = p~.e(~2(e)) + p~ v, , .o4e)),  (1 o) 

Co,,(c~, u) = E(Co,,(C~, Ckle)) + Co,,(p~#(e), #(e)) 

= p~.(e(o~(e))  + vc, r (~ (e ) ) ) ,  

Cov( Ck, n) = pkq~. v<,.O,,(e) ), 
E(R) = q k E ( # ( O ) )  = qx.E(U), 

"~V Ya,'(R) : qkE(~r2(e)) + q~ . , ( # ( e ) )  

If we compare these formulae with the corresponding formulae of model (2)-(3) 
and take into account that here 

v , , . 0 , ( e ) )  = v,, , . (u) - e (o~ (e ) )  

holds (from (10) with k = n), then we see that these formulae are completely 
identical if E(,~2(U)) = E(a2(O)). This leads immediately to 

Theorem 5. The formulae of  theorems 3 and 4 hold for model (7)-(9), too, after 
having replaced E(c~2(U)) with E(cr2((~)). 
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In the credibility model, a natural estimate of  E(o~(O)) can be established: 
From 

and 

it follows that 

S/m le ) = G2( O ) /mj 

Z mi Sj mj = Ck/pk = UCL 
j=l 

S. )2 
1 Z , , , j ( ~ , _ U c L  o2 -- k - 1 j=~ \n!i 

is an unbiased estimator of E(oZ(O)). We can write 

cr 2 = p k S 2 / ( ] <  - -  l) 

where 

$2 = Z mJ -- UCL mj 
j = l  \ J / j=l 

can be calculated easily as the mj-weighted average of the squared deviations of  
the observed ratios Sj/mj from their weighted mean Ucl.. Note that each Sj/m: is 
an unbiased estimate of  the expected ultimate claims E(U). 

If in our numerical example in addition to P3 = 0.50 and C3 = 55% we have 
Pl =0 .10 ,  P 2 = 0 . 3 0 ,  Ct = 1 5 % ,  C 2 = 2 7 % ,  then ml =0 .10 ,  m 2 = 0 . 2 0 ,  
m 3 = 0 . 2 0 ,  Si = 1 5 % ,  $ 2 =  12%, S 3 = 2 8 % ,  and the ratios S i /ml  = 1.5, 
$2/m2 = 0.6, $3/m3 = 1.4 have a variance s 2 =  0.412 . Then the estimate for 
E(o-2(@)) is ~ =0.2052. With C, = 10% and C2 = 3 0 %  we would get 
O "2 = 0.0612 indicating a more stable case. 

Note that for the estimation of E(o'2(U)) the observation of several accident 
years is necessary. Anyhow, model (2)-(3) is less demanding than model (7)-(9). 

7. C O N C L U S I O N  

In claims reserving, the actuary has usually two independent estimators RBF and 
Rcc, at his disposal: One is based on prior knowledge (U0), the other is based on 
the claims already paid (Ck). It is a well-known lemma of  Statistics that from 
several independent and unbiased estimators one can form a better est imator 
(i.e. with smaller variance) by putting them together via a linear combination.  
From this general perspective, too, it is clear that the GB reserve should be 
superior to BF or CL. 

More precisely, the foregoing analysis has shown that GB has a smaller mean 
squared error than BFand  CL if the payout pattern is neither extremely volatile 
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nor extremely stable. This conclusion is derived within a model whose 
assumpt ions  are nothing more than a precise definition o f  the term ' payou t  
pattern ' .  Therefore,  actuaries should include the Benktander  method in their 
s tandard reserving methods.  

Finally, we want to emphasize that all formulae derived rely on the 
assumpt ion that the prior estimate U0 and the observed claims Ck are 
independent.  This means that these formulae probably  will not hold any more 
for a 'pr ior '  U0 which has been adjusted during the development  period as it is 
often done  in practise. Such an adjustment  is like choos ing  an Uc with an 
unknown c and gives a procedure  which is much less objective than the 
Benktander  method.  
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Correction Note 
to the paper  

„Credible Claims Reserves: The Benktander Method“ 

by Thomas Mack 

 

 

In Chapter 5 („Application …“), there is a mistake. 

The equation for µ1 should be as follows: 

 

 µ1 = z ( τ
2
/2 + ln(Ck/pk) ) + (1 – z) µ = 0.05155 , 

 

i. e. τ
2
/2 instead of τ

2
 and a slightly different numerical result. This mistake entails the 

following further alterations later on in the same chapter: 

 

 E(U|Ck) = … = 106.9%  (instead of 108.6%), 

 

 E(R|Ck) = … = 51.9%  (instead of 53.6%), 

 

 Var(R|Ck) = … = … = (18.9%)
2
 (instead of 19.2%). 

 

Finally, the last equations of Chapter 5 change as follows: 

 

 E(Var(R|Ck)) = E( exp(2µ1 + σ1
2
) (exp(σ1

2
) – 1) ) 

 

            = E(exp(2z ln(Ck/pk))) exp(2zτ
2
 + 2(1 – z)µ) (exp(zτ

2
) – 1) 

 

            = exp(2µ + (1+z)σ
2
) (exp(zτ

2
) – 1) 

 

            = (16.8%)
2
 . 

 

(i. e. 2zτ
2
 instead of 3zτ

2
 in the second line, (1+z)σ

2
 instead of 2σ

2
 in the third line and 16.8% 

instead of 17.0% in the forth line.) This concludes the list of corrections. 


