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The standard methods for the calculation of total claim size distributions and 
ruin probabilities, Panjer recursion and algorithms based on transfo,ms, both 
apply to lattice-type distributions only and therefore require an initial 
discretization step if continuous distribution functions are of  interest. We 
discuss the associated discretization error and show that it can often be reduced 
substantially by an extrapolation technique. 
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I .  ] N T R O D U C T I O N  

As in the first part of  the paper we are interested in the numerical evaluation 
of a compotmd distribution ~ , = ~ = 0 p k t t  *k, where we regard IL and 
(Pk)k E N0 as given and " . "  denotes convolution. This situation arises in the 
standard risk theory model, where v is the distribution of the total claim size, 
pk is the probability that there are k claims within the period of interest, 
and t.t is the distribution of the individual claims: see e.g. Asmussen (1987), 
Beard et al. (1984), Grandell (1991) and Hipp and Michel (1990). We have 
i)k = exp(-k)Ak//, '! for some A > 0 if the claim arrival process is a Po[sson 
process. Some additional arguments show that the ruin probabilities in the 
c!assical risk model, regarded as a function of the initial risk reserve, also fit 
into this framework, with Pk = (I --p)~p for some p E (0, I). If # is one-sided 
and of  lattice type, i.e. concentrated on the non-negative integer multiples of 
some h > 0, then both the compound Poisson and the compound geometric 
case can be handled numerically by Panjer recursion. Tra,lsform methods, in 
conjunction with the fast Fourier transfo,m algorithm (FFT),  apply in the 
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lattice case for two-sided distributions and quite general compounding 
sequences (Pa)~n0; for a more detailed discussion and references see Part I of  
the present paper, Grfibel and Hermesmeier (1999). In Part l it was shown 
that the aliasing errors that arise in connection with transform methods and 
are absent in Panjer recursion, can be reduced by a suitable change of the 
measure Iz ("exponential tilting"). I f /x  not of  lattice type, in particular if 15 
has a density, the use of  Panjer recursion or transform methods requires an 
initial discretization step, which leads to a discretization error. In the present 
second part of the paper  we show that Richardson exlrapolation, also known 
as extrapolation to the limit or acceleration o f  convergence, can be used in 
many situations to reduce such discretization errors considerably. 

Extrapolation methods are in the standard numerical toolbox and explained 
in detail in most numerical analysis textbooks, see e.g. Section 3.5 in Stoer (1994). 
Walz (1996) is a recent monograph on tiffs subject, which also contains some 
interesting historical references: see also Section 8 in K6rner  (1996). The basic 
idea is simply this: if, for example, some real number Y0 cannot be evaluated 
directly but some approximation yj, is amenable for all h > 0. then the 
approximations obtained for various h-values can be combined into a better 
approximation if the rate of  convergence ofyh to Y0 with h ----+ 0 is known. If, for 
example, 

yh = yo + ch" + o(h #) (1.1) 

as h ---+ 0 with some constants og/3 satisfying 0 < o: </3, then 

1 
.~1, :-- 2a--"~_ I (2"Yh/2 -- y/,) = Y0 4- o(h#), (I .2) 

i.e. combining the approximations obtained for h and h/2 results in an 
approximat ion with an improved rate of  convergence - the convergence has 
been accelerated. A crucial aspect of  this simple idea is the fact that in passing 
from (1.1) to (1.2) we only need to know the value of c~, but not of  c. In 
applications, and that includes the one we are interested in, o' is often known 
from some general qualitative considerations whereas c is difficult to obtain or 
even involves the quantity Y0. Of  course, an actual acceleration only occurs if 
c ¢ 0 .  Further, one can obviously extend this by combining more than two 
app,oximat ions  if additional expansion terms in (1. I) are known. 

Extrapolation to the limit underlies Romberg integration and is also a 
standard method in connection with the numerical treatment of  difl'erential 
eqt, ations where h can for example arise as the width of a grid when replacing a 
differential equation by a difference equation. Bohman (1977) used an 
extrapolation in the context of  numerical inversion of characteristic functions. 
Here we considcr the approximation Vh obtained for the compound distribution 
v with lattice-type methods if Iz is replaced by some P4, concentrated on the 
integer multiples of  h. The use of  extrapolation methods in this context seems to 
be new, but a "weak"  result where integrals ]'qSdv rather than the distribution v 
itself arc considered, was obtained in Embrechts, Gr/.ibel and Pitts (1993). The 
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proof  given there for a result of  type (1.1) is entirely in the e-6-style. The next 
section contains a heuristic approach to that result that is based on the idea of 
regarding a stochastic model as a non-linear operator,  an idea that was also 
useful in the context of  analyzing aliasing errors in the first part of  the present 
paper. The third section contains our main result, where ( I . l )  is extended to 
distributions. Whereas the weak result deals with real numbers and therefore 
easily fits into the above description via (1.1) and (1.2) we now have a more 
complicated situation, where measures rather than real numbers arise. This 
requires a suitable notion of distance. The p, 'oof of  our main result is somewhat  
technical and therefore put away into an appendix, but the approach explained 
in Section 2 can serve as a guideline. Section 4 deals with boundary effects and 
numerical examples are given in Section 5. 

2. A HEURISTIC APPROACH 

The investigation of total claim size distributions and ruin probabilities in the 
risk model as quantities depending on the individual claim size distribution, the 
claim arrival intensity and the premium income rate can be seen as a special 
instance of a very general framework, where a stochastic model is regarded as a 
functional that relates an output quantity ]t.ou t Of interest to some known input 
quantity P, in. In mathematical  notation the model can be represented by a non- 
linear operator  tp so that pout = ~(tq,) .  When we use Panjer recursion or 
transform methods in the risk theory setting we essentially calculate tl'(p,h) and 
take this to be an approximation for/Lout, where P,h is a discretized version ofltin. 
In this section we argue that this general "funct ional"  view can be used to 
explain a result in Embrechts et al. (1993) that deals with the approximation of 
integrals fCd#ou,  for a given (smooth) function ¢ :IR + IR. 

discret izat ion 
h : parame te r  

discretization 
design } $ 

m o d e l  
#h  : i n p u t  

stochastic } $ 
model 

mode l  
t~(tLh) : o u t p u t  

integration / 
step 

quantity of 
f ¢ d~ (#h) : interest 

FIGURE I: The basic decomposition. 
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The basis for an ex t rapola t ion  to the limit is a relation of  the type ( l . l ) ,  which in 
the present  context  takes the form 

/(/,) := [ ~ i ~ ( / , . , , ) :  [ ~ / ~ , ( ~ ) +  c(,l,;/.~. ~ ) . h "  +o(hh (2.1) 
/ d 

as /1 L0 with some constants /3 _> c~ > 0 and c(q~;/),,,(b)~ 0. To explain the 
qualitative reasoning that can lead to such an expansion we decompose the 
function I1 - - ,  l ( h )  as in Figure I. From this diagram it should be obvious that a 
relation of the type (2. I) can be obtained fi'om the local analysis of the specific 
construction underlying the transition from tt to I th, together with a similar local 
analysis of the stochastic model. Difl 'erentiability (in a suitable sense) of the 
individual mappings, in conjunction with the chain rule, provides a mathematical 
frame that can be used to justify the extrapolation to the limit. I f  ',]) is smooth 
enough then the constant /). will depend on the discretization design only 
whereas c(gJ;/_5, q~) will involve the derivatives and will therefore not be easily 
accessible. We remark at this point that extrapolation can be carried further by 
combining more than one l(h)-value, and that a similar reasoning applies, now 
involving higher order derivatives. 

As we are dealing with weak results only it is natural to regard the measures 
t t, I~/,, tg(it) and tg(it/,) as linear mappings  ~b ~ J'qSdlt on some linear space IE o f  
funct ions qS, i.e. as elements  of  the dual F ~ and F. Let 5,. be the one-poin t  mass  
in x. We discretize ~t by lumping together  the masses of  intervals o f  length h. 
If  we centre these masses we arrive at the following discretization design: 

keg 

We now assume that  p. has a d e n s i t y f a n d  t h a t f a n d  ~b are sufficiently smooth  
for the following app rox ima t ion  to be valid, which is based on a Tay lo r  
expansion of  the function x ~ (~b(x) - ck(kh))f(x) at the point  kh, 

1 
./,,.~ (~(") - ~(/"l'))-f(")J" : T ' + ~ (kh)f(/,h)h" + o(h3). 

Here it is crucial that  the linear term in the expansion vanishes due to the 
symmet ry  of  the discretization intervals. Summing  over  k we obtain  Riemann  
sums for two integrals, and assuming suitable behaviour  o f  the functions at --Feo 
an integrat ion by parts  yields 

keg  J Ih~. 
= h e  [ , ., 1,2, 

J2 . I  ~ (x)j (x)ll.¥ + ~/d'(.,-)f(x)iL,- 
112 / ,tl . 

- 2 4 .  ~ (.~)1~(d.~) + o(112). 

+ o(h 2) 

(2.3) 
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This is a s tatement  on the local behaviour  o f  the discretization mechanism, the 
first step in the above diagram. 

For  the analysis o f  the second step we first consider a single convolut ion  
power t L*'' (which could o f  course be regarded as a degenerate c o m p o u n d  
distribution, with N =  n). This mea,ls that  our  stochastic model is now the 
non-linear opera tor  

J ~I~: I~ ~ F', ~I~(iL)(qS) :=  4xIS"  for all q5 E IF. 

The derivative o f  ~I~ at l.L is a linear approximat ion  to q~ that is locally correct  at 
IL- For  a "curve"  (tx~).:> 0 in the range o f  definition o f  <I~ that is of  the form 
t~,- = t~, + ep, P a finite s~-gned measure o f  total mass zero, we see that  

j. 
,, p) as  0, - -  - -  . . - . +  - - . .+  

£ 

i.e. we have <~,' (p) = nil *(''-i) • p. Note  that this is linear in p. Returning to our  
original mode[ ~(t ,)  = y~,:°°=0P,,t/,*" we therefore obtain 

o o  

~'t,(p ) = i~, p with D:= ~ n p , , t  £(' ' - ' ) .  (2.4) 
; t =  1 

In order  to obtain a statement o f  the form (2.1) from the analysis o f  the 
individual steps in the above diagram (the last step is linear and does not require 
any further investigation) we rephrase (2.3) as a differentiability property.  Let 
D : IF ----, F denote  the "o rd ina ry"  difl'erentiation of  real hlnctions. If we define 
T :  [0, oo) ~ F'  by T(h)  : = / / , ~  for h > 0, T(0) :=  t~, we see that (2.3) can be 
reinterpreted as 

1 
T;+ ( i )  = ~ V ,  o D 2, (2.5) 

where the linear map T~)+ : JR+ --~ IF' is the right derivative of  T at 0, defined by 

To+ (c~)(~) -- lira - (T(ho:) - r (0) )  (c',b). 
hi0 ]l 

Because o f  T~+(c~)= o.T~+(I) this derivativc is completely specified by (2.5). 
The chain rule that we now need can he written in the form 

/ t I 

(k~/ 0 T ) 0 + ( I ) ( ~ )  = t[/T(O)0 T 0 + ( [ ) ( ~ )  , 

so that, replacing h by h 2, we finally arrive at 

- l d ( , , ,  t,,) 
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as h ~. 0, which is (2.1) with c~ = / 3  = 2 and 

c (~ ;  ~, dp) = 4)"d np,,t~*" • (2.6) 
• \ n = l  / 

This agrees with the result obta ined  by Embrech ts  et al. (1993) and provides the 
required theoretical  justif ication for an ex t rapola t ion  a lgor i thm.  

3. A STRONG RESULT 

We continue to use the notat ion from the previous section; in particular, the 
discretized version pq, of  ~L is given by (2.2). 

I f  we are interested in v = q/(l-~) itself rather than in solne specific integral 
.J'c~dv we need to compare the two measures v and vh = g'(tLh). We want to go 
beyond convergence of  Vh to v as /1 I 0; in fact, applicabil i ty of  an 
extrapolat ion technique requires at least a "'next term" result, and it is a 
priori not clear what an expansion of  the form (1.1) means i f  we deal with 
measures instead of  real numbers. I f  v has a smooth density.£, we might hope 
that 

1 vh ({kh}) + g(kh )h  '~ + 0 (h/3) (3. I) .£,(kh) = 7, 

holds uni formly  in k E Z for h .[ 0 with some function g depending on ~ and ~L. 
Again,  we could then combine  the app rox ima t ions  of  type (3.1) obta ined  for 
different h-values into a new app rox ima t ion  with increased asympto t i c  accuracy  
if/3 > cv. 

We will now carry  out this p r o g r a m m e  r igorously under  some smoothness  
and growth  condi t ions  on the density of  IZ. These condi t ions  preclude 
b o u n d a r y  effects (see the next section) and our  main result shows that  
Richardson  ex t rapola t ion  will accelerate the basic hZ-convergence to the rate 
h 4 as h ~L 0. In part icular ,  under  these assumpt ions  we have oe = 2 and /3 = 4 
in (3.1). 

Let C(4,-),) be the space of  all con t inuous  functions f : R - - - ~ R  with 
cont inuous  d e r i v a t i v e s f  (i) up to order  i = 4 which satisfy 

.f(i)(x)=O([x[-"/) a s  x---*±cx~ for i = 0 , . . . , 4 .  (3.2) 

Here we take f(0) to be f itself. The  use of  these spaces is mot iva ted  by our  
method  o f  proof ,  which depends  on Tay lo r  series expans ions  to four th  order.  
Let v := ~ , ,= l  P,,I*.*" and vh := ~ , ,= l  P,,t~J, for all h > 0. Hence,  in contras t  to 
the previous section, our  convolu t ion  series now begin with tl = 1 rather  
than n = 0. As FL *° = IL~, ° = ~0 this does not affect v -  vh. Also, as IL and the 
sequence (P,,),,~N,, are regarded as known,  we know explicitly the a t o m  of  

c<) 

the measure  v = Z p , , ~ W '  at 0: if t t has a density then /_~({0))"=0 
n = 0  

for all n E 1~, so that  v({0}) = P0. 
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Theorem 
Assunle the H. has a density f ,  E C(4, '7)Jor  sonTe "7 > 1 and that (P,,),,e~ sati.sfies 

sup(l  + e)"p,, < oofor some e > 0. (3.3) 
hEN 

Let f ,  be the continuous density o f  v and let f~.,/, : hN0 ~ R be defined by 
f,,,h(kh) := vh( {kh } )/h. Then there exists a continuousJimction g : I~ ~ I~ such that 

I 
- g(kh) l i m s u p ~ u p ( I  + Iklh) ~ (,%(kh) - f , , ( kh) )  < oo. (3.4) 

hlO ]12 kEZ 

Note that (3.3) holds for conapound Poisson and compound geometric 
distributions. The proof  of  the theorem is given in the appendix which also 
contains an explicit formula for the limit function g. Informally, we could guess at 
the behaviour off~. h be rewriting the value c(~; #, (h) in (2.6) via partial integration 
such that only q~ itself appears  in the integrals rather than ~b", and then inserting 
Dirac's delta function for q~. This would lead to 

1 1 
g = - ~  rip, " = - ~  p,.['/, 

and this is indeed correct. 
For any given x > 0 (3.4) implies 

+ ,f,,) 

V 2 
.,-'L ,,x/,,({x}) = f,.(x) + + 0 ( ,  -4 ) 

as n ~ oo, n E N. This is a result of the form (3.1) that can be used for an 
extrapolation to the limit. Indeed, as announced above, the rate itself does not 
depend on the model input provided that the general qualitative assumptions in 
the theorem are satisfied, but the next order term, i.e. the function g, does depend 
on Jj,. If extrapolation methods required the explicit form of  the next term they 
would be useless in the present context as g is no easier to obtain than./'i.. 

The theorem shows that the approximation can be done uniformly in x. In 
practice one would typically be interested in the values of  the density of  the total 
claim size distribution on a lattice hZ. One could then carry out the Panjer 
recursion, or the transform based algorithm if p, is not concentrated on a half 
line, for h and hi2 and combine the results to obtain improved values on hE. 
Numerical examples are given in Section 5. 

4. BOUNDARY EFFECTS 

In an insurance mathematics context tile mare (but not only) application of 
compound distributions appears in connection with the total claim size over a 
given period of  time. This total claim size is the sum of a random number  of  
individual claims of random size, and it is natural to assume that these individual 
claims are nonnegative. To many "one-sided" distributions of  interest, such as 
the exponential distribution, the theorem in the previous section cannot  be 
applied directly, as the corresponding density does not satisfy the smoothness 
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conditions at the leR endpoint 0 ofi ts  support.  In such cases we can often argue as 
in connection with the atoms at 0 (see the discussion following (3.2)): as we regard 
the compounding sequence (P,,),,er~0 and the individual claim size distribution ~t as 
known, we can easily obtain the value of the compound density at 0 explicitly. If 
e.g. i t is the exponential distribution with parameter  A, then the convolution 
powers I**" with n > 1 do not contribute to the value.,q,.(0) of  the compound 
density at 0, which yields.l;,(0) = i~1.!i,(0). Here and in the following we always 
take the version of the density that is continuous from the right at 0. 

Regardless of  such a practical attitude it is mathematically interesting to 
understand the behaviour of  extrapolation algorithms iri "non-smooth"  cases. 
The discussion in this section concentrates on the essential points but does not 
carry out the details; some of these are given in Hermesmeier (1997). We assume 
that It is concentrated on the nonnegative real numbers and that it has a density 
.£, that apart  from being continuous from the right at 0 also satisfies the 
smoothness conditions implicitly present in the approximations made below. We 

OO 

the a tom of  the compound distribution v at 0, .£. = ~-'P,,!I~" is the ignore 

compound density. The discretization is the same as in the previous subsections, 
but the step from vh to£.h has to take into account that.£, vanishes for negative 
arguments: we put f, . ,h(0):= vh({O})/(h/2). 

We first consider weak restllts as in Section 2. We continue to use the 
discretization scheme given in (2.2). Now the linear term in the Taylor  expansion 
for the integrals aver the/ha.-intervals does not disappear at the boundary k = 0, 
and we obtain 

/,, • o ( 4 ) ( x )  - ~ ( o ) ) j ( x ) < L , . =  -~ ¢(Ol/(O)h 2 + o(h2), 

which leads to 

/ '  <MI,.- i ~Jt,,, = 
112 ' 0 0 112 oo 

~ ( )I( )+77_.£ 
17 2 L °° +~. 

h2(fo  24 . 

! .! 

(.¥)1 (x)Jx 

¢'(.¥)J(.,-),z,- + o(h 2) 

- +'(0).t(0)'~ + g5" (..v)it(dv) o ( h 2 ) .  
) 

The second and third step of the decomposition in Figure I remain unchanged, 
(2.5) now becomes 

, 1 D2 D),  T o + ( l  ) = }--~ (b', o -.I(0)~5o o 

so that finally (2.1) is seen to hold with c~ =/5' = 2 and 

, ( i (  I / I  )) c(,I,;j~,~)=~ ~,",/ ~_,,,p,.S -I(O) & l  }-~,,p,,~,.*("-') . 
\ n = l  / • \ n = l  
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Hence, for the weak result, we are essentially in tile same si tuat ion as in 
Section 2. It is only the cons tant  that  changes,  and this cons tan t  is not needed 
for the a lgor i thm.  

1,1 connect ion with s t rong results it is o f  course the behav iour  of  the 
a pp rox ima t ion  at the bounda ry  that  is o f  special interest. We assume that  the 
density f ,  o f  # can be written in the form 

.f, (x) =.[j, (0) + f',, (0) + x, '(x) 

with some function r satisfying lira,-10 r(.v) = 0. Then 

I ~ ,, 
#,,({0}) = .L(0) + V.f, ,(0) + h:~(h) 

with some funct ion/ :  satisfying limht0 ?(h) ---- 0. All convolu t ion  powers  Of#h are 
concent ra ted  on the right half-line, hence 

i ,h({0)) = ,v~,,#h ( {0} )  

= ~ p,,(#,,({0)))" 
nml 

= p,#,,({o}) + p2v,,({O})2+o(h ~) 

, ( , . ,  ) = ~p iJ j , (O)h  + ~piJ, , (0)  + p2.~,(0) 2 h 2 -it- O(]12) 

(a condition such as (3.3) is needed in order to show that the terms from n = 3 
onwards may be neglected in the above infinite sum). As f , . (0 )=  p i f , ( 0 )  and 
./~,,h(O) = Vh({0})/(h/2) this yields 

1 
: p, s ; , / o /+  + o f / .  

This is again a restllt o f  type (2.1), but now we have a = I, whereas  we had 
o~= 2 in all the cases considered previously.  As a consequence the correct  
ex t rapola t ion  formula  would now combine  f,,h(0) and f,.,h/2(0) into 
2Ji.,h/2(0) --f , .h(0) ra ther  than (4Jl. h/2(O) - - f , .h (0) ) /3  as the case a = 2. 

Why are the conclusions different in the weak and the s t rong si tuat ion? 
Due to the final integrat ion step the former  case is basically of  a global nature,  
which means  that  a single point  with a differing rate does not matter .  

5. N U M E R I C A L  EXAMPLF. .S  

In this section we consider  two examples ,  one where the condi t ions  of  the 
theorem in Section 3 are satisfied, the other  with a claim size density that has a 
j u m p  at 0. For  both  these examples  some g a m m a  distr ibut ion P(r/, A) with shape 
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parameter r />  0 and scale parameter A > 0 will be used; the corresponding 
density is 

/ (xl ,7 ,  •) = x" - '  > o. 

Exponential distributions arise if the shape parameter has the value I. Gamma 
distributions are convenient in the present context as their convolution powers 
can be given explicitly: if Ft = ['(71, A) then # * " =  F(nrt, A) for all n 6 N. We 
consider the compound Poisson case where we take the mean of the Poisson 
distribution to be 10. We then have an explicit series representation for the 
compound density, 

10,,A,,,/M,,~- t 
f,,(x) = e -'°-'x'" Z for all x > O, 

,,=1 n!F(m~) 

From this formula it is easy to obta inf . (x)  to any desired degree of accuracy by 
simply summing the first few n-terms (50 are by far enough for our purposes - if 
N has a Poisson distribution with mean 10 then P(N > 50) ~ 0.362 • 10 -19 ,  and 
this is an upper bound for the LI-distance between the true compound density 
and its approximation obtained by summing to n = 50 only). We can therefore 
compare the quality of the approximations obtained for different values of the 
discretization parameter and assess the merits of Richardson extrapolation. 

- 5  

- 6  

- 7  

- 8  

- 9  

- 1 0  

- 1 1  

- 1 2  

i I I i I I I I I I ] 

0 20 40 60 80 100 120 140 160 180 200 
FIGURE 2: Logar i thmic  absolu tc  crrors  for p = [ ' (6,  I). 
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Our first example has 77 = 6 and ,X = 1, with these values the conditions of  the 
theorem in Section 3 are satisfied. Figure 2 contains three curves which all 
display some error 

log~0[f~.,approx(X ) -Ji.(x)t for x = 0, 1 ,2 , . . . ,  199,200 

on a logarithmic scale for this example• From top to bot tom the first curve is 
the result with discretization parameter  h = 1.0, the second with h = 0.5 and 
the third gives the errors for the extrapolation approximation that arises if 
these two approximations are combined as explained in the previous sections. 
Apar t  from some initial confusion at the left boundary,  an aspect that will be 
discussed below, the substantial gain in accuracy achieved by the extrapola- 
tion is obvious. 

In the second example we take the claim size distribution to be exponential 
with mean 6, Figure 3 displays the corresponding error curves. Interestingly, we 
again have a noticeable gain through extrapolation, even though the conditions 
of  our main theorem are not satisfied in this case. 

- 5  

- 6  

- 7  

- 8  

- 9  

- 1 0  

- 1 1  

- 1 2  

- 1 3  

I I I I I I I I I I 

0 20 40 60 80 100 120 140 160 180 200 
FIGURE 3: Loga r i t hmic  absoht te  errors  for i ~. = P ( I ,  I /6 ) .  

For a better understanding of the bchaviour near the boundary .v = 0 we 
display magnified parts of  Figures 2 and 3 in Figure 4. On first sight the 
behaviour observed in these two examples seems at variance with the 
mathematical  results: the first example satisfies the conditions of  the theorem 



320 R U D O L F  G R O B E L  A N D  R E N A T E  H E R M E S M E I E R  

and the second does not,  but we have an improvemen t  by ex t rapola t ion  at x -- 0 
in the latter case whereas  the ex t rapola t ion  increases the error  at x = 0 in the 
first example  ( "*"  is above  " o "  at  x = 0 in par t  (a) o f  the figure). But behold,  it is 
the mathemat ica l  result that  helps to explain tile phenomenon :  tile limit function 
g that  appears  in the theorem (see the discussion following the theorem)  has the 
va lue0  at s = 0 fort~ = F(6, I) which means  that  the cons tant  c in  (1.1) vanishes. 
In fact, this amoun t s  to the same as using the wrong c~-exponent in the 
ext rapola t ion ,  and this is responsible for tile d isappoint ing  pe r fo rmance  of  the 
ex t rapola t ion  in this special example  at this part icular  x-value.  

From the discussion in Section 4 we know that for p. = F ( I ,  I /6 )  the correct  
ex t rapola t ion  would use c~-- 1 at x = 0. As the ex t rapola t ion  shown in the 
figures is based on the assumpt ion  that  ~ = 2 it is surprising that  we obtain  an 
improvemen t  nevertheless ( " , "  is below " o "  at x = 0 in part  (b) o f  the figure). 
Again,  it is worth  looking at the details: the values obta ined  for Ji.(0) with 
h = 1.0, h = 0.5 and the c~ = 2 based ex t rapola t ion  are 0.1111892, 0.0915200 
and 0.0849636 respectively, whereas  the true value is 0.0756665. An ext rapola-  
tion with ~ -- 1 however  leads to 0.0718508, which is closer to the true value (all 
these numbers  have been multiplied by 1000). The  error  value obta ined  with the 
linear ex t rapola t ion  is given as " ® "  in Figure 4 (b). One should note, however ,  
that the actual  order  of  magni tude  of  the er ror  at the bounda ry  is mt, ch smaller  
in the first than in the second example.  
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FIGURE 4: Behaviour  near the boundary  
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Our general mathematical  findings can be summarized as follows: smoothness of  
a stochastic model, regarded as a mapping in a suitable infinite-dimensional 
setting, implies that the order of  magnitude of tile discretization error on the 
input side will reappear at the output  side, and this in turn means that an 
extrapolation to the limit will work, since we control the input error by choosing 
the discretization. This can be used as guidance in the choice of  a discretization 
design. For example, the dicretization 

t*'h := ~#(l'hk)6',k with I',, 0 := [0, h],Fm,. := (k.  h,(k + I ) .  h] for k E N 
k=0  

for one-sided distributions, which is mentioned in Hipp and Michel (1990), leads 
to c~ = 1 rather than o. = 2 in (3.1) and is therefore inferior to the one we used in 
the previous sections. Also, one could take this further and argue as follows: if 
interest is in the compound density and if tile dens i t y f ,  of  the individual claim 
size distribution is easily accessible then a direct discretization o f f ,  might well 
lead to a better approximation - after all, there would then be no discretization 
error on the input side. Indeed, tile methods and auxiliary results introduced in 
the appendix for the proof  of  our theorem can be used to show that, under some 
smoothness conditions, an approximation obtained for the compound density./;, 
by applying Panjer recursion or transform based methods directly to the 
sequence of valuesJi,(kh),k = 0, 1 ,2 , . . .  rather than to/t(k,,k) will give an error 
of  magnitude O(h4). In Figure 5 we display the errors obtained in the first of  the 
above numerical examples with the direct method and the same discretization 
parameters as used previously, together with the extrapolation error curve 
(which is the same as the bo t tommost  curve in Figure 2). It is interesting to see 
that the latter is below the error obtained with the direct method on a substantial 
range of x-values, but not on the whole axis. An advantage of  the discretization 
via t~(/h,k) is that we now know the behaviour of  the error, which makes this 
method "extrapolatable";  a linear or quadratic extrapolation leads to a 
deterioration if we naively apply it to the results obtained with the direct 
discretization off~,. 
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FIGURE 5: Logarithmic absolute errors for IL = F(6, 1). direct discrelization. 

APPENDIX 

Proof of the theorem 
The p roo f  uses elementary arguments  and techniques only, but is somewhat  
lengthy. To increase readability we divide the appendix into subsections, 
dealing with functions on the real line in the first, with functions on lattices in 
the second and relations between these via discretization operators  in the third 
part. The final subsection then combines  the material from the first three 
subsections into the proof" o f  the theorem, which we first reformulate in the 
new notat ional  framework.  Th roughou t ,  7 is a fixed real nt, mber  greater than 
I. The discretization parameter  /1 is generally assumed to vary over the 
interval (0, 1], but the choice o f  I as the upper bound is not important .  A 
sequence (a,,),,e m of  real numbers  is said to grow subexponential ly fast if 

lim,,_oo(I +e)-"a,,=O for all e > 0 ,  it decreases at an exponential  rate if 

lim,,_oo(l + e)na, = 0 for some e > 0. 
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A.! For  measurab le  functions f :  I~ + IR the s u p r e m u m  norm with weight 
function x + (1 + I.v[) "y is given by 

I[/11o,~:= sup(I  + Ix])~lf(.x-)l . 
.:ER 

Let B0(7) be the linear space of  such f u n c t i o n s f w i t h  ]L/]]0.r < oo. Since 7 > I all 
e lements  of  B0(7) are integrable,  i.e. 

/ I1/110,:--- l / ( x ) l&  < oo for all . rE  B0(7). 

(Note  that  [I " ][0,1 is an integral norm and thus differs in nature  f rom ]1 " ]10,-r. We 
always have 7 > I, so no confusion should arise f rom the posi t ional  similarity of  
the indices, which is meant to keep the notation compact.) This implies that the 
convolu t ion  f ,  g of  any f ,  g E B0(7), defined by 

f ,  g(x)  := / f ( y ) g ( x  - y)dy for all x E I~, 
I 

exists. Since 7 > 1 we also have 

,~0('~) := sup(1 + Ixl)~ [ (I + [y[)-'r(l + Ix - yl)-Vdy < oo, 
.\'ER J 

which can be used to obtain  inequalities relating convolu t ion  and I1 • II0,-~ - n o r m .  

For  the integral no rm such an inequali ty is a well known consequence  o f  
Fubini ' s  theorem,  i.e. 

lit* gll0,1 -< II/ll0,~ Ilgll0,1. 

In the cor responding  s ta tement  for s u p r e m u m  norms  an addi t ional  cons tan t  
appears  on the right hand side and good bounds  for tiffs cons tan t  are of  some 
impor tance  for us. The  first par t  o f  the following lemma implies that  B0(7) is 
closed with respect to convolu t ion ,  the second par t  shows that  the II • II0,-r - n o r m s  

of  the convolu t ion  powers  of  a probabi l i ty  density increase subexponent ia l ly  fast. 

Lemma A.I (i)Itf*gllo,-~ -< ,,'.0('v) 11 o.~lLgrllo,.~. 
(ii) For all n E N, I1/~"11o,~ < 77~1l/I o.-~ [/llgS'. 

Proof: Part  (i) is immedia te  f rom the definitions. For  (ii) we first use convexi ty  
of  x ~ (I + I.vl) "r to obta in  for all xl ,xa , . . . , . v , ,  

, 7 - ' ~ ( l + l x ~ + . . . + x , , I ) ' ~ _ <  l +  ( x~+xz+. . .+x , , )  

I 
< - ( ( I  + Ix, I)'Y+(l + Ix21)'~+. ,. + (1 + Ix,,I)~). 

17 
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This yields with xl :=  x -  x2 - . . .  - x ,  

(I + Ixl)"l£"(.v)l _< f . . .  I (I + Ixl)7V(x,)llf(..,-2)l... t;(x,)ld.,-:.. 

(/ IZ  7 -  I . . . ,  . . . .  

+ [ . . . . [  (, + Ix=l)~lT(x,) l l /~:x=) l  . . .  l / ~x~ ) l ax2 . . ,  dx,, 

+ • • • + f .  • • I (I + Ix,,I)71/(x,)lL/fx2)l. . .  I~x , , ) l ax2 . . .  d.,- 0 . 

Using  (1 + IxDTL/(.¥1)I _< It/lr0.7 we obta in  

I I (, + Ix, I)7 If(x, )1 [f(x2)l... Lf(x,,)ldx2... dx,, 

II/110.-~/If(x2)ldx2... If(x,) _< lax,, 

-< IIIIIo,71[III~S'. 

For k = 2 , . . . , n  the same inequality with Xk instead of.vl yields 

/ . . .  f ( l  + Ixkl)Tlf(x, )lV(x2),...[f(x,,)ldx2...dxn 

-lttII0.T/... fL~.,- x2- . . . -  x,,)F ~ IrC¥,)I,~-¥2... ~,x,,. 
i=2 
j#k 

As xk appears only in the first factor of the integrand we can use that 

I L K - "  - ¥ 2  - . . .  - x,,)laxk ---- I[1110., x= , . . .  ,Xk- ,  , X k + l , . . .  ,Xn for all 

to rewri te  the mul t ip le  integral  as a p roduc t  of  single integrals ,  which yields the 
n 1 upper  b o u n d  I[/]10,-~l[/llo7 again.  Put  toge ther  these es t imates  result in 

(1 + IxI )qV"(x) l  < ~ ' - ' ~  i/1 /1 n-I 
- -  L / I  0 , 7  / I  O, " 

This final b o u n d  does  not  depend  on .v. hence (ii) follows. [ ]  

A.2 F o r  funct ions  ah : hZ ~ IR we proceed s imi lar ly  to the previous  subsect ion:  
we in t roduce  the norm 

Ilahllh,./--- sup( I  + Iklh)'~la~(kh)l 
keZ 
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and let Bh(7) be the space of  such functions ah with Ila,,llJ,,~ < ~ .  The elements 
of  this space, regarded as sequences, are absolutely summable, i.e. 

IlaJ, llh, l:-- /' ~--~ lah(k/,)l < c¢ for all ah ~ &(7) .  
kEZ 

In particular, we can define the convolution product ah * bh ofah,bh E Bh('7) by 

ah * bh(kh) := h~-~ah ( jh )bh ( ( k - j ) h )  for all k E Z. 
j e z  

We use the same symbol to denote convolution on Bh(7) and on B0(7) since the 
respective space should be clear from the context; the symbolsf ,  g , . - .  generally 
denote functions on R, ah, bh, . . ,  functions on hZ. 

Since 7 > I we have 

nt(7) := slap suph(1 + I/,'[h)7 ~--~ (1 + [/'lh)-~(1 + I k - j l h )  -'r < oo, 
O<h<l kEZ j6Z 

which can again be t, sed to obtain norm inequalities. We omit the proof  of the 
following lemma as it is very similar to the proof  of Lemma A.I. 

Lemma A.2 (i) For 0 < h < 1, Ilah * &llh,~ ~< '~(~)llahllh,~llbJ, lb,,r 
l TM _ _  7 n -  I (ii) For all n (5 N, Jlcl, Jlh,-y < n IlahllhaIla~,ll~,,, • 

A.3 We now relate the function spaces introduced in the previous two 
subsections to each other. Two canonical families (F1h)0<h<_l and (Th)0<h_<t of  
discretization operators are given by 

n,,: &(7 )~&(7) ,  

and 

with 

l - I , , ( D ( k h )  : = f(kh) ,  

I fhkf(x)ax, V,,: 80(7) ~ &(7),  7"h(f)(kh) := ?~ 

l h k : = ( ( k - { ) h , ( k + ~ ) h ]  for all k ¢ Z. 

We note in passing that IInh0')llh., -< II/ll0,v which implies that 1-I/, is continuous. 
An argument from the proof  of Lemma A.3 (i) below can be used to show that 
IITJ,(/)llh.~ _< 2~ll/ll0,.. i.e. Th is also a continuous linear operator. 

In connection with these discretizations often a whole family (rh)0<h<l of 
functions rh : hZ ~ I~ arises and we are then interested in a local boundedness 
condition of the form 

(U) lira supllrJ, llh-r< c¢, 
h~O 
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/ (,,)] 
i.e. Ilrhlls,,~ = O( I )  as D ~ 0. If  we have such a family [ r  h )o<h<l for each n E N, 
a uniform subexponential bound of the form 

( S )  limj,_0supsup(l,,~N + c)~-" r h('') hn< oo for all e > 0 

will be needed. For (13) and (S) some rules are easily established. Obviously, both 
conditions continue to bold for finite linear combinations of families. Moreover, 

f .(,,)~ if(S) holds for [,Jh )0<h<~' n E N, and if (q,,),,~ decreases at an exponential rate, 
oo (,,) then (rh)0<h<, defined by r h : = ~ = , q , , , ' h  satisfies (B). Also, if l (")  1 t'l h (~,) 0<hq 

tr2'h)o<h<[ (n)'~ I' n E N, are two families satisfying (S), and if we define ~,r h )0<h<l' 

n E N, by 

B 
}~ ~ r(k) (n-k)  

r i) : =  L - a  1,h * r2 ,h  
k=0 

f (,,)'~ then (S) also holds for ~,r h )0<#,<i,11 E N. These rules will be used below without 

further comment, with the exception of  the last one which we will refer to as the 
convolution stability associated with condition (S). Generally, a~,°, bh := b#,; 
below we similarly interpretff° * g as g for/;,g, E B0(7). 

• O) *,, ' As an example consMer r h := rI~,(f) for a continuous probability density 
./'E B0('7). Using Lebesgue's theorem on dominated convergence it is easy to 
see that 

J,~llr1,,O')ll,,,,= II/tl0,, = 1, 

so for any e > 0 we can find an  h 0 ) 0 such that Ilnh(f)lh,,,_< l + e l 2  for all 
h _< h0. Then, by Lemma A.2 (it), 

(,0 r h / , .<  iFiil-l#,(/)llh.r(l + e / 2 )  "-I for all h < h0,n E N. 

hence (S) holds for the family (,'}f')'} ,n E N. 
" \ / 0 < h < l  

We next investigate the interplay between discretization and convolution. Let 
C(k,7) be the space of k times continuously differentiable I'unctions.fl: IR --+ IR 
with.f(') E B0(7) for i =  0 , . . . , k .  This is compatible with the definition given 
in Section 3. We note that differentiation can be carried into one of the factors of 
a convolution product, i.e. (J'* g)' = . f * g '  f o r f E  B0(7),g E C(I,"/). 

Lemma A.3 For./;g E C(k,7) let ck,,~C/;g) be defined by 

ck.W; g)-= ItrO llo llgC  ' llos 
y=o 
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(i) I f f ,  g E C(2, 7) then. Jo r0  < h < I, 

Ilnh(,'3 * rI~,(g) - n h q ,  g)llj,,v_< h2227~1 (7)Q,70C, g). 

(ii) l f  J;g  E C(4,7) then, for  0 < h <_ 1, 

Ilrlh(f) • rb,(g) - ]nh(J ,  g)llh,v 

-< h4227n, (7)(c2,7(f",g)+ Q. ' t ( f ' , g ' )+  c2,7(f,g")+ c4,-r(f, g)). 

Proof: (i) We expand ~bk(x) := f (x )g (kh  - x )  for x E I1:i about x = j h  to obtain 

qSk(A) = f ( l h ) g ( ( k - j ) h )  + (x-jh)c~'(jh) + ~ ( x - j h ) Z 4 f  (~.kj(x)) 

with some ~kj(x) in x E /hs- Integrating over x E lj,j we see that the linear term 
vanishes and 

fhj x)dx " f~j l (x-jh)2dx. I ! f O ' h ) g ( ( k  - j ) h )  - f ( x ) g ( k h  - '~ Sllplq~ k (~kj(A)) [ 
• a'Elhj 

The integral evaluates to h3/24. Clearly, 

49~ (~kj) = f " (~)g(kh  - 4) - 2f '(~)g'(kh - ~) +J(~)g"(kh - ~). 

For x ,y  E lhj we have (I + ]x l ) / ( l  + lY[) <- 2, so that 

]f"(~kj(X))] < (I + ~kj(X))-~lLC"llo,~_< 2v(i + [/Ih)-"llf"llo,~. 
Similar inequalities hold for the other terms in ~b~, so we obtain 

supl~b~'.(~j(.v)) [ _< 2:'~(I + [/'lh)-'r(l + Ik-jlh)-'~([[/llo.,llg"llo,v 
xE/j v 

+ I[f IIo~llg IIo-~+ tf IIo~ Igllov) 

which finally gives 

[[lIh(]) * Hh (g)--i-lh(f* g) llh,-~ 
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(ii) Expanding q~k up to the fourth order we obtain as in the p roo fo f the  first part 

/ "  1 ~ , ,  I 
hf(jh )g( ( k - j )h  ) - J,£1(.,-)g( kh - x)a.,- - ~ / , -  q~,.(i/,) 

I15 
_< 22"r i--~6 (I + [jih)-7(I + I k - j i h ) - V c 4 n ( / ; g ) .  

We have 

h ~ ~iffjh) = (nj,(/" ')  • n~,(g) - 2nhf f" )  • nh(g ' )  + nhf f )  • rlh(g"))(/,-/,) 
jez 

= (n , , ( l "  • g - 2 f '  • g' + f .  g") + h2r,,)(I,'11) 

with 

I I",lh,,~ < 22"t~1 (7)(c2,vO c'', g) + c2,-r (j", g') + c2,-'t (/', g"))  

by part (i). Since f " ,  g - 2f '  • g' + f ,  g" = 0 we obtain the assertion on using 
the triangle inequality. [ ]  

Lemma A.4 l J ' f  E C(4, ,7) is a probabi l i ty  densio,,  then 

lIs, (/')*"= l'lh0 c*'') + h4rS[ ') , 
( (,,j'~ 

where ~r h )0<h<l' n e N, satisfies (S). 

Proof: We have 

n -  I 

n , ,OO*" - n j , ( p " )  = ~--~ n , , ( / ) . v - , ) .  &.,,_s 
j=l 

with 

R,,j :=  n,, ( r + , ) - n , , ( r . . / - , ) .  

We know that (nh(/)*")0</,<l,n E N, satisfies (S). By Lemma A.3 (ii) 

II R,,.,, ]14227#f;, (,7)C'(~ 11, ,7), 

with c(f, n,'7) a linear combination of terms of the form 

Ilf('/ll0,~ (1"("-'))(<) o.,0 _ i,l< <_ 4. 

These grow subexponentially fi:lst, hence (h-4Rh,,,)O<l,<l ,n E 1~t, also satisfies (S) 
and the assertion of  the lemma follows since (S)7s stable with respect to 
convolution. []  
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Lemma A.5 I f . rE  C(4, 7) is a probability density, then 

nh2 * (n - I )  h4r}ff) T,, ( f ) ' "=  11ZF") + T4- nh (/) * n d f " )  + 

f (,,)~ where ~r#, )0<h_<I' n E N, sa t i . f e s  (S). 

Proof:  E x p a n d i n g J ' a b o u t  x = kh we obtain 

I kh)2f , , (kh ) f (x )  = f (kh)  + (x -/,-/,1/'(~:/,) + 7(.,: - 

+ - k , , ) ' r < ' ,  < , < , , / +  1 <.,. _ 

with some {k(x)  C Is, x. if x e_ lhk. Integralion over x E lj,k results in 

( , , 2 )  
7"1,(/) - 111,(I) - "~FIhO c ) (kh) = h4rh(kh) 

with 

1 L (X - -  kh)4f(4)(~k(X))dx. rh(kh) := 24h5 ' 

Continuing in the style of the proof of gemma A.3 (i) and using 
J)u. (x - kh)4dx --/75/80 we obtain 

2")' 
I l rhl lh '~< 1920 l~4) l l0 , ,  ' 

As in the proof of Lemma A.4 we now use a suitable decomposition of the 
difference, 

n - I  

Th(/)'"-11,,(l)*"= ( Th(/) - II1,(I)) * ~ T,,(I)*V-')*I-I,,O0 "('-j). 
j= I 

It is known that (S) holds for (rlh(f)*")O<h<l,n E N. Similarly, (S) also holds for 

(ThCO*")O<h<I, n E N, as we even have ]lTl,(f)*"Nh.i = 1 for all h > 0, n E N. 

Convolution stability gives (S) for the sum on the right hand side. Multiplying 
this sum by some (rh)0<h<l satisfying (B) does not destroy (S). Hence, in 
summary, we have 

t 2 
T,,(J)*"-Ft,,(/)*"- nn- 11 ,~.(,,_,) • l],,(J"') /,4,'5, "), 

24 hU) = 

f (")'k where ~,r#, )0<#,<i' n E N, satisfies (S). By Lemma A.4 we may replace H#,(D*" by 

Hh0On), and the statement of the lemma follows. []  
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A.4 For probability densities f E  B0(7) and probability functions ah E &,('y) 
(i.e. ah has non-negative entries and ]]ahi]h.i = I) we define ~(f) ,  ~(ah) by 

oo oo 

~(/-) := Z p , , f * " ,  ~(ah) := Z p , , a j ' .  
n =  ] n =  I 

Again it should be clear from the context whether it is the continuous or the 
discrete version of the functional that ~ refers to. We generally assume that the 
probabilities (P,,),,e~0 decrease at an exponential rate. Lemma A.1 (ii) and 
Lemma A.2 (ii) then imply that ~( / )  and ~(a;,) are again elements of B0(7) and 
Bj,(7) respectively. 

In terms of the operator and norm notation introduced above (3.4) can be 
written as 

hl-~_ ( ~  (Th ( f ) ) -  Fib (~ C/)) -  Hh (g)h,.r = O(h2), 

hence the theorem in Section 3 is a consequence of the following result. 

T h e o r e m  A.6 Let f E  C(4,7 ) be a probability density. Then 

1 
g := --24 ~ ~ nP'J*("-O *j' '  E Bo('y) 

and 

tP(Th(/)) = I-l,,(k~(J)) + h2IIh(g) + h4rh, 

where (rh)0<h<l satisfies (B). 

P r o o f :  To see that g is an element of  Bo(7) we use parts (i) and (ii) of Lemma A. I. 
With Lemma A.5 and the continuity of  Hh we obtain 

~ , ( T , , ( / ) )  - 1 ~ , , ( ~ ( / ) )  = ~-~p,,( T,,(l)*"-n,,(l*") ) 
n =  I 

oo {/nh2 . . . .  (,,-I) 1-. , ,v, "] 
Z p , , ~ - ~ " h l l )  "111, t.I ) +  h4r}; ') 

J It= ] 

oo 
n / 1 2 ~  , A , ( n - [ )  ~ trtt~ ~-~p, , -~t lhU) *llhkl ) + h4rl,h 

II = I 

where (B) holds for (rl.h)0<h<l by the remark following the definition of (S). 
Similarly Lemma A.3 yields - 

= 

n =  l n =  I 
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with (t'2,h)o<h< I sat isfying (B). Put together ,  these two equa t ions  imply  the 
asser t ion o f  the theorem.  [ ]  
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