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A BSTRACT 

A unlt-hnked hfe insurance contract ~s a contract where the insurance 
benefits depend on the price of some specific traded stocks We consider a 
model describing the uncertainty of the financial market and a portfoho of 
insured individuals simultaneously. Due to incompleteness the insurance 
claims cannot be hedged completely by trading stocks and bonds only, 
leawng some risk to the insurer. The theory of risk-mlmmization Is briefly 
reviewed and apphed after a change of measure. Risk-minimizing trading 
strategies and the associated intrinsic risk processes are determined for 
different types of umt-hnked contracts By extending the model to the 
situation where certain reinsurance contracts on the insured lives are traded, 
the d~rect insurer can ehmlnate the risk completely The corresponding self- 
financing strategies are determined. 
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I ] N T R O D U C T I O N  

Traditional actuarial analysis of life insurance contracts focuses on 
calculation of expected values of various discounted random cashflows; 
the fundamental principle of equivalence states that discounted premiums 
and benefits should balance on average for any contract. Tile corresponding 
premium is called the equivalence premmm. Similarly, at any tmae during the 
insurance period, the prospective reserve ~s defined as the conditional 
expected value of all discounted future benefits less premiums, gwen the 
available Information. The development of the reserve is described by 
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Th~ele's differential equation, which originally dealt with constant determi- 
nistic interest and deterministic benefits, but has been widely generalized, see 
e.g. Norberg (1995) and Norberg and Moller (1996). 

With a unlt-hnked hfe insurance contract, benefits depend exphcltly on a 
specified stock index. Typically, the policyholder will receive the maximum 
of the stock price and some asset value guarantee stipulated in the contract, 
but other dependencies may be specified These contracts have been analyzed 
by Brennan and Schwartz (1979), and more recently by e g. Delbaen (1990), 
Baclnello and Ortu (1993), Aase and Persson (1994) and Nielsen and 
Sandmann (1995). The last of these authors allow the risk-free interest rate 
to be stochastic. Various exoUc types of contract funcUons are considered m 
Ekern and Persson (1996). Aase and Persson (1994) derive a partial 
&fferenUal equaUon for the value of the reserve of a umt-hnked life 
insurance, which is compared with Thlele's differential equation They also 
present duphcatmg strategies that minimize the risk of the Insurance 
company in a sense. 

All the papers menUoned consider mortality Nsk as &verslfiable or 
assume that the insurer ~s "risk neutral w~th respect to mortahty'" and 
replace the uncertain courses of the insured hves by the expected. In this 
way, the actual insurance claims, depending on uncertainty w~thm the 
portfolio of insured hves and the financml markets, are replaced by similar 
clamls which only include the financial uncertainty. These clamls are then 
priced using standard no-arbitrage pricing theory. In the present paper we 
provide and examine a model where the uncertainty of a portfolio of lives to 
be insured and a certain financial market are described simultaneously, and 
consider the problem of hedging the actual claims which depend on both 
sources of uncertainty. 

The insurance company ~ssues hfe insurance contracts with insurance 
benefits linked to the price of a specified stock. This stock and one risk-free 
asset are traded freely on the financial market without transacUon costs. We 
then consider the problem of defining optimal investment strategies. This 
situauon differs from the case of standard hfe |nsurance, where the insurance 
company should try to maximize trading gains in order to compete with 
other companies on re&stribuUons of bonus With unit-hnked contracts, 
benefits are already linked exphcltly to the development of the market, and 
hence are not influenced by the [hctual gains generated by the investment 
strategies of the insurance company. However, by issuing these contracts, 
the insurer is exposed to a financial risk, and our objecuve here will be to 
minimize this risk. In this paper we will measure the risk associated with the 
contracts using the expected value (tinder an adjusted measure) of the square 
of the dlft~rence between the insurance benefits to be paid and the gains 
obtained from investments. 

The insurance contracts are characteNzed as contingent claims in an 
incomplete model, such that the insurance clmms cannot be perfectly 
duphcated by means of self-financing strategies The theory of nsk- 
mlnHmzat~on for incomplete markets introduced by F611mer and Sonder- 
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mann (1986) and developed further by F611mer and Schwelzer (1988) and 
Schwelzer (1991, 1994 and 1995) Is reviewed and then apphed after a change 
of measure. W~th ~ts present formulation, this theory deals with the problem 
of hedging contingent claims that are payable at a fixed time only. The 
analysis of more general claims with intermediate payment umes would 
require an extension of the original theory of Follmer and Sondermann 
(1986), a problem which will be addressed m a forthcoming paper by Moiler 
(1998) Thus, insurance contracts with payments occurring only at fixed 
times are analyzed within the original setup of Follmer and Sondermann 
(1986), whereas some modifications are needed in order to deal with 
contracts where the sum insured falls due immediately upon the death of the 
insured. In the present paper, we assume that premiums are paid as single 
premiums and that all benefits are deferred to the term of the contract. In 
this way optimal investment strategies minimizing the risk (under the 
mlmmal martingale measure) associated with the assigned contracts are 
determined. Since the model is incomplete, risk cannot be ehmmated 
completely by applying these strategies, leawng some minimum obtainable 
risk (called the intrinsic risk) to the insurer. This minimum risk process Is 
determined for different types of standard contracts and is taken as a 
measure of the non-hedgeable risk inherent m the contracts. 

In Secuon 2 we present the combined model and brzefly mention some 
basic results from the theory of mathematical finance. We also introduce the 
basic types of insurance claims to be analyzed in the paper Secuon 3 ~s 
devoted to a rewew of the most m~portant concepts of nsk-minim~zauon. 
Umt-linked hfe insurance contracts by single premium are analyzed m 
Section 4. Section 5 deals with the s~tuatlon where reinsurance contracts are 
traded fi'eely on the market. Finally, some numerical results are presented m 
Section 6 

2 THE M O D E L  

In th,s sect,on the two basic elements of the model, the financial market and 
a portfoho of indw~duals to be insured, are introduced. We set out by 
presenting the financial market and reviewing some well-known results from 
the theory of mathematical finance for complete markets. When extending 
the model by also including a portfolio of individuals to be insured, the 
market ~s no longer complete. 

Throughout, we let T denote a fixed, fimte hme horizon and consider a 
gwen probablhty space (~2,.Y, P). 

2.1. The financial market 

We consider a market consisting of only two traded assets: a stock wtth 
prices process S and a bond with price process B. At any tmle t these assets 



20 THOMAS MOLLER 

are traded freely at prices St and Bt, respectively. The price processes are 
defined on a probabi l i ty  space (f~,.T, P) and are given by the P-dynamms 

dS, = c~( t, S, )S, dt + ~r( t, S, )StdW,, (2 1) 

dBt = r(t, S,)Btdt, (2 2) 

So > 0, B0 = 1, where W = ( Wt)0<t<r is a s tandard Browman mot ion  on the 
time interval [0, 7]. The  f i l t ra t ion-G-= (•,)0<r<T generated by this economy 
is given by 

~, = ~{(S,,, B,,), ,, < t} = ~{S,,, ,, _< t}. 

A solution to the equat ion (2 1) exists provided that the functions c~ and c~ 
satisfy certain regularity condmons ,  see e.g. Duffle (1996, Appendix E). 
These condi t ions are assumed to be fulfilled henceforth.  Fur thermore ,  we 
assume that r,dt exists and is fimte almost surely. 

The process c~ IS interpreted as the mean rate of  return of  S, and cy as the 
s tandard  deviation of  the rate of  return. Similarly r IS called the short  rate o f  
interest and denotes the rate of  return o f  the risk-free asset The process u 
defined by u, = (o~, - r,)/~7, is known as the market  price of  risk process 
associated with S. In addit ion to the assumptmns above,  we assume that u 
satisfies the integrabllity condit ions from Duffle (1996, Chapte r  6). With 
constant  coefficients c~, o- and r, all condit ions are satisfied, and we have the 
celebrated Black-Scholes model where S and B are given by 

S, = So exp((c~ - ~a2)t + oW,) , 

Bt = exp(r  t). 

The  model above has been thoroughly  investigated in the literature of  
mathematmal  finance, see e.g. Duffle (1996), B.Iork (1996) and Lamber ton  
and Lapeyre  (1996). Thus some concepts  and results from the theory of  
finance, needed repeatedly in the sequel, wdl be quoted without  explicit 
reference. Also Aase and Persson (1994) gwe a brief  survey o f  this theory. 

Recall that two measures P and P* are said to be equivalent ~f, for each 
set A E .T, we have that P(A) = 0 f fand  only if P*(A) = 0. By definition, the 
p robabdl ty  measure P* defined by 

-- ( fo T " ~-- ) l f o Y ( C ~ " ~ r " ) 2  ) dP* f c~,, r,, 
dP exp - \ a ,  dW,  - 2 \ or, du ~ UT (2 3) 

tS eqmvalent  to P. It can be verified that the discounted price process S*, 
defined by 

• i '  ) S, = S,/B, = So exp (c~,, - r,,) du + a,,dW,, , (2.4) 
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is a P*-martmgale.  Thus P* is called an equtvalent martingale measure In the 
above model,  the martingale measure is unique. 

A trading strategy or portJolio ~ttategy is an adapted process cp = (~, r/) 
satisfying some lntegrablhty condit ions (a precise defimtlon will be given m 
Section 3). At any time t E [0, T], s c, and r/, represent, respectively, the 
number  of  shares and the number  of  bonds held in the portfolio. The value 
process f/to assocxated with cy is defined by 

~','0 = ~,S, + ,7,B,, (2.5) 

and the strategy is said to be self-financing if 

/ 0 '  /0' f/7 = V~ + ~,clS,, + 7l, dB, , (2 6) 

for all 0 < t < T According to (2 6), any change in the value of  the portfolio 
is generated by changes In the underlying price processes S and B. A 
contingent claret with maturi ty  T is a random variable X that is Gr- 
measurable and P*-square lntegrable In particular, X is called a stmple clatm 
whenever X = g ( S T ) ,  for some function g R+---, R. We say that a 
contingent claim X can be perfectly duplicated if there exists a self-financing 
portfol io c~ such that I)'~- = X P-a.s In this case the claim is called attainable. 
If all contingent claims are attainable,  then the market  is said to be complete; 
otherwise the market  is referred to as incomplete. A self-financing strategy ~o 
,s an arbm'age if (/g < 0 and 9~ _> 0 or if (/~o _< O, V~ ~ 0 P-a.s. and V~ > 0 
with positive probabil i ty It ~s well-known that the market  defined by 
(2.1)-(2.2) and filtration G is complete  and free or arbitrage under the above 
mentioned assumptions 

Note  that if cp -- (~, 71) is self-financing and duplicates the clmm X, then 
we have the following representation from (2 5) aim (2 6)' 

/0 /0 X = ~oSo + 7]oBo + (.dS,, + 'q~,dB. (2 7) 

The arbitrage-flee price process (F(t,  St))ii<t<7- associated with a simple 
claim specifying the payment  g (S r )  at time -T~an now be characterized by 
the partial differential equat ion (PDE) 

1 ) 2  - , ( , , s )F( t , s )  + F,(t,s) + r(t,s)sF~(t,s) + ~cr(t ,s)-s F,~(t,s) = 0, (2.8) 

with boundary  value F(T, s) = g(s) Here, exemplifying a general notational 
convenUon adopted  throughout ,  Fs(t,s) denotes the partial derivative of  
F(t, s) with respect to s, F,,(t ,a) denotes the second order partial derivative 
w)th respect to s, and so on. 



22 THOMAS MOLLER 

The arbitrage-free price process associated with the claim g(ST) is also 
given m terms of  the unique eqmvalent  martingale measure by 

) 1 F ( t , S , ) = E *  exp - , ' , ,du g(sr)l ;, • (29)  

(Throughou t  E* denotes expectat ion with respect to P*). Thus,  the price is 
determined by discounting the T-payment  with the asset B and then 
calculating the condit ional  expec tauon under  the mart ingale measure P*. 

2.2. The insurance portfolio 

In this paragraph we will introduce a model to describe the hfetlmes in a 
group of  individuals. For  simplicity, we assume that the lifetimes are 
mutual ly independent  and identically distributed. The 11 d. assumpuon 
mlplies that the individuals are selected from a cohor t  of  equal age x, say, 
and we denote  by l, the number  of  persons in the group Mathematical ly,  
this is described by representing the individual remalmng lifetimes as a 
sequence Ti, .., Tt, o f  i.i.d, non-negative random variables defined on 
(f~, . f ,  P). Assuming that the distr ibution o f  T, is absolutely cont inuous  with 
hazard rate function/_L,+t, the survival functIon is 

( / 0 ' )  ,p, = P(T ,  > t) = e x p  - l , , + , d r  . 

Now define a un ivana te  process N = (Nt)0<,<r count ing the number  of  
deaths in the group;  

/, 

N, = ~ I (T ,  _< t) , 
t--[ 

and denote  by H = (7-/t)0<,<r the natural  filtration generated by N, 
i e 7-/t = cr{N,, u <_ t} By ct6-finmon, N is cadlag (r ight-continuous with 
left-hmlts) and, since the lifetimes 7", are i l d., the count ing process N is an 
H - M a r k o v  process. The (stochasnc) intensity process A of  the count ing 
process N can be informally defined by 

E[dS ,  [~ ,_ ]  = (/, - Ut_)~,.,+tdt - A,dt, 

the hazard rate function FL,+, Umes the number  of  individuals under  
exposure just before hme t. The compensated  counting process  M defined by 

/0' Mt = Ni - A,,du (2.10) 

is an H-mart ingale  
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2 .3 .  T h e  c o m b i n e d  m o d e l  

N ow introduce the filtration F = ('~',)0<t<TT generated by the economy and 
the insurance portfolio,  that is 

• f'r = gt V 7-it. 

We assume th roughou t  that ~TT and 7 t r  are independent  and take 

.T=GTVCr{I (T ,_<u) ,  0 < u <  T, i = l ,  . . ,  /.,}. 

At tm~e 0 the insurance company  ~ssues an insurance contrac t  for each o f  the 
/, individuals. These contracts  specify payments  o f  benefits and premiums 
that are cont ingent  on the remaining hfet~me o f  the pohcyholder ,  and are 
linked to the development  on the financial market .  During the period [0, 7] 
the company  IS allowed to trade the assets B and S freely (without  
t ransact ion costs, taxes and short  sales res tnctmns)  based on the complete  
m fo rm a tmn  F Fur thermore ,  we allow for cont inuous  rebalancmg of  the 
portfol io  of  stocks and bonds m order  to hedge against the insurance clamls 

in the following, we present the two basra forms of  insurance contracts  to 
be analyzed m this paper: the pure endowment and the term insurance. W~th a 
pure endowment contract ,  the sum insured ~s to be paid at the term T If the 
insured is then still alive. The sum ~s o f  the form g(ST) for some cont inuous  
functmn g stipulated m the contract ,  thus depending on the price o f  the risky 
asset at tmae T. Some specific functions will be considered as examples,  e g. 
g(s) = s and g(s) = max(s, K) whmh are known from the literature as pure 
umt-hnked and umt-linked with guarantee insurance pohcms, see Aase and 
Persson (1994). For  each insured person the obhgatmn of  the insurance 
company  is gwen by the pesen t  i,alue 

H, = I(T, > T)g(gr)B r' = I(T, > T)g(g . r )e - f (  ,,,,I,, (2.1 I) 

Here we have adopted  w~dely accepted actuarial  usage of  the term present 
value, it is taken to be the payments  discounted using the bond price process 
described by (2.2) Thus,  the present value is an YT-measurable  random 
variable. This usage may be at varmnce with the econommal one, where 
present vahle typically refers to an 5%-measurable vahle. The entire por t foho  
generates the discounted claim 

I, 

H=g(Sr)BTr l  ~-~I(T,  > T ) = g ( S r ) B T ) ( I , -  Nr) ,  (2 12) 
t= l  

where (/, - NT) IS the number  of  survivors at the end of  the insurance 
period It should be noted that the und~scounted insurance claim HBr taken 
from (2.12) is a functmn of  S r  and N.r only. Insurance claims that are 
payable  at time T and are functmns of  ST and N'r only will be called rumple 
T-clatms, whereas more general ,nsurance claims payable at time T are 
denoted (general) T-clareTs 
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The term msurance states that the sum insured is due immediately upon 
death before time 7'. In this case, we consider a time dependent  contract  
function gl = g(t, $1). By the def inmon o f  the contract ,  payments  can occur 
at any time during [0, 7] and obligations generated by such contracts  do not 
form T-claims without  introducing special assumptions.  A simple way o f  
t ransforming the obligations into a (general) T-claim is to assume that all 
payments  are deferred to the term of  the contract  and are accumulated with 
the risk-free rate o f  interest r. With this specific construct ion,  the heirs of  a 
pol icyholder  who died at time t would receive the benefit g(t, &)BTB[ l at 
time T. The deferred payments  could as well be accumulated differently, for 
example by using some deterministic first order  interest rate/5 or by investing 
g(t, St) according to a predefined strategy. These ways of  modifying the 
contracts  by deferring the benefits might seem most reasonable for contracts  
with short  time horizons,  say one year Al though tune horizons associated 
with t radmona l  hfe insurance contracts  are typically much longer, we will 
assume that the benefits are actually deferred to the end of  the insurance 
period. The insurer 's hablhties in respect of  a por t foho  of  term insurance 
contracts  w~th payments  that are deferred and accumulated using the rlskless 
asset B are now described by the discounted general T-clmm 

/ ,  / ,  r T 

Hr = B 7' Zg(T~,Sr,)Brr 'BrI(T~ < T) = Z [ g(u ,S , )B; 'd l (T ,  < u), 
/ = l  1=1 ' / 0  

which can be rewritten as an integral with respect to the count ing process N: 

HT = g(,,S,,)B,~LdN, (2.13) 

Various other  insurance contracts  can be obtained as combinat ions  of  the 
pure endowment  and the term insurance. For  example,  with the endowment 
in,surance, the sum insured is payable at the time of  death of  the insured 
persons or maturi ty ,  whichever comes first• The present value o f  this claim is 
a sum of  (2.12) and (2 13). Throughou t ,  we assume that premiums are paid 
as single p remmms at time 0. Thus,  the present value of  all premiums ~s 
simply -U = / ,  . lr l ,  where ~l is the single p remmm paid by the insured. 

In Section 2 1 it was pointed out  that m the complete  market  every 
cont ingent  claim can be represented as an integral with respect to the price 
processes S and B, see (2.7). As we will show later, this proper ty  ~s not 
preserved when the model consists of  the assets (B, S) and filtration F 
Intumvely,  this follows from the fact that the claims (2 12)-(2 13) are not 
generated by the price processes (B, S) alone since the uncertainty 
concerning the insured lives contr ibutes  essentmlly to the fna l  ou tcome of  
the claims 
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We end this section by discussing choice of martingale measure in the 
combined model. For any H-predictable process/7, such that h > -1 ,  define 
a likehhood process L by 

dLt = Lt-hflMt, (2.14) 

and initial condmonal L0 = 1 Provided that EP[Lr], a new probability 
measure P can be defined by 

d-'-P = UT" LT, (2 15) 

where UT IS gwen by (2.3). Using the defimtlon of  the measure ]' and the 
independence between N and (B, S) under P we see that S* defined by (2.4) is 
also a P-martingale: for u < t we have 

E[STUTLrI.~,, ] E[S;UTIT,] E[LTI.T.] 
E[S, I..T,] = E[UrLrlSC., ] E[UrlY,]  E[LrlT,,] = E*[S2IY,,] = S,;, 

using that S* is a P*-martlngale, and so each £' ~s an eqmvalent martingale 
measure. Due to this non-uniqueness of the equiwdent martingale measure, 
contracts cannot in general be priced uniquely by no-arbitrage pricing theory 
alone Actually, all prices 

~(P) = Ek[H] 

for the clanns (2 12)-(2.13) obtained by admissible choices of h are consistent 
with absence of arbitrage. Furthermore, (B. S) and N are independent under 

and, by the Girsanov theorem, the process M h defined by 

/0' M I' = N, - A,,(1 + h,)du 

~s an (F, ~b)-martlngale. The term Lr  in (2.15) essentially changes the hazard 
rate in the model to iL,+,(1 +h,) .  In particular, the measure P* defined by 
(2.3) can be obtained froln (2.15) with h = 0 Note that the change of 
measure form P to P* does not affect the dlsmbutlon of N and that M is an 
(F, P*)-martlngale. 

Throughout this paper we will apply the specific martingale measure P* 
defined by (2.3) which is also known as the mmunal martingale measure, cf 
Schwelzer (1991, 1995) This pamcular  measure is normally apphed to 
pricing of  unit-linked contracts, the motivation being the insurer's risk 
neutrality with respect to mortahty, see e.g. Aase and Persson (1994). Thus, 
we consider the probability space (fl,.T, P*) endowed with the filtration F. 
Note that F is eqmvalently generated by the P*-martmgales S* and M: 

7 ,  = M,,), 0 < u < , } .  
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In the analysis below, we could equally well apply any of the martingale 
measures P defined by (2.15) for admissible choices of h in this case we 
would obtain similar results with the hazard rate function iL replaced by 
(1 +h)/_~ and M replaced by M h. However, there do exist martingale 
measures which do not preserve independence between (B, S) and N, and 
such choices of martingale measures would certainly comphcate calculations 
in Section 4 greatly. 

3. A REVIEW OF RISK-MINIMIZATION 

In the previous section, a model describing a financial market and an 
insurance portfolio was introduced. It was pointed out that this market is 
incomplete in the sense that contingent claims cannot in general be perfectly 
duplicated by means of  self-financlng strategies. In this section, we briefly 
review some results on the theory of  rlsk-mlnumzatlon, dealing with 
incomplete as well as complete markets. 

F611mer and Sondermann (1986) extended the established theory for 
complete markets to the case of  an incomplete market. By introducing the 
concept of mean-selJ-financmg strategies they obtained optimal strategies m 
the sense of minimization of  a certain squared error process. In Follmer and 
Schweizer (1988) a discrete time multlperlod model was examined within this 
set-up, and they obtained recursion formulas describing the optimal 
strategies The theory has been further developed by Schwelzer (1991, 
1994). F611mer and Sondermann (1986) originally considered the case where 
the original probablhty measure P is in fact a martingale measure. Schwelzer 
(199 I) introduced the concept of local rtsk-mmmTizatwn for price processes 
which are only selnllnartlngales and this criterion was slmdar to performing 
risk-minimization using the minimal martingale measure P* 

Recall the space (f~, .Y, P*), filtrauon F and the (F, P*)-martingales S* and 
M. The deflated value process V ~ is defined by 

V~ = V~B~ t = ,~,S, + r h , (3.1) 

where ~'~ is given by (2 5) From Follmer and Sondermann (1986) and 
Schwelzer (1994) we have a slightly modified definition of strategies and the 
value process. Introducing the space £2(p))  of F-predictable square- 
integrable processes ~ satisfying 

they state' 
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Definition 3.1 An F-strategy is any process g~ = (~, 7]) wtth ~ E £ 2 ( p ) )  and 71 
F-adapted such that the (deflated) value process V ~° ts cadlag and 
V[ E £2 (p*)Jor  all t. 
The cost process C ~° assoctated wtth the strategy 79 Is defined by 

fO 
c ,  ~ = v 7 -  ¢,,dS,;, (3.2) 

and the risk process R~ o f  ~ is defined by 

R~ = E* [(C.~ - <)21.7", ] . (3.3) 

In this definition, the notion ~tsk process ~s attached to the condit ioned 
expected squared value of  future costs. This usage differs from the 
traditional actuarial one, where "risk process" would typically denote the 
cash flow of  p remmms and benefits 

The cost C e is the value of  the por t foho less the accumulated income 
from the asset S. The total costs C~ incurred in [0, t] decompose  into the 
costs recurred during (0, t] and an initial cost C~ = V~, which typically is 
greater than zero. A strategy Is said to be mean-self-financing If the cost 
process C p = (C,~)0<,<T is an (F, P*)-martmgale. Fur thermore,  It should be 
noted that the strategy ~ = (~, 71) is self-financing if and only ff 

/0' Vt ~ = V~ + ¢,,clS,;, 

that Is, if and only if C~ = C~ = V~' P*-a.s. 
Let us now turn to the problem of  characterizing the optmaal strategies. 

We consider a general contingent clmm specifying the .Y'T-payment H at 
tmae T and focus on admtsstble strategies ¢p satisfying 

V~- = H a.s. 

By means of  admissible strategxes, the hedger ~s able to generate the 
contingent claim, but only at some cost defined by C~-. In particular, for 
at tainable claims, C~- = C~ ° = V~ is known at time 0. 

As a first result, admissible strategies mimm~zmg the mean squared error 
R0 ~ defined by (3 3) are determined. For  any admissible ¢p we have 

/0 /0 T C~- = V~ - {,,dS,; = H -  {,,dS,;, (3.4) 

hence 

I/ T /21 = E * [ ( c ; -  2] = E* H -  - Co , (3.5) 
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and so R~ ,s mimm,zed for C~ = g*[H] (= E*[C~]). Thus, we should choose 
so as to mlntm~ze the variance 

E* [ ( C ~ -  E*[C~]) 2] (3.6) 

This criterion does not yield a umque strategy, but it characterizes an enUre 
class of  strategies all mmmuzlng the mean squared error (3.5). The non- 
uniqueness of  the opUmal admissible strategy ~s a natural consequence of the 
simple critermn of minimizing (3.5), whmh revolves only the value of the cost 
process C:  at Ume T, given by (3.4) Furthermore, note that H = { r S }  + 71r, 
which does not depend on (r/,)0<,<T. Thus, we should not expect the 
mm~m~zatmn criterion associated vfith the squared error (3.5) to impose any 
constraints on the number of bonds held m the Ume interval (0, T). 

The construcUon of the strategies is based on an apphcauon of the 
Galtchouk-Kumta-Watanabe decomposition, see F611mer and Sondermann 
(1986). Defining the mtrincic value process V* by 

I/', = E * [ H I Y ,  ] , 

and noting that V* ~s an (F, P*)-martmgale, the Galtchouk-Kumta- 
Watanabe decomposmon theorem allows us to write I,I, umquely in the 
form 

fo r :ridS, H (3.7) 1/',* = E* [HI + .,, .__,, + Lt , 

where L H It =(Lr  )0<_i<7" xs a zero-mean (F, P*)-martmgale, L H and S* are 

orthogonal, and ~H iS a predmtable process in E2(p~). By applying the 
orthogonahty of the martingales LIt and S*, and using V~ = H, Follmer and 
Sondermann (I 986, Theorem 1) prove. 

Theorem 3.2 (F611mer and Sondermann) An a&mss;ble strategy ¢p = (~, r/) 
has minimal vartance 

t f  and 0,70' i f  { = ~H. 

Note that if, furthermore, the number of bonds held at ume 0 ~s determined 
such that the mltlal value of the portfoho equals E*[H], i.e 

7o = E* [ H ]  - ¢ 0 s ~ ,  

then Ro:= E*[(C.~-E*[C~])2].  Thus, the varmnce is interpreted as the 

minimal obtainable risk. 
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A more precise result is obtained by looking for admissible strategies, 
that is V.~ = H, minimizing the remaining risk, defined by R~' at any tune t. 
Such strategies are said to be rtsk-mmtmizmg. Now fix some admissible 
strategy ¢p When considering the remaining risk R~ at some point in time t, 
only admissible strategies @ coinciding with ~ m the interval [0, t) should be 
compared. This condition ensures, that the cost processes are given by the 
same value C~ = Ct 0 at the time of consideration In this case the strategy 
is said to be an acbmsstble continuation of g) at t~me t, see F611mer and 
Sondermann (1986) for more details. The risk-mlnlnaizlng strategy, 
minimizing the risk process (R~)0<t_< r is determined by Follmer and 
Sonderlnann (1986, Theorem 2). 

Theorem 3.3 (Follmer and Sondermann) There exists a umque admissible 
risk-nmumtzhTg strategy g) = (~, ~l) given by 

,7,) = v ,  - o < t < r 

The associated r,sk process ts giI,en by R; = E* [(Lr H - L]')II.F,] 

The risk process associated with the risk-mlmmizing strategy is also called 
the intrinsic risk process 

4. U N I T - L I N K E D  CONTRACI'S WITH SINGLE PREMIUM 

In this section, we apply the technique of risk-minimization in the 
investigation of the insurance contracts introduced in Section 2. An 
important step will be the construction of the decomposition (3.7) of the 
present values (2.12)-(2.13). Having determined this, risk-minimizing 
strategies and the intrinsic risk process associated with the pure endowment 
and the deferred term insurance contract can be determined by Theorems 3.2 
and 3.3. 

From the classical actuarial theory it is known that in the case of fixed 
premmms and sum insured, the "relative risk" associated w~th the portfolio 
decreases as the size/., of the portfolio increases. More precisely, this means 
that the ratio between the standard devmtlon of the present value of all 
payments and the size of the portfolio l, wdl converge to 0 as l, is increased 
In the present set-up, we cannot expect such results since the payments 
associated with different insul'ance contracts are now linked to the same 
asset and hence are no longer stochastically independent. However the initial 
intrincls risk R0 can be taken as a measure of the risk associated with 
the non-hedgeable part of the claims, and we will accordingly examine 
the r a t i o  v/~/I, 
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4.1. The pure endowment 

Consider the claim with present value H in (2.12); 

H --- g(ST)BTI(I, - NT), (4 1) 

and define the (deflated) mtrlnsm value process V* = (V~*)0<~< v by 

V,* = E*[HI.T,], 

for all t E [0, T]. Due to the stochastic independence between N and (B. S) 
under P*, we get 

(4.2) I,~ = E*[(/, - NT)I.Tt]B;'E* Ig(ST)B,B~' I~,] . 

Here, the first factor is easdy determined as 

= Z Y-'P"+' = (/' - N ' ) r - 'P"+" 
t T , > t  

that ~s, at any t~me t the expected number ofindw~duals ahve at the time of 
maturity T is simply the number of surwvors at time t multiplied by the 
probabdlty T-tP,+t of survival to T for an mdwldual, condlhonal on his/her 
surwval to t. The second factor m (4.2) corresponds to the representation 
(2.9) of the umque arbitrage-free prme process associated with the simple T- 
clmm g(ST) in the complete model with filtration G. In the present model, 
the insured hves are included m the filtration F, and arbitrage-free prices are 
m general not umque. However, as N and (B, S) are stochastically 
independent, the condmonal d~strxbutlon of (B. S) gwen Yt does not depend 
on information concerning the insured hves 7-ll and thus 

E* [g(Sr)B,B T' 17,] = ]~* Ig(ST)B, BT' IF,] = Fe(t, St), 

where the function Fg(t,s) satisfies the same second order PDE as m the 
complete case (2.8). Consequently, we arrive at the expression 

Vt* =- ( [ ,  - Ut)r_tP,+tBtIFg(t, St). ( 4 . 3 )  

The process V* can be interpreted as the market value process assocmtcd 
with the entire portfoho of pure endowment contracts, using the pricing rule 
P*. In particular, the mmal value V~--I,Tp,Fg(O, So) is a natural 
candidate for the single premmm for the enhre portfoho. This specific 
choice of single premmm would be m accordance with the well estabhshed 
actuarml principle of eqmvalence (stating that premmms and benefits should 
balance on average), but exercised under the martingale measure P* 
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Applying the It6 formula to (4.3), we get 

/0' v~ =v~ + (/, - N,,_)B2~Fg(u,S,,)r_,p,+,,#,+,,du 

/0' + (/,-N,,_)T_,p.,+,,a(~2,'F~(N,S,,))+ ~ (g , ; -  V,;_/. 
0<u~t  

To determine the integral involving d(B21Fg(t, &)), recall the definmon of 
the deflated price process S~ = &B~ -l, implying that 

dS, = S~dB, + BtdS~ = Strtdt + B, dS 2. 

Using the It6-formula and the PDE (2.8). it ~s seen that 

d( B;'  Fg( l, St)) = -r( t ,  & )B~" Fg( t, S,)cll 

( 1 St)2S~dt ) + B? I \Ftg(t, st)at + F~'(t, &)dSt + ~Fg~(t, &)or(t, 

= g~(t, S,)dS; 

Also, since 

1' (V,; - V,:_) = - B~-'Fg(u,S,,)r_up.,+,, d N , ,  
0<u_<t 

we obtain. 

Lemma 4.1 For the contingent clatm H m (4.1) the process V* defined by 
Vt* = E*[HIU,] has the decomposttton 

/o' /oo' v 2 = v~ + ~,,F'dS*_,, + .~dM,, ,  

where (~n j I )  are given by 

~[~ = (/, - N,_)r_,p.,+,F,~(t, S,), (4.4) 

u[ 4 = -B71Fg(t, S,)T_,p_,+,, 0 < t < T. (4 5) 

Admissible strategies minimizing the variance 

E* [( C~- - E*[C~]) 2] (4.6) 
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can now be characterized by applying Theorem 3.2 and Lemma 4.1. By use 
of the Fubxm theorem, the associated minimum obtainable variance is 
rewritten as 

= T-,,p_,+,,S [(/, -- N,,)p,.,+,,] du 

: T-,P~+u I~ ,,p.~ ~*~+,, du 

=,,Tp,.forE*[(B,TIFg(u,S,,))2lr_,,p_,+,lL,+,,du (47 )  

Thus we have obta ined 

Theorem 4.2 ConsMer the pure endowment  gtven by the contingent clatrn H in 
( 4 1 ) .  Admtss tble  strategtes ~o* mmhn t z ing  the i,arlance ( 4 6 )  are determined 
by 

(7 = (/, - N ,_)  r ,p,+tFX, (t, St) ,  0 < t < T,  

= - {TST  • rlT H 

The m t m m a l  variance is gn,en by (4 .7)  

The insurance company ~s able to reduce the total risk associated with the 
portfolio of  umt-linked insurance contracts to the "intrinsic risk" R~', by 
following a strategy according to Theorem 4 2  whmh also satisfies 
C~ = E*[H] In partmular, it is seen that R0 ~ is proportional to 1,, implying 

that the ratio between v/R~ and l, converges to 0 as 1, converges to infinity 

Before determining the unique risk-minimizing strategy, we present one 
specific strategy from Theorem 4 2, see Follmer and Sondermann (1986, 
Example 1). 

Example 4.3 We shall present one strategy ~ that does not require any extra 
investments during the tune interval (0, 7)). It is self-financing on (0, T), 
followed by a possible extra payment at time T Define the strategy by 

~, = ~ ,  0 < t < T, (4.8) 

fo' " 7h = E*[H] + ~,dSi; - ~,S, , 0 <_ t < T,  (4.9) 
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and `tlr = H -  {TS}. By defimtlon, this strategy is self-financing on the 
interval (0, 7). Substituting the decomposition of H from Lemma 4.1 into 
the expression of r/T, we get 

~o T f o T ~ t d M , , ~ T S T  r/r = H - ~TS~. = E*[H] + .,,,F/tdS * _ _ , ,  + v - * 

Likewise we have from (4.9) that 

`tlr- = E*[H] + ~,,clS,~ - -  ~T_ST_ [H] + ~,,dS,] - -  ~TST, 

which proves that 

/0 7IT - -  ' t iT -  = v~l dM,, = L~ 

Thus, the loss L~ is an extra payment/investment to be made at ume T m 
order to sausfy the condmon of adm~ss~Mhty. 

The varmnce-mlnlmmng trading strategy in Example 4.3 represents a very 
simple dynamic portfolio strategy from the point of view of the insurer. 
According to this strategy he ~s to make an mmal investment at time 0 m 
stocks and bonds. Dunng the time interval (0, 7") this portfolio IS then 
adjusted continuously without any addmonal Inflow or outflow of capital as 
defined by the equations (4.8)-(4 9) At the term T the insurance company 
now provides the difference L~ between the claim H and the value V~. of 
the portfoho However, there are reasons why th~s strategy should not be 
applied. Indeed, ~t does minimize the variance or the lmtlal intrinsic risk, but 
at any time t during the insurance period the value Vf of the portfoho will in 
general not equal the conditional expected present value of the claim V~*. 
Since this difference may be substantml due to adverse development within 
the insurance portfolio, one should at least reqmre that the value of the 
portfoho equals I/1' m order to enhance the solvency of the insurer This 
addmonal requirement, m addmon with the minimal variance criterion, ~s 
actually sufficient to determine the umque nsk-mmlmmng strategy ¢p. The 
assocmted intnnslc risk process ~s described m Theorem 3 3, and we get 

E* [ (L;  - L~/)2 I .T,] = E* r v,•dM,, = E* 

= (/, - N,) E* (v[,')21.Tr ,,-tP,+,/A,+,, du. (4.10) 
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F r o m  Theorem 3.3 we now have' 

Theorem 4.4 For the pure endowment gtven by the contingent clatm (4.1) the 
untque admtsstble risk-mmtm~zmg strategy ts given by 

~" = (/, - U,_) r_tp,+_,Fg(t,S,), 

r/7 = (/, - U,) r_,p.,+,gTIFg(t, S,) - ~;S 2, 0 < , < T 

The mtrmsw risk process R ~" ts given by (4 10) 

In the model the insurance company  ~s allowed to trade the assets S and B 
continuously,  thus being able to hedge all contingent  claims involving these 
assets only. This eliminates a part of  the total uncertainty,  leaving only the 
uncertainty of  "no t  knowing how many of  the insured persons will d m m  the 
insurance per iod" .  The latter is described by the martingale M, which 
generates the insurer's loss L H. 

dL(/ = u/tdM, = - B , ' F g ( t , S , )  r_,p, .+,(dN,-  A,dt). (4.11) 

The insurer adjusts his trading strategy according to the condit ional  
expected number  o f  insured persons surviving the insurance period. During 
the infinitesimal ume interval [t. t + dr) the insurer will expermnce the gain 
dM, multlphed by the term B;-IFg(t, S t )v- ,P,+,  . the latter denot ing the 
price at time t o f  one security with payment  g ( S r )  at time T contingent  on 
the survival of  some individual That  is, a death will produce an lmmedmte 
gain for the insurer due to the downwards  adjustment  o f  the expected 
number  of  survivors, whereas no deaths will cause a small loss The 
expressmn (4.11) for the loss ~s s~mllar to the one obtained by Norberg  
(1992) for general payment  streams, using a quite &fferent approach.  With 
this terminology,  the term (u/IBt) is recogmzed as the sum at risk at time t. 

We now turn to some examples in the case of  constant  deterministm short 
rate of  interest, constant  drift  term c~, and volatility parameter  ~ on S. We 
will investigate three &fferent cont rac t  funcUons: pure unlt-hnked,  where 
g(s) = s; unlt-hnked with guarantee,  where g(s) = max(s, K); and the case of  
deterministic benefits, g(s) = K 

Example 4.5 Consider  a s tandard Black-Scholes market ,  where all 
coefficients r, c~ and cr are constant .  Let the contract  function be o f  the 
simple form g(s) = s, i e. the insured is to be paid the value o f  the stock at 
the maturi ty  date. In this case, the process (Fg(t, St))o<t<T IS easily 
determined as 
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implying that F~(t, S,) = 1. The intrinsic value process ns 

V 7 = (/, - N,) T-tP_,+, e -r'S, = (/., -- N,) T-,P,+, S;, 

and m part icular  V~ =/ . ,  7"P, St.  From Theorem 4.4 we have the unique nsk- 
mmnm~zmg strategy 

(,~,,u,) = ( ( 6  - N , _ )  T - , p , + , , - A N ,  T- ,p . ,+ ,ST)  , (4.12) 

where AN, = Nr - N,_. Finally, we have the aggregated loss 

= - S , ;  T - , , P , + , , , / M , , ,  

and the mtrmsm risk process 

• 2 
R~ = (/, - N,) T-,P,+, E* (S.)  I.~, t - . P , + .  ~L,+. du 

= (1, -- N t )  T - t P , + t ( S ; )  2 e ~ ( u - t )  r- , ,P. ,+, ,  I t ,+,,  du  

The  risk-mmtmszing strategy gwen by (4.12) ss easy to interpret:  at any tmae t 
the insurance company  should hold a number  o f  stocks, corresponding to 
the expected number  o f  surwvmg in&vnduals Since the number  of  stocks is 
control led by a predmtable process {, some adjustments are made each tnme 
a death occur within the portfol io  in order  to ensure that V~ = V~ for all t. 
Th~s is described by the adapted process 7/, which denotes the amoun t  to be 
cashed by the insurance company  in connec tmn with the observed death. 

Example 4.6 Now consnder the contrac t  function g(s) = max(s, K), where K 
~s some non-negaUve constant .  Note ,  that K = 0 ~s just the case treated 
above in Example 4.5 As m the previous example,  prices are described by a 
s tandard Black-Scholes market .  

W r m n g  the contract  functmn max(s, K) on the form K + (s - K) +, the 
process (Fg(t, S/))0<,<r can be evaluated by means o f  the well-known Black- 
Scholes formula 

Fg(t ,&) = E* [e- ' ( ' r - t ) (K + ( S t -  K)+)[7,] 

= Ke-r(r-t) 'I>(-z, + o T ~ - t )  + S,~(z,) ,  (4 13) 

where ~ ~s the s tandard normal distr ibution function and 

_ _ l o g ( & / K )  + (r + o 2 / 2 ) ( T  - t) 
at - -  f f ~ -  t 
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In partmular, the first order pamal  denvanve  is FEe(t, S,) = ,.I,(z,). Thus, the 
nsk-mimmlzmg strategy Is given by 

{, = (/, - N,_)  T_,p,+,c~(Z,), (4 14) 

r h = (la -- N,) T-,P.,+, e - "Fg(  t, S,) - (/., - U t ) T- tP ,+,~(z , )S;  

= (I, - N,) T_,p,+, K e - r T ~ ( - - z ,  +crx/T-Z-7)  

-- ZXN: T-tPx+t~(zt)S; ,  (4 15) 

and the intrmsm risk process R ~ ~s now g~ven by 

R~°= (I, - Nt) r_,P,+t f r E * [ ( e - r " F g ( u , S , , ) ) 2 1 f ' , ]  T_,,p,÷,, p,,+,,du, 

with F g defined by (4.13). 

Example 4.7 As a last example, consider the case of  determmlstm benefits, 
that is g ( S r ) =  K for some non-negative K. Here, the risk-mlmmizmg 
strategy ~s given by 

(~t, rh) = (0, ( / , -  U,) r_ ,p ,+ ,Ke- ' r )  , (4.16) 

and the intrinsic risk process ~s 

R~ = (/, - N,) T-,P,+1 K2e-2rr T-uP,+,, l~,+,, du 

= (/, - N,) T-,p,+,(I -- r - , p , + , ) K 2 e  ->r .  

In Example 4.5-4 7, we have determined risk-minimizing strategies for three 
d~fferent contract functions, in the setting of  a s tandard Black-Scholes 
market.  The strategies are associated with an entire port foho /,; smgle-hfe 
strategies are obtained by speclahzmg to /., = 1. For example, the strategy 
(4 14)-(4.15) for a single life becomes 

~, = l (T i  > t) T-,p.,+,~(Z,), (4.17) 

= I (T ,  > t ) r _ , p . , + , K e - r r ~ ( - z ,  + av '~-Z-7)  rll 

- I (Ti  = t) T_,p,+,~(z,)S~,  (4.18) 

and the intrinsic value process is 

The process V* ~s m a sense slmdar to a t radmonal  prospective reserve. First, 
an mdmator  function appears, whmh guarantees that the reserve is only 
different from zero as long as the pohcyholder ~s still ahve. The rest of  the 
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terms are interpreted as the conditmnal expected present value of the 
insurance benefit, gwen the policyholder is alive at t. Provided that the 
policyholder survives to the maturity date, that is T~ > T, the risk- 
minimizing strategy (4 17)-(4 18) for a single hfe reduces to the strategy 

= ), 

which is exactly equal to the corresponding duphcatlng strategy obtained by 
Aase and Persson (1994). The result (4.17)-(4.18) Is to be interpreted as 
follows: As long as the policyholder is alive, the insurance company should 
hold a portfoho, where the number of stocks is determined as the probabdlty 
T-,P,+, of survlal to Tcondmoned on survival to t tmles the factor ~(z,); the 
latter is recognized as the hedge from the Black-Scholes formula of a 
European Call Optmn. If the policyholder dins before the maturity date T, 
the insurer ~mmedlately cashes the reserve, as ~s apparent m the definition of 
71. These interpretations are easily carried over to the s~tuahon where the 
insurance portfoho consists of more than one individual In this case, the 
numbers of stocks and bods held are adjusted m accordance with the 
con&tlonal expected number of survivors to T, that is ( /~ -  Nt)T_tP,+, 
Thus, the risk-mlmmlzmg strategms reflect the actual development m the 
insurance portfolio, and bring to the surface the uncertainty associated with 
the insured lives. For example, we obtain expressions for the mtnnsm risk 
processes, whxch serve as characterizations of the non-hedgeable risk 
inherent in a portfolio of umt-hnked contracts. In Section 6 we present 
some numerical results in the set-up of Examples 4.5 and 4.6 obtained by 
Monte Carlo simulation. 

4.2. Term insurance 

Now consider the term insurance with single premmm re' paid at lame 0. The 
payments generated by this contract are described by the discounted claim 

/0 HT = g(u,S, ,)B,7'dN, (4.19) 

An important step is the construction of the decomposition for the lntrlnsm 
value process for Hr First of all, observe that 

/0' ] v7 ~ = E*[HTIY',] = g(u, S,,)B,7'dN,, + E* g(u, S,)B,7'dN,,IU , 

/0' = g(u, S,,)B~,'dN,, + S?lFg"(t, S,) (/,- - N,) ,,_,p,+, ft.,+,, du, 
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Fg,,(t, St) E*[e - f''rTd~" " ] = ~, g~u, S , , ) l ~ t  

is the unique arbitrage-free price at time t of the smaple u-clam1 g(u, S.) m 
the complete model with filtration G. Secondly, by calculations similar to the 
ones in the previous section, we see that 

d(B?'  Fg"(t,S,))  = F~g"(t,S,)dS7 

Using the general It6 formula and the Fublm Theorem for It6 processes, see 
Ikeda and Watanabe (1981), V* can now be rewritten as 

I' v;  = g~ + (--8;'F~T(~-,ST)~.,+,(/,  -- NT)) d~- 

+~ot(g('r, ST)B;l--.frB;IFg"('r,  ST),,-Tp,+T#_,+,,du)dN~ 

+.£' (fTBT' Fg"(r,S~) ,,-~p,+~#,+,,d,,)(I., - NT-)#.,-+~dr 

+.fo' ( ( l , - N ~ - )  frF~"('r,S~),,-~P,-+r#.,-+,,du) dS *. 

Upon gathering terms, and using Fg'(t, St)= g(t, Sr), we obtain a decom- 
position corresponding to Lemma 4 I: 

Lemma 4.8 For the claim Hr m (4.19) the process V* defined by 
V~ = E* [HTI.Tt] has the decompositton 

I' I' • • H • u~dM,, v~ =v~;+ ~,,as,,+ 
where (~H, utt) are given by 

~ = (/, - N,_) ,,_,p.,+, ~,,+, f ? ( t ,  S,)du, (4.20) 

u~' =g(t,S,)B~ -I - Fe"(t,S,)Bj-',_,p,+, #,+,,du (4.21) 
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Using Theorem 3.3 we have now proved: 

Theorem 4.9 For the term ms'mance given by the contingent clatm (4.19) the 
umque admtss/ble r lsk-mmtmtzmg strategy ts gtven by 

S {; = (/, - Nt_) Fg,"(t, St),,-rP,+, #,+ ,  du, 

/o' ~; = g(u ,&, )B21dN.  + (/, - N,) B21Fg"(t,&),,_,p.,+,~t,+.du 

- o < t < T .  

The trill mstc risk process R ~°" is given by 

R~" = (/, - N,) E* (u,H)2].Y', ,-tP,+, /t,+,, du, 

where u II is taken.fi'om (4 21). 

To give the resulting portfol io an anterpretatmn, note that ~ = ({,7/) is 
determined such that 

Vt ~ = g(u,S,)B,7~dU,, + E * g (u ,S , )B~ldU,] .T t  . 

Thus,  V[ is determined as the sum of  the benefits set aside to deaths already 
occurred and the expected discounted value of  payments  assocmted with 
future deaths 

As in the case of  the pure endowment ,  the term u/t denotes the immedtate  
loss due to the death of  one of  the insured persons• Here, the insurer has to 
set asade the sum insured g(t, St) immedmtely upon a death wathin the 
por t foho  at time t. In connect ion wath the recurred death,  the insurance 
company  adjusts tts expectat ions regarding the further  development  of  the 
insurance por t foho.  Since the number  of  survwors  has been reduced by one, 
the insurer now reduces his reserves by the amoun t  

"r Fg" ( t, S,  ) B;  - t ,,-rP., +t #,+,, du, 

whmh as the expected dascounted value of  future payments  condmona l  on 
surwval to t tme t .  

Example 4.10 Consider a umt-hnked term insurance contrac t  wath guarantee 
an the case of  a s tandard Black-Scholes market .  Let the contract  function be 
on the form g ( u , s ) =  mmn(.~,Ke6"), that is the guarantee  is adjusted in 
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accordance with some constant  force of  inflation 6 The functions FX"(t,s) 
are determined by 

( ) . . . .  (,,) Few(t, St) = Ke~"e-r("-t)@ -z}  ") + c r v /~ - t  +,3,wtz, ) ,  ( 4 . 2 2 )  

with 

_ l o g ( S t ~ X : " )  + ( , .+  d / 2 ) ( .  - ,) 
at -- O"k/'U-- I 

Using Theorem 4.9 we find the nsk-minlmlzlng strategy 

,7" (.) 
~t ---- (/,, - Nt_)  , ,-tP,+, # ,+ , ,~ ( : t  )du, 

• T vo-(r-~).m:_-(") av/u du rl, = (/., - N , )  , ,_ iV . ,+ ,  ~,-+,,' . . . .  ~ - ,  + - t) 

+ N(u,S,)B2~dN,- AN, ,,-,p,+t #.,+,I,(-t  )Stdu. 

The intrinsic risk process ~s also determined by that theorem upon inserting 
the functions F g" from (4 22) m (4.21). 

5. EXTENDING THE FINANCIAL MARKET 

In the previous sections we have analyzed a model where the financial 
market  consists of  two assets only, namely a risk-free asset B (the bond)  and 
a risky asset S (the stock). Tha t  model,  which also describes the development  
of  a given portfol io  o f  insured hves, is incomplete• We considered two 
d~fferent basic types o f  insurance products ,  and in both cases risk- 
minimizing strategies were constructed and the corresponding intrinsic r,sk 
processes were determined.  Due to incompleteness, the risk could not be 
eliminated completely and thus some uncertainty regarding the course of  the 
insured lives in the portfol io  (the intrinsic risk) remains with the insurance 
company.  

The present section is devoted to a brief  mvesugat ion of  the situation 
where the financial market  ~s extended by a th,rd tradeable asset that is 
related to the specific insured lives. As in Sechon 4, focus will be on the pure 
endowment ,  but all results can be repeated for the term insurance and the 
endowment  insurance as well. Fu r the rmore  we restrict the analysis to the 
case where the risk-free interest rate r IS assumed to be constant .  

In addit ion to the assets (B, S) with pr,ces processes defined by (2 1) and 
(2.2), respectively, we introduce an asset with price process Z = (Zt)o<t<T, 
where 

Zt = (/, - N,) v-tP,+t e -r(v-'). (5.1) 
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The initial value Z0 = / ,  rP_, e - ' T  Is  equal to the price at time 0 of/,- s tandard 
pure endowment  contracts with sum insured 1 calculated on a valuation 
basis consisting of  the mor tahty  hazard function/L, and the risk-free interest 
rate r. Assuming that premmms are prod as a single premium at time 0, Z, 
represents, at any t~me 0 < t < T, the traditional prospective reserve for the 
portfoho. This reserve is calculated as the conditional expected value of  
future benefits, Dven the current number  of  survwors ( / , -  Ni). The 
mtroductmn of  this extra investment posslb~hty is motivated by the existence 
of  reinsurance markets, where the direct insurer ~s able to reduce his total 
risk by selhng some part of  the insurance portfoho. Trading on the 
reinsurance markets wdl typically be controlled by certain restncnons such 
as short-selhng constraints and upper hm~ts for the amoun t  reinsured. 
However, m the present formulat ion we do not impose any restr~chons on 
the trading of  any of  the three assets 

As an example, let us now consider an insurer facing the contingent clmm 
arising from the portfolio of  pure endowment  unit-hnked contracts with sum 
insured g(ST) for the portfoho,  that is 

H = (/, - Nv)BTrlg(Sr) ,  (5 2) 

and assulne that the insurer ts allowed to trade continuously on the extended 
market  (B, S, Z) Note that the asset Z depends on the uncertainty from the 
insured hves only and evolves independently of  the other assets (B, S). The 
insurance clmm H, however, depends on both sources of  uncertainty. 

Define the deflated price processes S* and Z* by S * =  S / B  and 
Z* = Z / B ,  respectively. In this new setup a trading strategy is a sufficiently 
integrable process ~p = (~,0, r/), where ~ and 'O are F-predictable and 71 is 
F-adapted. At any time t, ~,, ~r and 'th are the number of  units held of  
s tandard pure endowment  contracts, stocks, and bonds respectively, and the 
(discounted) value process V~' is now Dven by 

v, = + o , z ;  + 

We set out by verifying that the measure P* defined by (2 3) is a martingale 
measure for S* and Z*. It already follows from the calculanons m Section 4 
that S* ~s an (F, P*)-martlngale, and the process Z* Is obwously also an 
(F, P*)-martingale, since 

(/, - N,) T-,P,+, = E*[(/., - N r ) l f ' , ] .  

From the decomposmon for the intrinsic value process V* for (5.2) and a 
s~mdar representation result for Z* with respect to M, we obtain 

/o' fo' * H * v ,  = v; + ~,,FH--,,dX* + ~,, dZ,,, 
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with 

( ~ ,  ~9~') = ( ( I .~ -N1_)r_ tp ,+ ,Fg( t ,S , ) , e~(r -1 )Fg( t ,  S1)).  (5.3) 

The intrinsic value process V* has now been rewNtten as a sum of  two 
Integrals with respect to the price processes S* and Z* This imphes that the 
cont ingent  claim H associated with the pure endowment  can be rephcated by 
means of  self-financing strategies m terms of  the three assets (B, S, Z). We 
can summarize this result by 

Theorem 5.1 ConsMer the pure endowment with present value (5.2) and 
assume that standard p m e  endowment contracts wtth sum insured I are traded 
Jreely on a financtal market  wtth con.stant short rate o f  interest. A self- 
f inancmg admtsstble (rtsk-mhumizhTg) strateg), g~* ts gtven by 

~; -= (I, - N,_) r_tp ,+tgg( t ,S , ) ,  (5 4) 

0, = e'l v S,) ,  (5 5) 

'1 ;= V/ - { ;S;  - O;Z;,  O < t < T (5.6) 

Furthermote, the h~trmsic rtsk procesa R ~" ts tdentically O. 

The insurer ms now able to ehminate  the risk associated with the insurance 
clamls completely by following a strategy in accordance with Theorem 5 1 
According to this result, the insurer should not only adjust the portfol io  of  
stocks and bonds cont inuously  - also the por t foho  of  reinsurance contracts  
should be cont inuously  rebalanced. By some simple calculations involving 
(5.4) and (5.5), formula (5.6) can be rewritten as 

r/, = - ( / ,  - N,_ ) r  tP, ~tFg~ ( t, S,)S,  L = -~ ,  St 

Fur thermore ,  ~p* satisfies V/ = O~Z;. Thus,  the self-financing (and rlsk- 
Imnlmlzlng) strategy consists of  a number  '0" o f  shares of  s tandard pure 
endowment  contracts  on the portfol io of  insured hves, which is adjusted 
such that the value #TZr exactly equals the intrinsic value process Vt* at any 
time t E [0, T] When allowing trading of  reinsurance contracts,  the criterion 
of  r isk-minimization simply states that all risk should be surrendered to the 
reinsurer. Fur thermore ,  the number  of  stocks ~* to be held is the same as in 
the s l tuanon where s tandard insurance contracts  are not traded. By the 
above calculations, we see that this position ~s financed by an equivalent 
short  position 77* in the risk-free asset, that is, i11 = -~t  St- 

We end this section by ment iomng that P* would not be a martingale 
measure for Z* had we defined the price process Z = (Z,)0<t<7- by 

Zi = (I, - N1)T_lp,+le -alv-O. 
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Here, the risk-free interest rate r has been replaced by some first order  
interest rate ,5 -¢ r. In this case, a martingale measure P for (Z*, S*) could be 
defined by (2.15) wxth h, = (6 - r)/F~,+,, p rowded  that h, > - 1  for all t. Th~s, 
m turn, would mapose umque arbitrage-free prices for the umt-linked 
contracts  that differ from those computed  using the minimal martingale 
measure P* 

6. N U M E R I C A L  RESULTS 

We round off by presenting some Monte  Carlo simulation results We 
consider the pure endowment  where the sum insured is due at the maturi ty  
date if the insured ~s then still ahve. Premiums are assumed to be paid as a 
single premium at time 0 The contrac t  funcUons from Example 4.5-4 6 will 
then be examined by evaluating the initial value o f  the intrinsic risk process 
V~, the mltml intrinsic risk R0 and the risk-increase associated with some 
simple (plecewlse constant)  strategies. Since these quant lues  are propor t ional  
to the size of  the portfol io /.,, recall e.g. (4.3) and (4.10), we consider an 
insurance portfol io  consisting o f  only one mdwldual ,  that is, we take l, = 1. 
Fur the rmore  we take the age of  the pol icyholder  to be x = 45 upon issue of  
the contract ,  and fix the term of  the contrac t  to be T = 15 years. We use the 
G o m p e r t z - M a k e h a m  hazard function as mor tah ty  law of  the policyholder  

t5,+, = 0 0005 +0.000075858 1.09144 '+~, t > 0, 

which is used m the Damsh 1982 technical basis for men. With this mortal i ty  
law, the condit ional  probabil i ty 15P45 of  surviving another  15 years given 
survival to age 45 is 0 8796 The basic financial market  is s tandard Black- 
Scholes with parameters  a = 0 25 and r =  0.06, that is, the de termmlsuc  
risk-free interest is 6% and the volatility of  the stock is 25% Fur thermore ,  
we take So = 1 and B0 = 1 The impor tance  of  the volat lhty parameter  ~s 
illustrated by considering, m addit ion,  the case of  small market  volatility 
(or = 0 15) and large market  volatility (a = 0 35). 

The value at Ume 0 of  the intrinsic value process V*, given by 

V~ = I, Tp,Fg(O, So), (6. I) 

is evaluated by simply inserting the parameters  (r, a) and So = 1 m the 
function Fg determined m Example 4 5 and 4.6. Results are hsted m Table  I 
for different choices of  guarantees,  the pure unit-linked insurance 
corresponds  to guarantee  K = 0 The mmal intrinsic risk R0 is given by 

Ro = E" I, TP, (e-~"Fg(u, S,,)) 2 T-,,P,+,, I'.,+,, du , (6 2) 

and since we have no explicit expression for the expected value o f  
(F~'(u, S,))  2, we apply Monte  Carlo simulation combined with numcncal  
mtegraUon m order  to evaluate (6.2) 
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The price process for the stock S under P* 

St = e (~-~)'+°W' (6.3) 

can be simulated by simply simulating a s tandard Brownlan mot ion 
and inserting this m (6.3). Let n = 100 be the number  of  time intervals 
per time unit (one year) and denote  by zSt = l/n the mesh of  this par tmon.  
Also let M denote  the number  of  paths o f  S to be stmulated and let 
ej , r e = l ,  . , M , j =  1,. . . ,  T n be a sequence of  smmlated independent  
s tandard normal variables The simulated versions S('") o f  (6.3) are 
determined as 

~(m) ,,) ~k = e x p  r - -  k. A t+  cr , k = l ,  . , T - ~ l , m = l ,  , M ,  
j-i / 

where S(k ''') has same dis tr lbutmn as SkLxl. The mmal risk R0 ~s now 
approximated  numerically by applying Monte  Carlo s~mulation for the 
integral (6.2) which is discretlzed using the so-called summed Simpson rule, 
see e.g. Schwarz (1989). In all computa t ions  we apply the step size 
~ t  = 1/100 In Table  1 we have also presented the estimate for R0 and the 
s tandard error  on this estimate based on M = 300000 simulated paths for 
~r = 0.15 and 0 25 and M = 500000 for o- = 0 35. 

TABLE I 

THE INITIAL INTRINSIC VALUES AND RISKS ASSOCIATED WITH L'NIT-LINKFD PURE ENDOWMFNT CONTRACTS 
FOR VARIOUS CHOICFS OF GUARANTEF AND VOLATILITY 

Guarantee (K) I,~ Ro (~td.dev.) v/~/V~ 

a = 0  15 0 08796  0 131 0411 

0 5 exp(rT) 0 8996 0 134 (0 0002) 0 407 

cxp(rT) 1 0807 0 173 (0 0002) 0 385 

(M = 300000) 2 cxp(rT) 1 7993 0 446 (0 0001) 0 371 

cr = 0 25 0 0 8796 0 194 -- 0 501 

0 5 exp0  T) 0 9580 0 205 (0 001) 0 474 

exp(i  7") I 2066 0 261 (0 001 ) 0 422 

(M = 300000) 2 exp(rT)  I 9161 0 5 3 8  (0001)  0 3 8 3  

cr = 0 35 0 0 8796 0 365 0 687 

0 5 exp(rT) 1 0255 0 380 (0 005) 0 608 

exp(rT) I 3213 0 449 (0 005) 0 513 

(M - 500000) 2 exp(rT) 2 051 I O 743 (0 005) 0 423 
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The unrestricted nsk-mimmxzmg strategies are not apphcable m practice, 
since they are based on the assumption of contmuously adjustable 
portfohos. However, the expressions can be used as a guide m practxcal 
portfoho administration. For example, the insurer could apply a plecewlse 
constant strategy on the form 

J 

~t = Z I ( t  E ( t j - i ,  t j ] )~  ~, (6.4) 
. /=1 

where ~ denotes the unrestricted r~sk-nammaizing strategy determined in 
Section 4. Thus, the portfoho of stocks as adjusted at fixed times 
0 = to < tt < < tj_~ < tj = T, as an approxmaat~on to the continuously 
adjustable nsk-mmmalzmg strategy. Here, we have chosen tj = j  and 
t: =. / /12 ,  which maphes trading once a year and once a month, respectively. 
In Table 2, we have lasted the risk-increase assocmted with the p~ecew~se 
constant strategies (6.4), obtained by evaluating the expression 

J [ f t j  t/ ] 2 9 ,~ 
- , )  . 

J = l  1 

In Moiler (1996) optmaal smaple strategies are derived by means of some 
heuristic calculatlons 

TABLE 2 

TIlE RISK INCREASE ASSOCIAq El) WITH qlMPLE ~,I RATEGIFS WITII YEARLY AND MONTHLY ADJUSTMENTS 
FOR UNIT-LINKLD PURE ENDOWMI NT CONTRA~I'S 

K Ro Yearly (ltd. dev.) Monthly (~td. dev.) 

a = 0 15 0 0 131 0 0015 0 00012 

0 5  exp(rT) 0134 00014 (15  10 -6) 000012 13 10 -7) 

exp(rT) 0 173 00011 (I 6 I0 6) 000009 I 3 10 -7) 

(M = 1000000) 2 exp(rT) 0 446 0 0004 I 4 10-6) 0 00003 I I 10 -7 ) 

cs = 0 25 0 0 194 0 0060 0 00051 - 

0 5 e x p 0 T )  0205 00058 19 10 -5 ) 000050 16 10 -6 ) 

exp(rT) 0261 00051 19 10 -5 ) 000044 I 6 10 6) 

(M = 1000000) 2exp( rT)  0538 00040 19 10 5) 000034 (16  10 6) 

o r =  0 35 0 0 365 00225 - 000187 - 

0 5 e x p 0 7 " )  0380 00218 (31 10 4) 000186 (26  10 -5) 

exp(rT) 0449 00209 (3 I 10 4) 000178 (26  10 -5 ) 

(M = 1000000) 2exp( rT)  0743 00193 (3 I 10 -4) 000160 (26  10 -~) 
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With volatility parameter cr = 0.25, the ratio between the square root of the 
initial intrinsic risk ~ and the intrinsic value process V~ is 0.5 for the pure 
unit-linked life insurance, see Table I. By increasing the size l, of the 
portfolio to 100, say, the corresponding ratio is reduced by the factor 
lv'T00/100 = 0 1 to 0 05. As mentioned in the previous sections, V~ can be 
interpreted as a natural candidate for the single premium In non-hfe 
insurance premiums are often increased by adding a safety loading, typically 
twice the standard deviation of the total liability This procedure would lead 
to a safety loading about 2- 5%, that is 10% when l, = 100. Furthermore, it 
is noted that the minimal risk associated with the simple strategy (6 4) with 
trading once per year is only 0.006 higher than the minimum obtainable risk 
R0 = 0.194. This corresponds to an increase of 3 1% Thus, the uncertainty 
associated with the death of the policyholders seems to be by far the most 
important 

The results obtained for the unlt-hnked contract with guarantee different 
from 0 indicate lower values of the ratio between the square root of the 
minimal obtainable risk R0 and the intrinsic value process V~ than in the 
pure unlt-hnked case. Furthermore, the ratio seems to be decreasing as a 
function of the guaranteed amount Also the relative risk increase associated 
with simple strategies is smaller than the corresponding results for the pure 
unlt-hnked life insurance. These properties could be partly explained by 
considering the exact form of the sum insured, described by the underlying 
derlvauve 

m (Sr, K) = K + (ST - K) + 

Obviously, the probabdlty of the European Call Option (ST  -- K )  + being in 
the money will converge to zero as K converges to infinity. In this way the 
relative uncertainty associated with the sum insured should decrease when 
the guaranteed amount increases. 

Table 1 also gives indications of the consequences of possible ires- 
specification of the volatility parameter or. It is seen that all quantities hsted 
here seem to be non-decreasing functions of the volatility. In particular, 
calculahon of premiums based on the initial intrinsic value V~ only would 
neglect the increase in the ratio x,"~/V~ as a increases. Thus, this principle 
could result in premiums which are not adequate to cover the insurer's 
hablhtles to the insured 
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