
DEPENDENCY OF RISKS AND STOP-LOSS ORDER ~ 

JAN DHAENE 2 AND MARC J. GOOVAERTS 3 

ABSTRACT 

The correlation order, which is defined as a partial order between bivariate distribu- 
tions with equal marginals, is shown to be a helpfull tool for deriving results concer- 
ning the riskiness of portfolios with pairwise dependencies. Given the distribution 
functions of  the individual risks, it is investigated how changing the dependency as- 
sumption influences the stop-loss premiums of such portfolios. 
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1. INTRODUCTION 

Consider the individual risk theory model with the total claims of the portfolio during 
some reference period (e.g. one year) given by 

n 

S = X Xi (1) 
i=1 

where Xi is the claim amount caused by policy i (i = 1, 2 . . . . .  n). In the sequel we will 
always assume that the individual claim amounts Xi are nonnegative random variables 
and that the distribution functions F~of X~ are given. 

Usually, it is assumed that the risks X, are mutually independent because models 
without this restriction turn out to be less manageable. In this paper we will derive 
results concerning the aggregate claims S if the assumption of mutually independence 
is relaxed. More precisely, we will assume that the portfolio contains a number of  
couples (e.g. wife and husband) with non-independent risks. Therefore, we will rear- 
range and rewrite (1) as 

m 

S = X ( X 2 i _  1 +X2i)+ X i (2) 
i=l i=2m+l 
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with m the number of  coupled risks. For any i andj  (i, j = l, 2 . . . .  n; i C j) we assume 
that Xi and Xj are independent risks, except if they are members of the same couple 
(Xa..j, Xzk), (k  = 1, 2 . . . . .  m). The class of all multivariate random variables (X~ . . . . .  X,) 
with given marginals F,. of)(,, and with the pairwise dependency structure as explained 
above, will be denoted by R(F I . . . . .  F,). 

It is clear that for any (X~ . . . . .  X,) belonging to R(F,  . . . . .  F,) ,  the riskiness of the 
aggregate claims S = X~ + ... + X, wil be strongly dependent on the way of dependen- 
cy between the members of couples. 

In order compare the riskiness of  the aggregate claims of  different elements of  
R(F) . . . . .  F,), we will use the stop-loss order. 

Def in i t ion  1 A risk S~ is said to p recede  a risk $2 in stop-loss order, written 
Si -(sl $2, i f  their stop-loss premiums are ordered uniformly: 

E ( S  1 - d)+ <- E ( S  2 - d)÷ 

f o r  all retentions d >_ O. 
Let (X~ . . . . .  X,) and (Y~ . . . . .  Y,) be two elements of  R(F~ . . . . .  F,). and denote their 

respective sums by 

m 

Sl = ~ (X2 i - i  + X2i)+ Xi 
i=1 i=2m+l  

and 

i=l  i = 2 m ÷ l  

We want to find ordering relations between the corresponding couples of S~ and $2 
which imply a stop-loss order for S, and 82. More precisely, we are looking for a p a P -  
al order <-ord between bivariate distributed random variables which has the following 
property: 

(X2k_l, X2k)<-ord(Y2k_l,Y2k, ) ( k = l ,  2 . . . . .  rn) (3) 

implies 

S] <-st $2 (4) 

A well-known property of stop-loss ordering is that it is preserved under convolu- 
tion of  independent risks, see e.g. Goovaerts et al. (1990). Hence, a sufficient condi- 
tion for (4) to be true is 

Xzk-1 + X2k <-sl Y2/,--1 + Y2k (k = 1, 2 . . . . .  m)  (5) 

So it follows immediately that we can restrict ourselves to the following problem: Find 
a partial order <or,~ between bivariate distributed random variables (X,, X2) and (Y~, Y2) 
with the same marginal distributions, for which the following property holds: 

(X] ,  X z ) < o r  a (Y l ,  Yz) (6) 

implies 
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X1 + X2 <st Yl + Y2 (7) 

It is clear that an ordering <,,r~ for which (6) implies (7) will immediately lead to a 
solution of the problem described by (3) and (4). 

Part of the results in this paper are generalisations of results in Dhaene et al. (1995) 
where the individual life model is considered, i.e. the case where each individual risk 
has a two-point distribution in zero and some positive value. 

2. A PARTIALORDER FOR BIVARIATE DISTRIBUTIONS 

2.1. Correlation order 

Let R(F~, F2) be the class of all bivariate distributed random variables with given mar- 
ginals F~ and F2. For any (X I, X2) e R(Fi, F2) we have 

i~(x)= Prob(Xl _< x) Fz(x)= Prob(X 2 _< x) 

We also introduce the following notation for the bivariate distribution function: 

Fx~, x2 (xl, x2) = Pr°b(X1 < xl, X2 <- x2) 

In the sequel we will always restrict ourselves to the case of non-negative risks. 
Futher, if we use stop-loss premiums or covariances, we will always silently assume 
that they are well-defined. 

Now let (X2, Xz) and (Y~, Y2) be two elements of R(F~, Fz). In order to investigate 
an order between these bivariate distributed random variables which implies stop- 
loss order for X~ + Xz and Y~ + Y2, we could start by comparing Cov(X~,X2) and 
Cov(Yj, )"2). At first sight, one could consider the following inequality 

C°v(Xl ,  X2)  < C°V(Yl, Y2) (8) 

and investigate wether this implies 

Xl + X2 <.,./1/1 + Y2 (9) 

Although it is customary to compute covariances in relation with dependency conside- 
rations, one number alone cannot reveal the nature of dependency adequately, and 
hence (8) will not imply (9) in general, a counterexample is given in Dhaene et al. 
(1995). However, in the special case that F~ and F2 are two-point distributions with 
zero and some positive value as mass points, (8) and (9) are equivalent, see also 
Dhaene et al. (1995). 

Instead of comparing Cov(X~,X2)and  Cov(Y~,Y2) one could compare  
Cov(flXO, g(X2)) with CovffYO, g(Y2)) for all non-decreasing functions f and g, see 
e.g. Barlow et al. (1975). 

Definition 2 Let (X~, X2) and (Yi, Y2) be elements of R(F t, F2). Then we say that 
(X I, X2) is less correlated than (Yi, Y2), written (Xi, Xz) -~c (YI, Y2), if 

Cov(f(Xl ), g(X2 )) < Cov(f(YI ), g(Y2 )) (10) 
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for all non-decreasing functions f and g for which the covariances exist. 
The correlation-order is a partial order over joint distributions in R(F~, F2) and expres- 
ses the idea that two random variables with given marginals are more 'positively de- 
pendent' or 'positively correlated' when they have some joint distribution than sore 
other one. 

2.2. An alternative definition 

In this subsection we will derive an alternative definition for the correlation order 
introduced above. First, we will recall and prove a lemma contained in Hoeffding 
(1940), which we will need for the derivation of the alternative definition, see also 
Jodgeo (1982), p. 326. The proof will be repeated here because it is instructive for 
what follows. 

Lemma 1 For any (Xt, Xz) e R(Ff, F2) we have 

C°v (X l ,  X2 ) = ~ ~ (Fx,,x2 (u, v ) -  F 1 (u)F 2 (v))dudv (l l)  

Proof:  Let 1 denote the indicator function, then the following well-known identity 
holds 

x-z=f~{ l (z_<u)- l (x_<u) ldu  (x, z_>0) (12) 

Hence, for x~, x2, z~, z2 >- 0 we find 
( x j  - z l )  ( x ~  - z2)  = 

~ l ; ( z ,  <- u);(z~ _< v)+ ;(x, _< u);(x~ _< v) 
(13) 

- l (z l  -< u)l(x2 <- v) - l(x I _< u)l(z2 -< v)}dudv 

Now let (Xt, X2) and (Z~, Z2) be independent identically distributed pairs, then we have 

2 Cov(X~,  x 2 )  = E ( ( X ,  - ~ ) ( X 2  - Z2))  

so that we find (1 I) from (13). Q.E.D 

Now we are able to state an equivalent definition for the correlation order conside- 
red in definition 2. 

Theorem 1 Let (X~, X2) and (YI, Y2) be elements of R(F~, F2). Then the following 
statements are equivalent: 

(a) (X1, Xz)-<c (Y1, Y2) 

(b) Fx,. x2 (xz, x2)-< Fy,. Y2 (xl, x2) for all x~, x2 -> 0 

Proof:  Assume that (a) holds and choose f l u )  = l ( u  > x t )  and g(u )  = 
l(u >x2). Then we find from (10) that 

E(I(X1 > Xl, X2 > x2 )) -< E(I(YI > xl ,  Y2 > x2)) 
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or equivalently 

Prob(X 1 > x  1, Xz>xz)-<Prob(Y1 > x  1, Y 2 > x 2 )  

from which (b) can easily be derived. 
Now, suppose that (b) holds. It follows immediately that, for non-decreasing func- 

t ions fand  9, 

Pr°b(f(Xl  ) -< Xl, g(X2 ) -< x2 ) -< Pr°b(f(Yl ) -< xl, g(Y2 ) -< X2 ) 

for all xt , x2 -> 0, so that (a) follows as an immediate consequence of Lemma 1 and 
Definition 2. Q.E.D 

Statement (b) in Theorem I asserts roughly that the probability that X t and X2 both 
realize ' small '  values is not greater than the probability that Yt and Y2 both realize 
'equally small '  values, suggesting that Y~ and Y2 are more positively interdependent 
than X~ and X2. The statement (b) is equivalent with each of the following statements, 
each understood to be valid for all xt and x2: 

(c) Pr°b(X1 <- xl, X2 > x2 ) -> Prob(Yt -< xl ,  Y2 > x2 ) 

(d) Pr°b(Xl >Xl,  X 2  -<x2)>-Pr°b(YI > x l ,  Y2 -<x2) 

(e) Pr°b(Xt >Xl,  X2 >x2)<Prob(Yl >xl, Y2 > x 2 )  

Each of these statements can be interpreted similarly in terms of 'more  positively 
interdependence' of Y~ and 1"2. Hence, the equivalence of (a) and (b) in Theorem 1 has 
some intuitive interpretation. 

References related to the correlation order defined above are Barlow et al. (1975), 
Cambanis et al. (1976) and Tchen (1980). For economic applications, see also Epstein 
et al. (1980) and Aboudi et al. (1993, 1995). 

2.3. Correlation order and stop-loss order 

In this subsection we will prove that the correlation order between bivariate distribu- 
tions implies stop-loss order between the distributions of  their sums. 

Lemma 2 For any (X~, X2) ~ R(FI, F2) we have 

d F E(X I + X  2 - d ) + = E ( X 1 ) + E ( X 2 ) - d + I o  x , , x2(  x, d - x ) d x  

Proof: We have that 

E(X 1 + X 2 -d)+ = E(X 1)+ E ( X 2 ) - d +  E ( d - X  I - X 2 )  ÷ 

For non-negative real numbers x~ and x2 the following equality holds 

( d - x  1 - x 2 )  + = l (x  I _< x,x 2 _<d-x)dx 

so that 
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E ( d - X  1 - X 2 )  + = E ( I ( X  I < x , X  2 < d - x ) d x  

which proves the lemma. 

Now we are able to star the following result. 

Theorem 2 Let (Xj, X2) and (Yj, Y2) be two elements of R(F~, F2). Then 

( X I ,  X 2 ) - < c  (YI,  Y2)  

implies 

X~ + X2 -<~t Y~ + Y2 

Q.E.D 

Proof: The proof follows immediatly from Theorem 1 and Lemma 2. Q.E.D 

From Theorem 2 we conclude that the correlation order is a useful tool for comparing 
the stop-loss premiums of sums of two non-independent risks with equal marginals. 

3. RISKIEST AND SAFEST DEPENDENCY BETWEEN TWO RISKS 

Consider again the class R(F~, F2) of all bivariate distributed random variables with 
given marginals F, and F 2 respectively. For every (X~, X2) and (Y~, Y2) ~ R(F~, F2) we 
will compare their respective riskiness by comparing the stop-loss premiums of X~ + 
X 2 and Y, + Y2. More precisely, we will say that (X~, X 2) is less risky than (Y,, Y2) if 

X1 + X z  <st YI + Y2 

In this section we will look for the riskiest and the safest elements of R(F~, F2). Use 
will be made of the following well-known result which is usually attributed to both 
Hoeffding and Fr6chet, see e.g. Fr6chet (1951). 

Lemma 3 For any (X,, Xz) ~ R(F~, Fz) we have that 

max[Fl(xl)+F2(x2)- l;  O]<Fx,x2(Xt,X2)<_min[Fl(xl), Fz(x2)] (14) 

The upper and lower bounds are themseh,es bivariate distributions with marginals F I 
and F 2 respectively. 

Now we can state the following result concerning the riskiest and the safest elements 
of R(Ft, 1:2). 

Theorem 3 Let (Y~, Y2) and (Zi, Z2) be elements of R(Fi, F2) with distribution func- 
tions given by 

Fv~, v2(x 1, X z ) = m a x [ F l ( X l ) + F z ( x 2 ) - l ;  0] 

and 

Fz,. z2 (xl '  x2) = min[Ft (xl), F2(x2)] 
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respectively. Then for any (X, X2) ~ R(F.  F2) we have that 

Y] + Y2 <-sl X l  + X2 <-sl I I  + Z2 

Proof:  The inequalities follow immediately from Theorems 1 and 2 from 
Lemma 3. Q.E.D 

From Theorem 3 we can conclude that the random variables (Y,, Y2) and (Z,, Z2) are 
safest and the riskiest elements of R(F, F2) respectively. 

Let us now look at the special case that the two marginal distributions are equal. 
From Theorem 3, we find that a most risky element in R(F, F) is (Z,, Z2) with 

Fz, ' ~ ( x  1, x 2 ) =  min[F(x]), F(x2) ] (15) 

which leads to 

~F(x) if x_<d/2 
Fz" z2(X' d - x ) = L F ( d - x )  if x > d / 2  

From Lemma 2 we find 

E ( Z  1 + Z  2 - d ) +  = E(Z1)+ E ( Z z ) - d  + fa /ZF(x)dx  + ~e ° ao /2 F(d - x)dx 

= E(Z1 ) + E(Z2 ) _ 2 j-~l/2 (1 - F(x) )dx  

= 2 E ( Z  I - d / 2 ) +  

so that we find the following corollary to Theorem 3. 
Cor ro la ry  1 For any (X I, )(2) ~ R(F, F) we have that 

E ( X  I + X 2 -d)+ < 2 E ( X  I - d / 2 ) +  

Furthermore, the upperbound is the stop-loss premium with retention d of Z~ + Z2 
where (Z,  Z2) ~ R(F, F) with distribution function (15). 

Now assume that F is an exponential distribution with parameter ot > 0. 

i.e. F( x ) = l - e -°~ x > 0  

Then we obtain from Corollary 1 that for any (X, X2) ~ R(F, F), we have 

E(X] + X 2 - d)+ _< 2J'~/2 (l  - F(x) )dx  = 2 e_O~t/2 (16) 
a 

This upperbound for the exponential case can be found in Heilmann (1986). He deri- 
ved this result by using some techniques described in Meilijson et al. (1979). Hell- 
mann also considers riskiest elements in R(F,, F2) where F~ and F2 are exponential 
distributions with different parameters. This result can also be found from our Lemma 
2 and Theorem 3. 
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4. POSITIVE DEPENDENCY BETWEEN RISKS 

In a great many situation, certain insured risks tend to act similarly. For instance, in 
group life insurance the remaining life-times of a husband and his wife can be shown 
to possess some 'positive dependency'. Several concepts of bivariate positive depen- 
dency have appeared in the mathematical literature, see Tong (1980) for a review, for 
actuarial applications see Norberg (1989) and Kling (1993). We will restrict ourselves 
to positive quadrant dependency. 

Definition 3 The random variables X~ and X 2 are said to be positively quadrant de- 
pendent, written PQD(X I, X2),/f 

Prob(X 1 < xl ,  X2 <- X 2 )  -> Prob(X  1 < x 1 )Prob(X2 < x2) 

foralx~ > 0, x2_> 0. 

It is clear that PQD(Xt, )(2) is equivalent with saying that X~ and X 2 are more correlated 
(in the sense of Definition 2) than if they were independent. 

Positive quadrant dependency can be defined in terms of covariances, as is shown 
in the following lemma, see also Epstein et al. (1980). 

Lemma 4 Let X~ and)(2 be two random variables. Then the following statements are 
equivalent: 

(a) PQD(X,, X2) 

(b) Cov(](XO, g(Xz) ) > O for all non-decreasing real functions f and g for 
which the covariance exixts 

Proof: The result follows immediately from Definitions 1 and 3, and 
Theorem 1. Q.E.D 

Remark that PQD(Xt, X2) implies that Cov(X, X2) > O. Equality only holds ifXt and 
X 2 are independent. 

As is shown in the following theorem, the notion of positive quadrant dependency 
can be used for considering the effect of the independence assumption, when the risks 
are positively dependent actually. 

Theorem 4 Let (Xi, X2) and (Yi ind, y2ind)) be two elements o f R ( F ,  Fz) with 
PQD(X I, )(2) and where Yi ind and Y2 i"d are mutualy independent. 
Then 

YI ind + Y2 ind <st XI + )(2 

Proof: The result follows immediately from Theorems I and 2. Q.E.D 

Theorem 4 states that when the marginal distributions are given, and when 
PQD(X~, X2), then the independence assumption will always underestimate the actual 
stop-loss premiums. 
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Let us now consider the special case that Fi is a two-point distribution in 0 and txi > 
0 (i = 1, 2). For any (X~, X2) ~ R(F~, F2) with Cov(X~, X2) -> 0, we have that 

Pr(Xi = ~l, X2 = oh) -> Pr(Xi = ~l) Pr(X2 = oh) 

This inequality can be transformed into 

Pr(X, = O, X2 = O) _> Pr(X, = O) P,(X2 = O) 

from which we find 

Pr(X, _< Xl, X2 _< x2) >_Pr(Xl _< x,) Pr(X2 _< x2) xt -> O, x2 -> O 

We can conclude that in this special case P Q D ( X ,  X2) is equivalent with Cov(X,  X2) Le 
0. 

From Theorem 4 we find that when the marginal distributions F~ are given two- 
point distributions in 0 and ~j > 0 (i = l, 2) and when Cov(X~, X2) -> 0, making the 
independence assumption will underestimate the actual stop-loss premiums. This 
result can also be found in Dhaene et al. (1995). 

5. NUMERICAL EXAMPLE AND CONCLUDING REMARKS 

As stipulated in Section 1 the results that we have derived for two risks can also be 
used for considering the riskiness of portfolios where the only non-independent risks 
can be classified into a given number of couples. Several theorems, together with the 
stop-loss preservation property for convolutions of independent risks, immediately 
lead to statements about the stop-loss premiums of such portfolios. 
Take Theorem 4 as an example. Consider a portfolio with given distribution functions 
of the individual risks where the only non-independent risks appear in couples and 
where the risks of each couple are positive quadrant dependent. Then we find from 
Theorem 4 that taking the independence assumption will always lead to underestima- 
ted values for the stop-loss premiums of the portfolio under consideration. 

Let us now illustrate the effect of introducing dependencies between risks in an in- 
surance portfolio by a numerical example. We will use Gerber's (1979) life insurance 
portfolio wich is represented in the following table. 

TABLE 1 
GERBER'S PORTFOLIO 

claim amount at risk 
probability 1 2 3 4 5 

0.03 2 3 I 2 
0.04 I 2 2 I 
0.05 2 4 2 2 
0.06 2 2 2 1 

The portfolio consists of 31 risks. Each risk can either produce no claim or a fixed 
positive claim amount (the amount at risk) during a certain reference period. The 
claim probability is the probability that the risk produces a claim during the reference 
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period. The expectation of the aggregate claims equals 4.49. We label the risks from 1 
to 31, row by row. Hence, risks 1 and 2 have claim probability 0.03 and a conditional 
claim amount (given that a claim occurs) equal to !: risks 3, 4 and 5 have claim pro- 
bability 0.03 and conditional claim amount 2, . . . .  
In Table 2 several independency assumptions for this portfolio are considered. 

TABLE 2 

DESCRIPTION OF SEVERAL INDEPENDENCY ASSUMPTIONS. 

s i tuat ion 
1 2 3 4 5 

all (1,2) (24,31) (1,2) no 
risks (3,4) 14,23) (3,4) indepen- 

mutually (5,6) (29,30) (5,6) dency 
indepen- (7,8) (21,22) (7,8) assump- 

dent (9, I0) tions 
(11,12) 
(13,14) 

In situation 1 it is assumed that all risks are mutually independent. Situation 2 cor- 
responds to the case that the only couples that occur in the portfolio are (1, 2), (3, 4), 
(5, 6) and (7, 8). In situation 3 there are also 4 couples. Comparing situations 2 and 3, 
we see that in the latter case the couples have higher claim probabilities and higher 
conditional claim amounts. Situation 4 is an extension of situation 2 in the sense that it 
not only contains the couples of  situation 2, but also some others. Finally, situation 5 
corresponds to the case that no independency assumptions are made so that all risks 
can be dependent. The results that will be stated for this situation can be found in 
Dhaene et al. (1995). 

In the following table the ratio (multiplied by 100) of  the maximal stop-loss premi- 
um (according to Theorem 3) divided by the stop-loss premium in the independent 
case (assumption 1) is given for the situations considered in Table 2. 

TABLE 3 
RELATIVE HIGHT OF THE MAXIMAL STOP-LOSS PREMIUMS UNDER SEVERAL 

INDEPENDENCY ASSUMPTIONS. 

s i tuat ion 
retent ion 1 2 3 4 5 

0 100 I00.0 I00.0 100.0 100.0 
2 100 101.6 103.8 103.9 146.6 
4 100 103.8 116.5 110.9 239.3 
6 I00 108.0 137.6 122.1 412.6 
8 100 112.8 169.1 137.7 778.6 
I0 100 120.7 206.4 159.8 1549.8 
12 100 130.1 226.4 191.2 3336.3 
14 100 143.8 354.2 233.3 7604.2 
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From this table we can conclude that in any situation the relative increase of the 
stop-loss premium is an increasing function of the retention. For the higher rententions 
the effect will be most dramatically. Comparing the assumptions 2 and 3, we see that 
increasing the claim probabilities and the claim amounts of the couples leads to an 
increased effect. Of cours, increasing the number of coupled risks will increase the 
relative effect on the maximal stop loss premiums, as can be seen from comparing the 
assumptions 2 and 4. Finally, from the last column we can conclude that assuming no 
independency at all, and hence allowing all possible kinds of dependencies, the extre- 
mal stop-loss premiums increase astronomically. The specific dependency relations 
that give rise to this extremal stop-loss premiums for a life insurance portfolio are 

derived in Dhaene et al. (1995). 

Finally, we remark that in this paper we have only derived results for bivariate de- 
pendencies. The special, but important bivariate case will often be sufficient to descri- 

be dependencies in portfolios but is also provides a theoretical stepping stone towards 
the concept of dependence in the multivariate case. Some notions of dependence in the 
multivariate case can be found in Barlow et al. (1975). One of the notions of multiva- 

riate dependency which is often used in actuarial science is the exchangeability of 
risks, see e.g. Jewell (1984). It is a (remarkable) pity that the usefulness of other no- 
tions of multivariate dependency has hardly been considered in the actuarial literature. 
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