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ABSTRACT 

Occurrences and developments of claims are modelled as a marked point process. The 
individual claim consists of an occurrence time, two covariates, a reporting delay, and 
a process describing partial payments and settlement of the claim. Under certain 
likelihood assumptions the distribution of the process is described by 14 one- 
dimensional components. The modelling is nonparametric Bayesian. The posterior 
distribution of the components and the posterior distribution of the outstanding IBNR 
and RBNS liabilities are found simultaneously. The method is applied to a portfolio of 
accident insurances. 
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I. INTRODUCTION 

A major issue in non-life insurance is prediction of  outstanding liabilities. Out- 
standing liabilities are traditionally divided into occurred but not reported (IBNR) 
claims and reported but not settled (RBNS) claims. At each time the insurance company 
has to predict the outstanding liabilities and provide a reserve correspondingly. 

A vast number of articles have been written on the subject. In most models the 
data are assumed to be discretized. Arjas (1989), Jewell (1989), Norberg (1993a,b,c) 
and Hesselager (1994) model in continuous time. Norberg (1993a) describes occur- 
rence and development of  the claims by a marked Poisson process. In Norberg 
(1993c) and Kirkegaard (1994) different parametric specifications of the model are 
considered, and real insurance data are analyzed. Furthermore, Norberg (1993a) 
considers an extended model where the occurrence intensity is assumed to be a sto- 
chastic process, and he finds the best linear predictor of the outstanding liabilities. 

The present paper deals, by way of a case-study, with a portfolio of  accident 
insurances. The model used is close to that of  Norberg (1993a). The claims process 
generating occurrences, covariates and developments of the claims is modelled as a 
marked Poisson process. Our approach to estimation and prediction is nonpara- 
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metric Bayesian. Adopting the methods of Arjas and Gasbarra (1994), the distribu- 
tion governing the process of occurrences, covariates and developments is modelled 
by piecewise constant conditional intensities. The intervals on which the intensities 
are constant, and the values (levels) of the intensities on the different intervals, are 
then viewed as model parameters. In principle, such a parameter space is of infinite 
dimension. A prior distribution (a distribution on the parameter space) is attached to 
the intensities of the claims process. 

Both the model parameters and the outstanding liabilities (RBNS and IBNR 
claims) are unknown. The problem is to find the conditional distribution of such 
unknowns given the observations. This distribution will be called the posterior; it 
covers the conditional distribution of  the unknown parameters which by standard 
usage is called posterior, and the conditional distribution of  future observables 
which by standard usage is called predictive distribution. In complex models, it is 
ofl:en difficult to identify the posterior. The posterior can always be determined up 
to proportionality, but it can be difficult to normalize, which is necessary e.g. for the 
calculation of  means. Recently, a technique called Markov chain Monte Carlo 
(MCMC) integration has been used to solve this problem numerically in connection 
with large statistical models. A general review of  the topic can be found in Smith 
and Roberts (1993). The idea is to generate a Markov chain which has the posterior 
distribution as its equilibrium distribution. Using such a chain, all quantities of 
interest can be estimated/predicted. For example, at each step of  the chain a new 
value of the RBNS claims is sampled; the empirical distribution of  these sampled 
RBNS claims then converges towards the predictive (posterior) distribution of  the 
RBNS claims. 

Section 2 below describes the data. A claim is described by an occurrence time, 
two covariates, and a development. The development contains a reporting delay, a 
settlement delay, and a partial payment process containing the partial payments 
made from reporting to the settlement of the claim. 

In Section 3 distributional assumptions are made. Claims are assumed to occur in 
accordance with a Poisson process, and covariates and developments are modelled 
as marks associated with the occurrences. The distribution of both occurrences and 
marks is specified by piecewise constant conditional intensities, and a prior dis- 
tribution of these intensities is chosen. 

Section 4 describes the MCMC algorithm (sampling algorithm). A Markov chain 
with the desired properties is generated. The algorithm is close to the one described 
by Arjas and Gasbarra (1994). 

Section 5 describes the estimations and predictions. Using the Markov chain 
generated in the sampling algorithm we approximate both the distribution of  the 
claims process and the distribution of  the outstanding liabilities. 

2. THE DATA 

The data are a portfolio of  accident insurances. In the following we first describe the 
general structure of the data, and then go on with a detailed description of the 
present data set. 
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2.1. Structure of the data 

We use the set-up o f  Norberg (1993a). By a claim we understand a combination o f  
a t ime of  occurrence, a set o f  covariates, and a development.  Let time 0 be the 
initial time, and let T be the time at which IBNR and RBNS liabilities are to be 
predicted. Each individual policy is described by the covariates (s, a) denoting sex 
and age o f  the policy holder. For each combination of  calendar time t in (0, 7-], sex s 
in {male, female}, and age a in {1, 2, . . .} ,  the number o f  policies covered is 
denoted 

w(t,s,a).  

The function w is called the exposure rate. 
Using the notation of  Norberg (1993a) the development of  a claim can be 

described by 

(V, (Y(v)) v ~ [0,~), 

where U is the waiting time from occurrence until notification (the reporting delay), 
V is the waiting time from notification until final settlement, and Y(v) is the amount 
paid v time units after notification. The final claim amount is Y(V), which is called Y 
for short. Moreover,  when a claim is reported, the occurrence time T and the 
covariates sex and age (S, A) are known, age being the age at the time of  occurrence. 
So the complete description of  a claim is 

(T ,S ,A ,  U,X) where,  for  short ,  X =  (Y(v))v•[0,v ]. 

The partial payments process X = (Y(v))~.• [0 v] consists o f  a series o f  lump 
payments.  An illustration can be found in Norbe'rg (1993a), Figure 2. 

Not all claims which occurred before time T are actually observed. At time 7- we 
have only observed the reported claims, i.e. claims with T + U _< r ,  and for each of  
these we only know the development up to time r.  This means that for a reported 
claim we always know (T, S, A, U). Furthermore we observe, 

for  a settled claim, 

for a repor ted  but not  settled claim, 

(V,(Y(v)),,e[o,v]), and (2.1) 

( l ( v <  T - T - U) = 0, (Y(v)) v • [0,r - T -  UI)' 

(2.2) 

where l (v<  r -  T -  U) = 0 indicates that the claim is not settled. Note that the above 
is just the partial payment  process, (Y(V))ve[0,E, censored at calendar t ime 7-. 

2.2. The present data set 

The data are a portfolio of  accident insurances, supplied by a Danish insurance 
company.  There are four different kinds of  claims; dental claims, spectacles claims, 
disability claims, and death claims. We have chosen to model the dental claims, and 
look at leisure time cover only. Claims which occurred between January 1, 1982 and 
December  31, 1990 and which were reported before March 3, 1992 are observed and 
contained in the data set. Here we have chosen to consider r = 6 years. This means 
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that only data recorded by December 31, 1987 are considered. The rest of  the data 
can be used to check the validity of  our model. 

Some modifications are needed to give the data the desired structure. The 
exposure is only known by years, not days. An estimate of  the exposure rate w is 
obtained by interpolation. Information about claim developments is almost as we 
need them. Some of the claims records do not contain information about the 
covariates, and for simplicity such claims records (as well as exposure) were 
removed. Furthermore, times of  occurrence, notification, partial payments and 
settlements are only known by days. However, we shall model occurrences and 
developments in continuous time, and view the reported times of occurrence, 
notification, etc. as approximations to the true values. Finally, we have chosen to 
modify the observed partial payment processes. Looking at a partial payment 
process, two payments made during the same day on the same claim are lumped 
together and viewed as a single payment. Furthermore, about 2% of the partial 
payments were negative. Some of these had a corresponding positive payment on 
the same day, and in that case both these payments were disregarded. Negative 
payments that did not have a corresponding positive payment never exceeded the 
accumulated claim amount paid, and they were set off  against the previous positive 
payments. For example, a recorded partial payment process containing two pay- 
ments, one of 1200 DKK at January 5, 1985 and one of -500  DKK at January 16, 
1985, is transformed into a partial payment process containing only one partial 
payment of  700 DKK made at January 5, 1985. Lumping payments that are made 
during the same day is easy to justify, but to set off negative payments against 
previous positive payments requires some comments. We have chosen December 
31, 1987 as the time of  prediction. However, in our modification of the observed 
partial payments processes we included all partial payments made before March 3, 
1992. This means that we use negative payments in the future to modify payments in 
the past. An insurance company can not do that as it does not know about payments 
in the future. Therefore, insurance companies with recorded negative payments will 
tend to slightly overestimate the outstanding liabilities if they use our model. 

After these modifications, our data contain 434.000 exposure years. There are 
2806 reported claims; of  these 2191 are settled and 617 unsettled. There are 3718 
observed partial payments, and they add up to 10.040.000 DKK. 

3. DISTRIBUTIONAL ASSUMPTIONS 

We model the distribution of  all claims which occur in our portfolio and their full 
development. Let 

( Ti, Si, Ai,  Ui, .~i)i >_ ] (3.1) 

denote these claims. It is important to note that many of the claims (3.1) are not 
observed completely, and some of them not at all. As mentioned in the previous 
section, we only observe the reported claims and their development is censored at 
calendar time T. 



CLAIMS RESERVING IN CONTINUOUS TIME 143 

A Bayesian model is used. The modelling is done in two steps. First, the 
distribution of the claims process (3.1) is described by intensities, henceforth 
referred to as components. Our model will have 14 such components. Some describe 
the distribution of the occurrences and covariates, some describe the distribution of 
the reporting delays, and some the distribution of the partial payments processes. 
Then, a prior distribution is chosen. The intensities (components) are assumed to be 
piecewise constant. The intervals on which the intensities are constant, and the 
values (levels) of the intensities on the different intervals are the parameters. A prior 
distribution (a distribution on the parameter space) is attached to the intensities. 

The two steps are described below. The first step contains 'likelihood assump- 
tions', and here the major restrictions are made. The second step contains 'prior 
assumptions'. Since we have only little knowledge at hand, we try to add only little 
structure in our choice of  prior. 

3.1. Likelihood assumptions 
At calendar time t there are w(t, s, a) policies with sex s and age a in the portfolio. 
We assume that for an individual policy, claims occur according to a Poisson 
process with intensity 

[(t,s,a), t E (0,7"] 

(age changing once a year). As a consequence we get that, amalgamating all policies 
in our portfolio, the occurrence times and covariates follow a marked Poisson 
process with intensity 

w(t ,s ,a) f ( t ,s ,a) ,  (t ,s,a) E (0, T] × {male, female} x {1 ,2 , . . .} .  

It is assumed that the intensity f can be written as 

f ( t , s ,a )  = f l( t) fz(s ,a) .  (3.2) 

In this way the distribution of  occurrences and covariates is described by three 
components; a calendar time effectfl ,  an age effect for malesf2(male, .), and an age 
effect for females f2(female, -). 

The development of a claim contains a reporting delay and a partial payment 
process. Following Norberg (1993a), we assume that the distribution of the devel- 
opment of a claim depends on the past history of  the process only through the 
associated occurrence time and covariates. This kind of development distribution is 
called position dependent, see Karr (1991). In the following the distribution of  the 
development of a claim, which occurred at time t and has covariates (s,a), is 
described by the distribution of  the reporting delay U, PuIt,s,a, and the distribution 
Pxl,,,t,s,. of  the partial payment process X given U = u. 

The distribution PuIt,s,a is assumed to be absolutely continuous (with respect to 
the Lebesgue measure). It is modelled by the corresponding hazard rate 

gflt,s,~(u) = g(u), (3.3) 

which is assumed independent of both the time of occurrence and the covariates; 
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that a probability P on 'R.+ has hazard rate g means that g(u)du = P(du)/P((u, cxz)). 
There are many possible extensions. For example, we could assume that Pult,s,a has 
hazard rate 

guIt,s,a(u) = gl (s, u)g2(s, a)g3( t), 

containing 5 components. Both sexes have then their individual reporting delay 
component and age component, and then there is a calendar time component. Such 
an extension would cause no mathematical problems, but the computational effort 
would increase. 

The partial payment process X =  (Yv)v~I0,v] arising from a single claim is a 
jump process. Let 

7-t,, = 

be the history of a reported but not settled claim; here v is the time since the claim 
was reported. Let dy denote a small interval of length dy around y. The distribution 
of X is described using intensities. Let hse(V [ 7"(v-) be the intensity of settling at 
time v without a partial payment at time v, let hsep(v, dy [ ~ - )  be the intensity of 
settling at time v with partial payment of size dy, and finally let hp(v, dy ] ~ _ )  be 
the intensity at time v of having a partial payment of size dy without settlement. We 
have to decide how the intensities hse, hsep and hp depend of the history ~ _  just 
before time v. 

The following information can be derived from H~_: 

Nv number of partial payments in [0, v), 

Tv time since the latest partial payment if any, else Tv = v. 

We assume that the intensity of settling only is 

hs°e (v) if Nv = 0 
hs~(V [ 7-/,,_) = h~e(Tv ) if Nv > 0, (3 ,4) 

the intensity of settling with a partial payment of size dy is {o o 
hsep(V, dy I 7-t~_) = hsep(V)PseP(y)dYl 1 if Nv = 0 (3.5) 

hsep(Tv)Psep(y)dy if N~ > O, 

and the intensity of having a partial payment of size dy without settlement is 

f h~(v)p~(y)dy ifN~ = 0  
hp(v, dy [ ~ _ )  = ~ hlp(Tv)p~,(y)dy ifN~ > 0. (3.6) 

As a consequence, partial payments are distributed according to the densities 0 Psep, 
P~ep, pO and pl. These will be described by their corresponding hazard rates denoted 
qsep, q~ep, q0p Pand q~. 

The assumptions (3.4)-(3.6) need some comments. The distribution of the partial 
payment process P)Ou,t,s,a iS assumed to be independent of both the time of occur- 
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rence t, the reporting delay u and the covariates (s, a). The intensities of  the partial 
payment process depend on the past history of the process only through the number 
of  partial payments (Nv) and the time since latest partial payment if any, else the 
time since notification. These assumptions are not crucial, and at this stage the 
model has many possible extensions. For example, it could be reasonable to assume 
that the size of  a partial payment depends on the sizes of  the previous partial 
payments. And often it is reasonable to assume that the size of  a payment also 
depends on the time since the latest partial payment (if any). Such extensions can be 
done without mathematical difficulties, but the computational effort would increase. 
For example, making the size of a partial payment dependent on the cumulated 
amount of the previous payments, Y(v-) ,  can be done assuming that the intensities 

l and I have the structure qsep qp 

q~ep(Yl~_ )__ la Ib qsep(Y)qsep( Y( v-  ) ) 

and 

q~(Y [ ~v-)  = q~a(y)q~b( y(v_)).  

Even the product assumptions made here are not that crucial. 

3.2. Prior assumptions 
In the previous subsection the distribution of the claims process is described by 14 
components (intensities). These are 

f l ,  f2 (male, .), f2 (female, .), g, 

0 0 0 0 0 I 1 I 1 I 
hsep, qsep, hp,  qp,  hse , hsep, qsep, hp,  qp, hse. 

Now a prior distribution is to be chosen. The intensities are assumed piecewise 
constant. The intervals on which the intensities are constant, and the values (levels) 
of  the intensities on the different intervals are the parameters. A prior distribution (a 
distribution on the parameter space) is attached to the intensities. The main idea is 
taken from Arjas and Gasbarra (1994). Following their notation, we shall denote 
unknown parameters by Latin letters and parameters in the prior distributions, the 
so-called hyperparameters, by Greek letters. 

To begin with we look at the calendar time effect f l .  It is assumed to have a 
piecewise constant structure 

fl(t) = ~_j I(sj<t<s/+,)bj, (3.7) 
j > 0  

where bj, given (b0 , . . . , b j - i ) ,  follows a Iognormal distribution with parameters 
(Iog(b. l), o-~.) denoting the mean and the variance in the associated normal dis- J -  ft . . . .  
tribution, and 0 = So < S~ < $2 < . . .  follows a Polsson process with intensity A A. 
In short, we write 

b j l ( b 0 , . . . , b j - , )  ~- LogN(log(bj_ i),a},), (Si)i_>o ~ Poisson(Af,). (3.8) 
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For uniqueness it is assumed that the initial level b0 is 1. 
The prior structure (3.7)-(3.8) is essentially used to model all 14 components. A 

prior should reflect the knowledge one has about the problem at hand, and it is 
therefore reasonable to discuss what kind of prior information the structure (3.7)- 
(3.8) will represent. To save notation we drop the subscript f l  on the hyperpara- 
meters. 

The intensityfj is by (3.7) assumed to be a positive simple function (a piecewise 
constant function). The prior distribution of f l  should therefore be a distribution on 
the space of positive simple functions. The prior (3.8) is a possible choice. The prior 
expected number of changes in level per year is A, and the levels have a log- 
martingale structure, 

l o g ( h i )  = l o g ( b j _  1 ) --]- Ej, 

where the e's are iid normally distributed with zero mean and variance o -2. A small 
(large) value of  e2 corresponds to a high (low) correlation between the levels at 
different times. We consider this choice of  prior very vague. It is our experience 
that, with a reasonable amount of data, the data will 'speak for themselves'. By 
adjusting the values of  the hyperparameters we can, however, control the smooth- 
ness of the estimate, the estimate being the posterior mean, say. Now, our prior also 
has some weaknesses. The prior distribution o f f l  is not stationary. The median in 
the prior distribution of bj is b0, but the mean is boexp(jo'2/2). This could be a 
problem if we wish to predict the occurrence intensity in the years to come. There 
we have no data, and if we choose to predict using the posterior mean, we will 
therefore get an increasing estimator. The reader might ask: why not control the 
mean by multiplying bj with exp(-jcr2/2)? If that is done, then it can be shown that 
bj converges almost surely to 0, and new difficulties arise. As an alternative prior 
one could keep the distributional assumptions about the jump times, but assume that 
the levels are distributed as 

bj = b(a., where 6 ~ Gamma(i , ,  6), and ~'j are iid Gamma(x ,  l /x ) .  (3.9) 

From a computational point of view, this prior gives no difficulties. Furthermore, it 
is stationary. The assumption is that the intensity varies around a level b. It does not 
allow for permanent changes in the intensity. As a consequence, the prior (3.9) adds 
more structure to the intensity (smaller variance), and that can be useful when 
predicting the future occurrence intensity. We are going to use prior (3.7)-(3.8). The 
prior is chosen in an attempt to add only little prior information. 

The age effects J;(male, -) and f2(female, .) are modelled as discrete versions of 
the construction (3.7)-(3.8). We assume that 

f2(male, a ) =  Z l(ae{rj+a,...,~+~})c)', a = 1 , 2 , 3  . . . .  
j>0 

> above, but with new hyperparameters e2 where (cj)j> j are modelled as (bj)j 1 
and Afz,, and where (Kj + I - Kj)j > t are assumed to be lid geometrically distribu(e~ 
with parameter t~f~. Some readers might again find it reasonable to add the prior 
information that young males have a high intensity of  making claims. Such 
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information is not added here, but our estimates will show that young males are a 
high risk group. The age effect for femalesf2(female, .) is assumed to have the same 
structure as the age effect for males, but with new hyperparameters. Furthermore, 
we need to specify the prior of the initial levelsf2(male, 0) andf2(female, 0). These 
are assumed to be lognormally distributed with parameters (tz0f~, cr~f~) for males 
and (#0f2f, ~0f: I) for females; the ~'s controlling the levels and the tr's controlling 
the variability. 

The remaining 11 components (g, hs°.ep, qs°ep, etc.) are all assumed to have the same 
structure (3.7)-(3.8) as the calendar time effect f l ;  each component having its 
individual hyperparameters. The initial levels are assumed to be Iognormally dis- 
tributed, again with individual hyperparameters for each component. 

Finally, unknown parameters associated with different components are assumed 
to be independent with respect to the prior. This independence assumption is not 
that crucial, and in some branches it is not reasonable. It might be that a large 
number of occurrences induces relatively small claims. In that case f l  should be 
positively correlated with the q's. Also, it might not be reasonable to assume 

0 0 0 independence between the competing risks, hse , hse p and hp, say. It could be that, 
if the intensity of settling only, hs°e, is high, then the intensity of settling with a 

0 partial payment, hse p, tends to be high too. There are ways of modelling such 
dependencies, but for simplicity we have chosen not to consider them here. 

3.3. Additional remarks 

The distribution of the claims process (3.1) is described by 14 components. These 
components are modelled nonparametrically. Some readers might want to add more 
structure by using parametric models. For example, the distribution of the partial 
payments could be described by mixtures of lognormal distributions. Such a choice 
can be motivated easily. We work with dental claims; there are examinations and 
there are operations. Operations are more expensive than examinations, and there- 
fore it can be argued that the distribution of a partial payment should have two 
peaks. The estimates will show that the distributions of the partial payments actually 
have two peaks. Also, as discussed previously, it could be useful to add more 
structure into the calendar time effectfl when predicting the occurrence intensity in 
the years to come. As time goes (7- increases) more and more claims are observed, 
and the estimates of all components that are independent of calendar time will be 
consistent (the posterior distributions will converge towards unit mass distribu- 
tions). However, the uncertainty about the occurrence intensity in the years to come 
will remain. Assuming that the occurrence intensity does not change with calendar 
time (fl constant) is a possibility. This is, however, typically not realistic, and 
structures like (3.9) could be chosen. 

Along the way we have pointed out possible extensions. Different branches of 
insurance (motor insurance, fire insurance, etc.) call for different specifications of 
the model. The insurance companies will have an idea about which dependencies 
the model should allow for, e.g. that a long settlement period typically induces large 
partial payments. 
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4. MARKOV CHAIN MONTE CARLO INTEGRATION 

We wish to approximate the posterior distribution of the unknowns: i.e. parameters 
and outstanding liabilities. To do that, Markov chain Monte Carlo (MCMC) inte- 
gration is used. A Markov chain, which has the posterior distribution as its equili- 
brium distribution, is generated. The algorithm contains an arbitrarily chosen 
number of steps where, at each step, new values of the unknown parameters, the 
remaining developments of  the reported but not settled claims (RBNS) and the 
occurrence times, covariates and full developments of  the occurred but not reported 
claims (IBNR), are sampled. As the number of steps increases, the empirical 
distribution of these sampled quantities converges towards the posterior distribution. 
Thereby the posterior can be approximated, and based on this approximation the 
estimations and predictions are made. By increasing the number of steps we can 
make the approximation as exact as we wish. 

Figure 1 shows a model graph. Quantities surrounded by squares are known; these 
are either hyperparameters chosen by us, or they are data. Quantities surrounded by 
ellipses are unknowns; these are either unknown parameters, IBNR claims or RBNS 
claims. Arrows indicate dependencies. In each step of the algorithm new values of  
all quantities surrounded by circles are sampled. 

Before we go on with a description of the algorithm we shall again refer to Smith 
and Roberts (1993) for an introduction to MCMC integration. 

4.1. L i k e l i h o o d  

In order to solve the Bayesian inferential problem we need the likelihood of the 
data, i.e. the distribution of the (observed) data given the unknown parameters. 

The observations are the claims reported, including their development up to 
calendar time r.  We denote these observations 

(~t', S~?, A~ ~, U~, ~/ ) i>  1. (4.1) 

Note that X~ is the partial payment process censored at calendar time r,  i.e. 
r -  ~ -  U~' time units after notification; cf. (2,1)-(2,2). In the previous section 
the distribution of  all claims which had occurred, including their f u l l  development 
were modelled. The results of Norberg (1993a) imply that, given the unknown 
parameters, the process generating the reported claims including their full devel- 
opment, even if these go beyond calendar time r,  has occurrence intensity 

w(t,  s, a) f ( t ,  s, a ) e u ( r  - t). (4.2) 

The conditional distribution of the reporting delay of a claim which occurred at time 
t is 

P u ( d u )  l(,, _< ~ _ ,) 
e u ( r -  t) ' (4.3) 

and the distribution of  the corresponding partial payment process is 

Px(dx). 
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FIGURE I Model graph 

The claims (4.1) occur with intensity (4.2). The distribution of a reporting delay of a 
claim which occurred at time t is given by (4.3). The distribution of the observed 
part of  a partial payment process of  a claim, which occurred at time t and was 
reported after u time units, is easily found using the 'intensity construction' of the 
distribution Px of the partial payment process; see Subsection 3.1. We denote the 
distribution 

where r - t - u refers to the censoring of  the process r - t - u time units after 
notification. A likelihood is a density. In the following we use a somewhat sloppy 
notation which hopefully does not cause misunderstandings. The likelihood of  the 
observations (4.1) is 
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A(obs) ex Hf(7~/, S~#, A° )eu ( r -  7~) Pv(dU°) ~'-T"-u7 
i>l " e - - ~ = - ~ )  PX ( d ~ i )  

xexp(-ZL s,. 
o o o ~- r ] -u ,  °' = Hf(T~,Si,Ai)Pu(dUi)Px (dX~) 

i>_l 

x e x p ( - Z L  s,a 

o< s°,  
i>_l i>_l 

×exp(--~Sorw(t,s,a)fl(t)f2(s,a)(1--e-f;-'g(u)dU)dl) 
\ SiG 

× I I  g(UT) × exp - g(u)du 
i>_l 

7-t~ • to 

x I I  P 7  '-~' (dX~). 
i_>l 

(4.4) 

(4.5) 

Here the last part (4.5), dealing with the partial payment  processes, has to be written 
in more detail. Recall that Xi ° is the observed part o f  the partial payment  process of  
the ith claim. The superscript ~- - ~ - U~ refers to the censoring o f  the process at 
calendar time 7-. From the observed partial payment  processes (Xi°)i _> ~ some useful 
quantities are derived. First we consider exposure: 

W°(v): The number  of  claims in which the waiting time from notification to first 
partial payment  or settlement is at least v. Note that W ° is majorised by the 
number  o f  reported claims and decreasing in v. We have W°(0) = 2806, the 
number o f  reported claims. 

W I (v): The number o f  times any partial payment  process is observed, with waiting 
time at least v since the latest partial payment.  Also W ~ is decreasing in v. We 
have W I (0) = 1780. Here W l is less than the number of  reported claims, but in 
principle W I can exceed the number o f  reported claims since a claim can have 
several partial payments.  

Then 'events ' :  
( V~d)j > I: Waiting times from notification to settlement without payment.  There are 

only 9 of  these in the data. 
( ~ p ) j  > i and (Y~eJp)j > i: Waiting times from notification to settlement with one 

p@ment ,  and the ~orresponding amounts paid (in this case the payment equals 
the total claim amount). There are 1295 of  these. 
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~pJ)j ?_ I and ( Y~J)j >_ I: Waiting times from notification to the first partial payment 
without settlement, and the corresponding amounts paid. There are 1376 o f  
these. 

Vs elJ)j ~ l: Waiting times from a partial payment to settlement only (no partial 
payment at the time of  settlement). There are 242 of' these. 

V]~pj_l).> and (Y~ep)j_>ld I ' Waiting times from a partial payment to settlement with 
payment, and corresponding amount paid at settlement. There are 643 of  these. 

Vi ~lJ)j>l and (Y~J)j _> i" Waiting times from a partial payment to the next, when the 
latter does not settle the claim, and corresponding amounts. There are 404 of  
these. 

As an illustration we have in Figure 2 shown two examples of  partial payment 
processes. The first process settles within time 7-. There are two payments made, and 
no payment is made at the time o f  settlement. The second process arises from an 
RBNS claim. There is one payment made and the partial payment process is 
censored (calendar time 7- is reached). Events and amounts are shown at the figure; 
waiting time between jumps are events, and sizes of  jumps are amounts. Note that 
V' is the waiting time from latest payment until censoring, and it only affects the 
exposure. The exposure fianctions are given by 

Accumulated ~sle, 1 
payments 

l 
= 

: y l , x  
Vpl,1 ,, 

i 

a 

Time since 

Accumulated 
payments 

Vp0,2 

notification 

V I 

7 
i 

!y o,2 
: p 
, 

t 

J 

i_ 

Time since 
notification 

FIGURE 2 Examples of observed partial payment processes; x denotes a settlement 
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2 v ~ (o,G,:]  
~'liO(I, ') = 1 P E (l.~,2, j/~,'] 

o v ~ (~,l,oo) 

! v ~ (o,v~;'] 
Wse and Wl(v ) =  v E ( i . I  Vi, l] 

E (v~,', v'] 
0 v ~ ( v ' , c ¢ )  

As a function of exposure and events the last part (4.5) of the likelihood can be 
written as 

-~-~-u7 . . . . .  o j h0 ( ~ j  H t'p'r COXr) O( H hse(~se) H -sep, sep, ~ hg(~p j) 
i_>l j > l  j > l  j ~ l  

1 I j  ld I id 
× 1]hs<(~;o) f i  , hsep ( V;ep ) H hp( Vp ) 

j>_l 

x exp 

j >  i j _ >  I 

-/0 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

x I I  Ps°ep (~/p) H P~(~pd) 
j_>l y_>l 

x H i tj i tj psop(r;e.) H pp(r; ), 
j~_l j>_l 

where the V, W and Y depend on the observed partial payment processes in an 
obvious way. The density 0 0 Psep, say, is given by its corresponding hazard rate qsep" 
We have 

~2J 
p0 1 -  2..., [ qsep (y)dy}.  (4.12) l ]  ,op(~:p) ~ I I  o ( . - . ,  ,`0 o " qsep (Y~sTp) x exp 

j_> l j Z l \ j_> l J O ] 

The last part (4.5) of the likelihood fimction can now be substituted with (4.6)- 
(4.12). 

We have chosen priors along the lines of Arjas and Gasbarra (1994). To copy 
their sampling algorithm it is necessary that, in each of the 14 components, the 
likelihood is proportional to an expression of the form 

1],,( ) × ex (- I ' (  
where h is a component, and Z does not depend (functionally) on h. This is the case 
with all components but g, which unfortunately occurs in the part (4.4) of the 
likelihood. A way to deal with this problem is to use data augmentation. 

4.2. Missing data 

The reason that the likelihood of the (observed) data does not have a tractable shape 
is that the occurred but not reported claims (IBNR) are not observed. Here data 
augmentation can be used. By sampling and adding to our data the occurrence times 
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and covariates of the IBNR claims, the likelihood obtains the desired shape. The 
occurrence times and covariates of the IBNR claims are called missing data. The 
missing data are denoted 

(~j, S~, AT)j_ > 1' (4.13) 

Note that reporting delays and partial payment processes of the IBNR claims, and 
the remaining development of the RBNS claims, are not included as missing data. 
However, we are going to sample them at each step of the algorithm, but they are 
not used to sample unknown parameters. They are only used to predict outstanding 
liabilities, cf. Figure 1. The results of Norberg (1993a) imply that, given the 
unknown parameters, the missing data (4.13) are independent of the observations 
(4.1) and that the missing data are distributed as a marked Poisson process with 
intensity 

w(t,s,a)f(t,s,a)(1 - Pu(r-  t)), (t,s,a) E (O,r) x {male, female} x {1,2, . . .} .  

(4.14) 

The likelihood of the missing data only is 

A(mis) cx H . f ( ~ j ,  ~ j ,  A~")(I - P v ( r -  7~n)) 
j > l  

x exp - w(t,s,a)f(t,s,a)(1 - P u ( r -  t))dt 

( : : )  cx Hfl(7~n)f2(~j',A~n)exp - g(u)du 
j >  1 dO 

x exp - w(t,s,a)fl(t)f2(s,a)e-£ g(")dUdt . 

Because of conditional independence of the observed and missing data, the like- 
lihood of these combined data is the product of the corresponding two likelihood 
expressions, i.e., 

A(total) = A(obs)A(mis) (4.15) 

fi:l AT) 
i_>l j > l  i > l  j > l  

xexp(--s~foTW(t,s,a)f~(t)f2(s,a)dt) (4.16) 

x r I  g(U~) x exp - g(u)du- Z : g(u)du (4.17) 
i_> 1 " j_> 1 dO 

pT- -U:(dXT), 
× I ~ L X  

i > l  
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where the last part is written in detail in (4.6)-(4.12). Now the likelihood has the 
desired shape. 

4.3. Sampling algorithm 

The sampling algorithm goes as follows: To begin with, initial values of the 
unknown parameters are determined. These can either be sampled from the prior 
distribution or chosen arbitrarily; asymptotically it does not matter. A general step 
of the algorithm contains three substeps: 

Substep I: Sample occurrence times and covariates of the IBNR claims (the missing 
data) given the unknown parameters sampled in the previous step of the 
algorithm; 

Substep 2: Sample the remaining development of the reported but not settled claims 
(RBNS) and the full developments of the IBNR claims, given the unknown 
parameters sampled in the previous step of the algorithm, and given both 
observed and missing data where the latter were sampled in Substep 1; 

Substep 3: Sample the unknown parameters given both the data (observations) and 
the missing data sampled in Substep 1. 

These three substeps are discussed in the following. 

4.3.1. Sampling the missing data 
The missing data are the occurrence times and covariates of the 1BNR claims, see 
(4.13). Given the present value of the unknown parameters, sampled in the previous 
step of the algorithm, the missing data are distributed as a marked Poisson process 
with intensity (4.14). It follows from Norberg (1993a), Theorem 1, that the total 
number of IBNR claims is Poisson distributed with mean 

W IBNR = w(t,s,a)fl(t)f2(s,a)(1 - Pu(7- - t))dt, 

and given this total number, the occurrence times and covariates of the IBNR claims 
are iid with density 

w(t, s, a)fl (t)f2(s, a)(l - Pu(7- - t))/I'V mNR 

on (0,7-]× {male, female} ×{1,2 , . . .} .  The missing data are sampled from this 
distribution. 

4.3.2. Sample IBNR and RBNS claims 
In Substep 2 the unknown parameters sampled earlier by the algorithm, the data, and 
the occurrence times and covariates of the IBNR claims sampled in Substep 1 (the 
missing data), are all held fixed. 

First we sample the reporting delays of the IBNR claims. We already know their 
corresponding occurrence times (7~")j_>l. So, the jth reporting delay must exceed 
7- - ~j', and it is distributed according to the hazard rate g. Now thejth reporting 
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delay is sampled from a distribution on (~- - Tj', cx~) with piecewise constant hazard 
rate g. 

The partial payment process of an IBNR claim can be sampled as follows. First 
the waiting time to the first 'event' is sampled. This waiting time is distributed 
according to the piecewise constant intensity hs°e + hs0eD + h~. Then the type of the 
event is sampled. With probability hs°e/(hs°e + h~°ep + h°p) it is a settlement only, with 
probability 0 0 0 0 h s e p / ( h s  e "Jr- h sep "q- h p) it is a settlement with partial payment, and with 

O U O O probability hp/(hse + hse p + hp) it is a partial payment only. If the first event 
includes a partial payment then the size of this payment is sampled. If the first 

0 else it event also includes settlement, then the partial payment has hazard rate qsep, 
has hazard rate qO. If the first event was a partial payment only then the waiting time 
to the next event and the type of this event are sampled. Here the components 

1 and I Waiting times and events are sampled until needed are hie, h]ep, h~, qsep qp" 
settlement is reached. 

The remaining partial payment process of an RBNS claim is sampled using the 
same method as above. For each individual RBNS claim we need to know whether 
any previous partial payments have been made, and the time since the latest partial 
payment if any, else the time from reporting. 

4.3.3. Sampling the unknown parameters 
In this substep we condition on the observed data and the missing data sampled in 
Substep 1, and sample the unknown parameters (jump times and levels of the 14 
components). The conditional distribution of these unknowns has a density that is 
proportional to the likelihood (4.15) of the combined observed and missing data, 
multiplied with the prior density of the unknown parameters. Direct sampling from 
this distribution is not possible. However, we can identify the conditional distribu- 
tions of each of the unknown parameters given the remaining part of the unknown 
parameters and given the observed and missing data. From these one-dimensional 
distributions the parameters can be sampled one by one. A complete description of 
the sampling of the unknown parameters would take quite a few pages. We shall 
here give a short overview. 

The unknown parameters are the jump times and levels of all the 14 components. 
To save notation we shall denote the unknown parameters by X~, X2, . . .  (how they 
are ordered will be discussed later). Assume that the present step is the kth, and 
denote by X~ -I, X~ -I . . . .  the values of the unknown parameters sampled in the 
previous step of the algorithm. They are now sampled one by one. As mentioned, 
the conditional distribution of each individual unknown parameter, given the 
remaining parts of the unknowns and given observed and missing data, is known 
(at least up to proportionality). First a new value X~ of X1 is sampled from the 
distribution of 

X] given X~- t ,X~- I , . . . ,  (4.18) 

then a new value X~ of X2 is sampled from the distribution of 

X 2 given )fl~l,,V3~-t,..., (4.19) 
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and so the algorithm continues. The algorithm is called Gibbs sampling, cf. Smith 
and Roberts (1993). Recall that the unknown parameters are the levels and jump 
times of the 14 components. When the unknown parameter (an X) is a level, it is not 
tractable to sample from the above one-dimensional distributions and then Metro- 
polis-Hastings is used. With this modification the algorithm is called a 'variable-at- 
a-time Metropolis-Hastings', cf. Chan and Geyer's discussion of the paper by 
Yierney (1994). 

The method used for doing the sampling (4.18)-(4.19) is taken from Arjas and 
Gasbarra (1994). The unknown parameters can be grouped into 14 groups according 
to the component they determine (fl,f2(male, "),f2 (female, .), g , . . . ) .  In Arjas and 
Gasbarra (1994) it is shown how the unknown parameters associated with one 
component can be sampled. Denote by (bj) and (Sj) the levels and jump times of the 
componentf~, say. Arjas and Gasbarra order them as 

b0, Si, bl, $2 , . . . ,  (4.20) 

and sample new values as indicated in (4.18)-(4.19) above. Their algorithm carries 
over with minor modifications; their levels are correlated gamma distributed, while 
our levels are correlated lognormally distributed, and when sampling the levels they 
use rejection sampling which corresponds to repeating Metropolis-Hastings until 
acceptance is reached. When sampling the unknown parameters associated with an 
individual component, we adopt the methods of Arjas and Gasbarra, and thereby the 
components are sampled one by one, following the order (4.20). But in which order 
should the different components be sampled? According to the prior the 14 
components are independent, and by inspection of  the likelihood (4.15) of the 
combined observed and missing data, we get that according to the conditional 
distribution of the unknown parameters given observed and missing data, all 
components but f l ,  f2(male, .) and f2(female, -) are independent. Therefore, except 
for the mutual order of f i, f2(male, -) and ffffemale, -), the order in which the 
different components are sampled does not play a role. We have chosen to sample 
first f i, then f2(male, .), then J~(female, .), and then the remaining 11 components. 
Asymptotically, the order does not play any role. 

5. RESULTS OF THE ANALYSIS 

Suppose we stop the sampling algorithm after n steps. What we then have is the first 
n steps of a Markov chain. That the chain is Markov follows from the construction. 
Each step of the chain contains sampled values of the unknown 

parameters, 

occurrence times, covariates and full development of the IBNR 
claims, and 

remaining development of the RBNS claims. 

By construction, the posterior distribution, i.e. the conditional distribution of the 
above unknowns given the observations, is invariant for that chain. It is obvious that 
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the chain is both irreducible and aperiodic. From Tierney (1994) it now follows that 
the chain is (positive) recurrent. We need the chain to be ergodic, and for that a 
stronger type of  recurrence, called Harris recurrence, is needed. In their discussion 
of  the paper by Tierney (1994), Chan and Geyer show that a certain type of  
algorithm, which they call a 'variable-at-a-time Metropolis-Hastings', is often 
Harris recurrent. Their proof carries over to our situation with only minor modifica- 
tions. It then follows that our chain is ergodic. A survey of  the theory can be found 
in Tierney (1994). 

Let (Mj ) j= t ,  2 .... denote the chain, let h be a function on the space of  possible 
values of  the unknowns above, and assume that h has finite mean with respect to the 
posterior distribution. Then 

1 " a s 
h(gjl Epostor orh. (5. l) 

As an example, suppose we wish to find (approximate) the posterior distribution of 
the size of  the outstanding liabilities. The outstanding liabilities are a function of  the 
claims process (3.1). The liabilities are divided into liabilities arising from the IBNR 
claims, 

X IBNR = ~I(T,_<~,<Ti+u,)Yi, 
i > l  

and liabilities arising from the RBNS claims, 

X RBNs = ~ l(r, + u, _< T < T, + U, + v , ) (Y i  - Yi(~- - Ti  - Ui) ) .  
i>l 

L e t  ~jBNR. and ~jBNS denote the values sampled in the jth step of the algorithm 
(both are functions of  Mj) .  By (5.1) we have 

I ~ - ~  a . s . o  . / v  IBNR S RBNS 1 x,.~R ~ . ~ s < ~  ---~ + < x ) ,  ( 5 . 2 )  ( j + j - - )  *postenork "x 

and thereby the posterior (predictive) distribution of  the outstanding liabilities can 
be approximated by the left hand side of  (5.2). The theory does not give an exact 
answer as to how large n should be chosen. However, what one usually does is to 
run several independent simulations and use these to evaluate the stability of  the 
algorithm. 

To begin with we have to choose values of  the hyperparameters, and the initial 
values of  the unknown parameters. Recall that each of  the 14 components (inten- 
sities) can be written as 

~ i ( s j < t < s , ~ . , ) b j .  (5.3) 
j_>o 

The hyperparameters ~0 and/2,0 determine the prior variance and mean of  the initial 
level (b0) while A (or to) and o .2 determine the prior variability of  the intensity; cf. 
the discussion in Subsection 3.2. Table l shows the chosen values of  the hyper- 
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TABLE I 
H Y P E R P A R A M E T E R S  

ao 2 #o A- i 0.2 

fl 70 0.01 
g 0.2 - 9  6 0.01 

0 0.2 - 3  10 0.02 
hh sap 0.2 - 6  I 0 0.02 

D 

hsOe 0.2 - 6  10 0.02 
l 0.2 --3 I 0 0.02 

hh ]~p 0.2 - 6  10 0.02 
D 

hie 0.2 - 6  10 0.02 
qOp 0.02 - I0 250 0.04 

0.02 - I 0 250 0.04 q~ 
q]ep 0.02 - 10 250 0.04 
qp 0.02 - 10 250 0.04 

o~ #o -Iog(l  - n) a 2 

f2(male, .) 0.2 - 1 I 5 O.OI 
rE(female, .) 0,2 - I I 5 O.Ol 

parameters. We shall not try to motivate the choice o f  all the values. However, a few 
comments are needed. The individual values o f  A and o .2 were chosen as follows. 
We started out with some arbitrary values. If  the estimate (posterior mean o f  the 
intensity) turned out either too ragged or too smooth, then new values o f  A and o -2 
were chosen. This way of  choosing hyperparameters corresponds to how window 
size (bandwidth) is chosen in kernel density estimation, and it is not orthodox 
Bayesian in spirit. On the other hand, our choice o f  the hyperparameters ~ and #0 
represents prior knowledge. For example, we believe that small payments (from 0 to 
25 DKK) are very unlikely, and therefore the values o f  the q ' s  should start out small. 
By choosing #0 small we express the prior knowledge that the intensity (hazard rate) 
starts out small, and by choosing ~ small we express a high degree o f  belief in this 
knowledge. Other values o f  the hyperparameters were tried out. But, within what we 
believe were reasonable values, the hyperparameters had only minor influence on 
our estimations/predictions. 

The unknown parameters are the jump times and levels (the S's  and b's,  cf. (5.3)) 
o f  each of  the 14 components. Their initial values can, for example, be sampled 
from the prior distribution or be chosen arbitrarily. The theory says that asympto- 
tically it does not matter what you do, which was also our experience. However, the 
algorithm turned out to be time consuming, and to save iterations we, therefore, 
wanted to start the algorithm at a place with high posterior probability. For each 
component, the initial values o f  the jump times were chosen such that areas with 
many observations (occurrences, delays or payments) had many jumps, Given the 
jump times, the maximum likelihood estimators o f  the levels were used as their 
initial values. 
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The algorithm was written in S-Plus and run on a DEC workstation. As men- 
tioned, the algorithm turned out to be rather time consuming; about 1 hour for each 
100 steps, but much could have been gained by writing parts of  the algorithm in C, 
say. We did two runs; one of  length 1000 and one of  length 500. After a few 
iterations (40-60) the algorithm seemed stable (we plotted the approximations to the 
posterior mean of the individual 14 components, and found that these did not change 
much). As approximation to the posterior distribution of all unknowns we use the 
empirical distribution of all 1500 realizations. 

Each of the 14 components was estimated by its (approximated) posterior mean 
(an average of the 1500 iterations). In Figure 3 the estimates of  the componentsf~, 
f2 and g are shown. From a mathematical point of  view, it is easy to calculate 
(posterior) pointwise 95% credible intervals for each component, but the computa- 
tional effort would increase. Even though we have no credible intervals, we allow 
ourselves to comment on the estimates. The occurrence intensity is the product of  
the calendar time effectfl  and the age effect f2. Looking a t f l ,  there seems to be no 
obvious seasonal effect. In observation year no. 3 (1984) the occurrence intensity is 
high (we have no explanation why), otherwise there are only minor variations. 
Looking at f2 it is obvious that there is an age effect• Young males are a high risk 
group, while young females are a low risk group. From age 30 and on there are only 
minor differences between the sexes. The last graph shows the reporting delay 
hazard rate g. Based on the estimate from Figure 3, the 95% quantile of  the 

Calendar time effect 

1 2 3 4 5 6 

calendar time in years 

d 

~ d 

Age effect 

, , , . ' . , .  ~ - ,  . . . . .  

20 30 40 50 60 

age In years 

Reporting delay hazard rate 

50 100 150 200 25o 

reporting delay In clays 

FIGURE 3 Posterior mean of  f l ,  f~ and ,9 
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Posterior  mean of  h ' s  and  q 's ;  the q hazard rates are shown by their corresponding densities, the 
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distribution of the reporting delays is 4 months, and almost 75% of the claims are 
reported within a month. 

Figure 4 shows the estimates (posterior means) of  the h's and q's. The posterior 
means of  the h's and q's are smooth functions. However, for computational 
simplicity the estimates are calculated at a relatively small number of points, and 
the estimates may therefore appear a bit ragged. Before the first payment, the 
different types of events, settlement with payment, payment only, and settlement 

0 h~ and 0 only, occur with intensities hsep, hse , respectively. The intensity of settling 
only is almost 0. The intensity of settling with a payment starts out high within the 
first couple of days from notification. It then decreases, and it has its maximum a 
month after notification. The intensity of having a partial payment only has essen- 
tially the same structure. There is 5% probability that no events have occurred 
within 6 months from notification. After the first payment, the different types of  

1 I I events occur with intensities hsep, h_ and hse, respectively. Here the probability of 
I settling only (hse) seems to be considVerable, especially when the time since the latest 

payment is long. There is almost 50% probability that no events have occurred 
within 6 months from notification, and there is 5% probability that no events have 
occurred within 5 years. This means that for a claim with observed previous 
payments the expected settling time is long. Payments that are not made at the 

0 I time of settlement are distributed with hazard rates qp and q_. The corresponding 
0 1 o densities are called pp and pp, respectively. Now, 19~ of a~'l observed first-time 
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payments not made at the time of  settlement were of  the size of  178, 185, 186 or 189 
DKK. These amounts are probably fees for some standard dental examination. Our 
estimate ofp°p therefore has a high peak in this area (the peak has been truncated on 
the graph), and it is questionable whether it is reasonable to model the distribution 
of  these payments as a continuous distribution. None of  the other types of  payment 
(first-time payment at time of settlement, or subsequent payments) had such very 
frequently occurring sizes. The average first-time payment not made at time of 
settlement is approximately 1000 DKK. The distribution of  the subsequent pay- 

i has the same shape as pOp, except for the ments not made at time of settlement, pp, 
high peak. Based on the estimate from Figure 4, the mean of  these payments is 
approximately 2100 DKK. The distributions of  the payments that are made at the 
time of settlement, Psep° and P~ep, seem to be independent of  whether any previous 
payments have been made. The distributions have 2 peaks; one at approximately 
200 DKK and one at approximately 3500 DKK. The average amounts are approxi- 
mately 4200 and 4600 DKK. 

Figure 5 contains our main results. Here the (approximated) predictive distribu- 
tion of  the outstanding liabilities are shown. Recall that the original data set 
contained information about occurrence times, covariates and reporting delays, on 
all claims which occurred between January 1, 1982 and December 31, 1990 and 
which were reported before March 3, 1992. Furthermore, all payments made upon 
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these claims before March 3, 1992, were observed. In our estimation/prediction we 
only use data that were available at December 31, 1987 0- = 6 years after January 1, 
1982). The predictive distributions of  the outstanding liabilities could therefore have 
been calculated at that time. The distributions are calculated using the method 
indicated in (5.2). We have the observed run-off for a period of  4.2 years. On the 
graphs the accumulated run-offs are shown with dotted vertical lines. There are 68 
observed IBNR claims. This corresponds to the 39% quantile of  the predictive 
distribution of  the IBNR claims. The posterior distribution of the reporting delays 
has almost no mass for delays exceeding 3 years, and we therefore expect that all 
IBNR claims are reported within the 4.2 years. Table 2 shows mean, coefficient of 
variation (c.v.) and quantiles, from the predictive distributions of  the outstanding 
liabilities, cf. Figure 5. The coefficient of  variation is 0.22 in the predictive 
distribution of  the outstanding IBNR liabilities, while it is only 0.09 for the RBNS 
liabilities. Intuitively, this is obvious; only the sizes of  the RBNS claims are 
unknown, while for the IBNR claims also the number of  claims is unknown. After 
4.2 years the observed run-off for both the IBNR and the RBNS liabilities are below 
the 0.2 quantile of  the predictive distribution of  the outstanding liabilities. That was 
to be expected: 10 of  the 68 observed IBNR claims were not yet settled after 4.2 
years, and therefore there still remained some payments on the IBNR claims. Recall 
that RBNS claims with previous payments tend to have a long settlement delay. Of  
the observed 617 RBNS claims, 182 were not settled after 4.2 years. Some of these 
will settle without further payments, but still, the outstanding liabilities will exceed 
the observed 1.910.000 DKK. By combining the sampled values of  the IBNR and 
the RBNS liabilities and using (5.2), we get an approximation to the predictive 
distribution of the outstanding IBNR and RBNS liabilities, shown at the last graph 
in Figure 5. The mean and quantiles are found in Table 2. 

With the predictive distribution of the outstanding liabilities in hand, the insur- 
ance company can decide the size of  the reserve to be set aside. Now, there is a 
possible extension at this stage. For deciding on an investment policy, it is usefial for 
the company to know when the payments are due. This calls for the posterior 
(predictive) distribution of the run-off over calendar time. As previously, it is no 
mathematical problem to approximate this distribution; as a function of  the un- 

TABLE 2 
MEAN, C.V. AND QUANTILES OF THE PREDICTIVE DISTRIBUTIONS OF THE OUTSTANDING LIABILITIES 

IBNR RBNS IBNR and RBNS 

mean 337.000 DKK 2.090.000 DKK 2.430.000 DKK 
5% quantile 229.000 DKK 1.780.000 DKK 2.080.000 DKK 
95% quantile 468.000 DKK 2.410.000 DKK 2.800.000 DKK 
c.v. 0.22 0.09 0.09 
4.2 years run-off 246.000 DKK 1.910.000 DKK 2.160.000 DKK 
quantile for run-off 9% 18% 11% 



CLAIMS RESERVING IN CONTINUOUS TIME 163 

knowns, sampled at each step of  the algorithm, we get a value of the run-off over 
calendar time, and using these the desired distribution can be approximated. 

CLOSING REMARKS 

The distribution of  the claims process was described by 14 one-dimensional 
components which were modelled in a nonparametric Bayesian way. We find the 
Bayesian approach very apt. A standard parametric approach to the prediction 
problem could be as follows. First, the distribution of the outstanding liabilities is 
found as a function of the parameters. Then, estimators (maximum likelihood, say) 
of the parameters are found. And finally, a reserve is calculated as a function of  the 
estimators. Furthermore, the uncertainty about the parameter estimates can be 
incorporated into the reserve estimate. With the Bayesian approach the procedure 
takes place in a single step. The posterior distribution of  unknown parameters and 
the predictive distribution of  the outstanding liabilities are found simultaneously. 
Only the latter distribution is needed to predict the outstanding liabilities, since the 
uncertainty about the parameters is a part of  the variation (variance) in that 
distribution. 

We were a little less enthusiastic about the nonparametric modelling; the com- 
putations turned out very time consuming, and sometimes additional structure is 
needed (cf. the discussion in Subsection 3.3). In the future, we might want to model 
some components nonparametricaily and some parametrically. 

If we were to expand the model, then we would look at the partial payment 
processes. Claim handlers sometimes have additional information about the claims 
reported. Often, a claim handler forms an idea of the size of the total claim amount, 
and such information can be useful when predicting the outstanding payments on 
the RBNS claims. 
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