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ABSTRACT

In this paper we study a transform introduced by DE PrIiL (1989) for recursive
evaluation of convolutions of counting distributions with a positive probability 1n
zero. We discuss some cases where the evaluation of this transform 1s simplified
and relate the transform to infinitely divisible distributions. Finally we discuss an
algorthm presented by DHAENE & VANDEBROEK (1994) for recursive evaluation of
convolutions
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| INTRODUCTION

1A. In SunpTt (1992) we discussed the properties of a class of counting
distributions F whose discrete density f satisfies a recursion in the form

A
b

m f=73 [a,+—1)f(l—j) t=12".)

J=1 i
with f(1)=0 for i < 0. We obviously must have f(0) > 0. The distribution given
by (1) was denoted by R,[a,b] with @ = (a,, ..., a) and b = (b,, .., b;).
Furthermore, we denoted by 9, the class of such distributions with a fixed number
k of terms in the recursion, and we ntroduced

R=R, ~ Ry _,; k=1,2,.)

the class R consists of the degenerate distribution concentrated in zero.
Expressing a distnbution in the form R;[a,b] can in many cases simphfy
evaluation of convolutions and compound distributions, and such representations
therefore seem to be of some interest.
In particular, any counting distrbution F with a positive probability 1n zero can
be expressed n the form R, [0, ¢ |, and thus %, 1s the class of all such distributions.
By solving

]
) fWO== 2 ¢fli-j)

1 g=1
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with respect to ¢, we obtain

3) ! [f() Z fa )] G=1,2,.)
c,=— | y@t) - ofli=71); 1=1,2, ..
£(0) Pl

in this paper we interpret 2 =0 when s < r. From the way we constructed this
recursion 1t is obvious that the sequence ¢ 1s uniquely determined. We shall call ¢
the De Pril transform of the distnbution ¥ When we in the following discuss the
De Pnl transform of a distribution, it 1s silently assumed that the distribution
belongs to R,.

The following theorem indicates the usefulness of De Pril transforms.

Theorem 1. The De Prl transform of the convolution of a finite number of
distributions 1n &, 1s the sun of the De Pnl transforms of these distributions.

Theorem 1 was first proved by De Pril (1989) and restated in terms of the classes
R, by Sundt (1992).

From Theorem | we see that we can evaluate the convolution of a finite number
of distributions mm %, by first evaluating the De Pril transform of each of the
distributions by (3), then finding the De Pnl transform of the convolution by
summing the De Pril transforms of the individual distributions, and finally finding
the discrete density of the convolution by (2).

As we have seen, a distribution is uniquely determined by 1ts De Pril transform.
However, unfortunately we cannot apply the recursion (2) directly to find a discrete
density 1f we only know the De Pril transform as we also need the imitial value f (0).
If fhas a finite support, then we can in principle start with an arbitrary value of f(0)
and then rescale afterwards so that the probabilities sum to one However, the
situation 1s much simpler when f(0) 1s known, and this would normally be the case.
For instance, when calculating convolutions by using (3), Theorem 1, and (2), we
know that the probability in zero of the convolution 1s the product of the
probabilities 1n zero of the onginal distributions.

It should be emphasised that when using Theorem 1 to evaluate convolutions,
then the condition that each of the individual distributions should have a positive
probability at zero, is not a serious restriction. If one of the distributions, F, has a
positive probabulity in the integer m # 0 and probability zero 1 all integers less than
m, then we can replace 1t with the shifted distribution £ given by

Fo() = FQ@—-m) a=12.)

and shift the resulting convolution the opposite way.

Unfortunately, calculating convolutions by Theorem 1 can sometimes be rather
time-consuming as for each of the individual distnbutions we first have to evaluate
the elements of its De Pril transform recursively by (3), and then perform the
recursion (2) after having summed the ¢,’s from the different distributions.
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Therefore, De Pril (1989) suggested a less time-consuming approximation to the
De Pril transform Such approximations have been further studied by Dhaene &
De Pril (1994) and Dhaene & Sundt (1994).

1B. In Section 2 of the present paper we shall deduce a recursive algorithm for
evaluvating the De Pril transform of distnbutions n the form R, [a, b] n terms of a
and & If £ is small, this algorithm seems to be more efficient than using (3). When
k=1, we can easily find simple explicit expressions for the elements of the De Pril
transform from the algonthm of Section 2, and this 1s the topic of Section 3
Section 4 1s devoted to De Pril transforms of compound distributions Finally, 1n
Section 5 we consider an alternative way of evaluating convolutions, recently
presented by Dhaene & Vandebroek (1994)

Some of the results that we prove in this paper, have been proved earlier, but we
have included new proofs to relate the results to De Pril transforms

2. THE CLASSES %,

2A. The following result can be applied for recursive evaluation of the De Pril
transform of a distribution in &, .

Theorem 2. The De Pl transform ¢ of the distribution %, |a, b] sausfies the
recursion

A
4 ¢, =1a,+b,+ Y, apc,_, G=12,.)

1=1

with a,=b,=0 for 1>k and ¢,=0 for 1 =0.

Proof. In Sundt (1992) 1t was shown that a distnibution 1s in the form R, [a, b] if
and only if the derivative of the natural logarithm of its probability generating
function can be expressed as é(s)s ™ /(I = a(s)) with

ags) = i a,s' é(s) = i (ta,+ b)s'.
=1 =1
Thus
c(s) = i s
=1
has to satisfy
é(s)s'l

és)s =0
| —d(s)
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which we rewrite as

(5) E(s) = &(s) +a(s)é(s)
By expressing the night-hand side as a power series and comparing coefficients with
the left-hand side, we obtain (4) Q.ED

As some of the quantities in (4) are equal to zero, this formula can be rewritten as
-1
(6) ¢, =1a,+b,+ Y ac,_, (i=1,2,. k)
1=

A
(7 e = X ac,_, (=k+1,k+2,.)
=1

We see that (7) 1s a homogeneous linear difference equation of order & with
constant coefficients. In principle it can be solved by using the values of ¢, ..., ¢; as
constraints when k<. However, for numerical evaluation 1t would normally be
more efficient to use the recursive form (6)-(7).

2B. From Theorems 1 and 2 we easily obtain the following result, which was also
proved 1n Sundt (1992)

Theorem 3. The convolution of the n distributions R, [a, PN (r=1, ,ns
R;[a, b] with
(8) b=(n-1)ia,+ Y, b{". G=1,. .,k
r=1
Proof. Let ¢!” denote the De Pril transform of R,[a, "] (r = 1, ..., n) and ¢ the
De Pnl transform of their convolution. Then
n R

n
¢, = Z = z [ta, + b + 2 e
r=1

r=1 j=

n k
wa, +(n—1)ia, + 2 b7+ 2 a,c,_,=1a,+b, + 2 ac,_,

r=1 =1 J=1
which proves the theorem QED.

By letting k=o and a=0 1n Theorem 3, we obtain Theorem |
2C. In Sundt (1992) we proved the following theorem.

Theorem 4. A distribution on the range {0, 1, ., k} with a positive probability at
zero and discrete density f can be expressed as R, [a, b] with
©) i) b=2,10 (=1, .k

f(0) f(O)
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By inserting (9) 1n (4) we obtain (3). Hence, by applying Theorem 4 to express a
distribution 1n the form R, {a, b] we simply obtain the onginal recursion (3) for the
De Pril transform and no simplification.

3 THE CASE k=1

When the distribution 1s 1n the form R, la, b], (6) and (7) reduce to

) = a+b

c, =ac,_,, (t=2,3,.)-
from which we obtain
(10) ¢, =(a+bya'"". (t=1,2,.)

The following theorem s proved in Sundt & Jewell (1981).

Theorem 5. The distnibution R, [a, b] 1s binomial 1if ¢ <0, Poisson If ¢ =0, and
negative binomal if ¢>0

Let us look at (10) in the three cases described in Theorem 5.

1) Binomial
f(l)=[t).7tl(l -m)! (i=0,1.,6t=12 ..,0<x<l)
i
Then
T T
a= - —— b= (t+ 1)
-7 -z
(n c,=—t d G=12.)
x-1

Formula (11) 1llustrates a disapponting aspect of application of Theorem 1 for
calculating convolutions. Although f(/)=0 for all 1>, ¢, 0 for all values of 1,
even for 1>1, and 1If n>21, then ¢ 1s unbounded.

1) Poisson

VAN
fy=—e™" (1t=0,
!

_—

, ... A>0)
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Then
a=0 b=24
(12) =19, .. G=1,2 )

where 6, ; denotes the Kronecker delta. This simple result 1s not surprising. Already
from Theorem 5 we had that the Poisson distribution could be represented in the
form R, [0, b]. Only the degenerate distribution concentrated in zero has a simpler
De Pril transform than the Poisson distribution, for the degenerate distribution all
elements of the De Pril transform are equal to zero.

1i1) Negative binomial

a+i1-1
f(1)=( ) )(I—Jr)“n'. (1=0,1,..;a>0,0<a<])
{
In that case
a=:r b=(a—l)71.’
(13) ¢, =ar' =12 )

We see that unlike the binomual distribution, the negative binomial distribution will
always have a bounded De Pril transform

4 COMPOUND DISTRIBUTIONS

4A. The following theorem 1s proved in Sundt (1992)

Theorem 6. A compound distribution 1n %, with counung distnibution R, {a, b] and
severity distribution with discrete density & can be expressed as R.|d, ¢] with

A A b
z a, " (1) iz—illjl(l)
J=1 _ J=1 /
(14) d,=—k— c, = - =12 )
L= ah©y L= 3 a h()
7=l J=1

To find the De Pril transform of the compound distribution, one can first evaluate
d and ¢ by (14) and then use Theorem 2 to find the De Pril transform However, a
natural question 1s whether one could arrive more directly from the De Pril
transform of the counting distribution 1f this transform 1s known. The following
corollary to Theorem 6 expresses the De Pril transform of the compound
distribution 1n terms of the De Pnl transform of the counting distribution and the
discrete density of the sevenity distribution and 1s obtained from Theorem 6 by
putting k=0 and a =0.
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Corollary 1. A compound distribution 1n &, with counting distribution R, [0, b|
and severity distribution with discrete density £ has De Pril transform ¢ with

-4 b .
(15) =1y 2L h"0. (=12 .)

i=1]

We have silently assumed that the sum in (15) (as well as the sums 1n the
numerators 1n (14) when k=00) converges to a finite value In the following we
shall discuss some cases where the summand n this sum differs from zero only for
a fintte number of values of j, and then this condition 1s obviously fulfilled. In
particular we see that 1f #(0)=0, then h’" () =0 for i<y, and (15) reduces to

t b .

(16) co=1 9 L hQ). =12 .)
y=1]

4B. We now consider the case

(amn h(t)=90,., =01, )

for some positive integer m, that is, all sevenities are equal to m with probability
one. Then

R = . =01, .,;7=1,2.)
Insertion in (15) gives that
(]8) Cim = ’nb[‘ (k = l, 2, ...)

and ¢, =0 for all other values of .

The relation (18) can be applied If we want to find the De Pril transform of an
anithmetic distnbution with span m> 1. In this case we first rescale the distribution
so that 1t obtains span one, then we find the b,’s, € g. by (3) or Theorem 2, and
finally we find the ¢;’s by (18).

It 1s interesting to compare (18) with evaluation of the De Pril transform d of the
m-fold convolution of R.|0, 5] From Theorem 1 follows that

d, =mb,, (i=12,.)

that 1s, we get the same elements as in the case when m 1s a scaling factor, but 1n
the latter case these elements are more “spread out”.

4C. Let us now consider the case when the counting distribution s the Poisson
distribution presented in Section 3, that 1s, R, 10, 4] In that case (15) reduces to

(19) ¢, =1Ah (1) =12 .)

We shall deduce a characterisation of compound Poisson distributions 1n terms of
De Pril transforms For that purpose we shall need the following lemma
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Lemma 1. A distribution i1 &, with a non-negative De Pril transform ¢ satisfies
the condition

o c'

Y <o,

=1 i
Proof. Let f be the discrete density of a distribution in %, with a non-negative De
Pril transform ¢. From (3) we obtain for ¢t = 1, 2, .

| ll—l
i=—(f(l') - = z C,f(l—j))5&
1 f(0) L=l f(0)

as the sum 1s obviously non-negative. Summation over 1 gives

ToLy W 1O QED
{

=1 f0) (O

Theorem 7. A distribution i ., 1s a compound Poisson distribution if and only 1f
its De Pnil transform 1s non-negative.

=1

Proof. From (19) we immediately see that the De Prl transform of a compound
Poisson distribution 1s non-negative

Now let us consider a distribution in %, with a non-negative De Pril transform c.
From Lemma | we see that

Then the function A defined by

CI
(20) h)=— =12, .)

1A

1s non-negative and satisfies the condition Z h()=1. Thus h 1s the dis-
t=1
crete density of a probability distribution on the non-negative integers, and as ¢
satisfies (19), ¢ 1s the De Pril transform of a compound Poisson distribution with
Poisson parameter A and severity distribution on the non-negative integers with
discrete density h
This completes the proof of Theorem 7. QED.

From Theorem | and (19) we easily obtain the following well-known result

Theorem 8. The convolution of n compound Poisson distributions with Poisson
parameter A and discrete seventy density " on the non-negative mtegers (r = 1,
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., n) 1s a compound Poisson distribution with Poisson parameter

EDWAL

r=1

and discrete severity density

n

1
=1 Y a0H0
A. r=1

Proof. Let ¢” denote the De Pril transform of the rth compound distribution
(r =1, .., n) and ¢ the De Pnl transform of the convolution. Then

n

o=, =3 VR ()= k),
r=1

r=1

that 1s, ¢ 1s the De Pril transform of a compound Poisson distribution with Poisson
parameter 4 and discrete severity density i This proves the theorem QE.D.

Now let f denote the discrete density of the compound distribution. If A (0) =0,
then f(0)=e¢ "%, that 1s,

2n A= —~Inf(0)

Furthermore h 1s given by (20) In general, also if ¢ does not represent a compound
Poisson distribution, we can always define a quantity 4 by (21) and a function h by
(20), so that the distribution formally looks Itke a compound Poisson distribution,
This has motivated Hurlimann (1990) to call distnbutions in R, pseudo compound
Poisson distributions The function h 1s a proper discrete probability density if and
only if f1s the discrete density of a compound Poisson distribution

4D. A distnbution F s called infinitely divisible 1f for all integers n there exists
a distribunion F, such that F s the n-fold convolution of F,. It can be shown (cf.
e.g Feller (1968, Section X1.2)) that a distnibution in %, 1s infimtely divisible 1f
and only 1f 1t can be expressed as a compound Poisson distribution. Combining this
result with Theorem 7 gives the following characterisation of infimitely divisible
distributions in &, 1n terms of De Pnil transforms, which was proved by Katt
(1967).

Theorem 9. A distribution in %, 1s infimtely divisible 1f and only 1f its De Pril
transform ¢ 1s non-negative.

By applying Theorem 9 together with (13) and (11), we see that negative
binomial distributtons are infimtely divisible whereas binomial distributions are
not.
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4E. Let us now consider the case when the counting distribution 1s a Bernoulli
distribution with probability. In this case

T =1-f(0)

hy =L@ t=12 .)

1 -£0)

that is, st 1s the probability that the compound varable 15 positive, and 4 1s the
discrete density of the conditional distribution of this variable given that 1t is
positive

Insertion of (11) 1n (16) gives

A 2
(22) c=-1 _( ] R (). G=12.)
_,=] j .7[“

Thus we have now obtained an explicit expression for ¢, that holds for all
distnibutions 1n ... Formula (22) was deduced by De Pril (1989)

4F, With a Iife assurance policy we often have the situation that when a claim
occurs, then 1t has a fixed amount m We assume that m 1s a positive integer. Let 7
be the probabihity that a claim occurs.

We are now 1n the frame-work of the previous subsection with & given by (17)
and obtain

T A
Ll\m=_’n[ ) k=12, .)

-1

and ¢, =0 for all other values of 1.
This model has been studied by De Pril (1986)

5. THE DHAENE-VANDEBROEK ALGORITHM

5A. We want to evaluate the discrete density f of the convolution of n
distributions 1n R, with discrete density £ and De Pril transform ¢ (r = 1, ., n).
Let ¢ denote the De Pril transform of the convolution. By Theorem |

n
c=3 "
r=1

As described in Section 1, we can evaluate f recursively by evaluating ¢’
recursively by (3) for each ¢, summing

(23) o=,

r=1

and finally evaluating f(1) by (2).
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Let us look a bit more closely at the two last steps. By insertion of (23) in (2) and
interchanging the order of summations we obtain

n

(24) fQ = ! d" =12 )
{ =1

r

with

!

(25) d"=Y " fa-j) G=1,2,.,r=1,.,n

J=1

For convenience we also introduce d” =0 for i<0.

Dhaene & Vandebroek (1994) have deduced the following algorithm for
recursive evaluation of the d’s and shown that in many situations f can be
evaluated more efficiently by using this algorithm together with (24) than by
applying the procedure described above

Theorem 10. The d”s defined by (25) can be evaluated recursively by

: Y UfG=p=-d2 170 (i=1,2,.)

(26) d" =
FO) 5

5B. In Theorem 2 we showed that ¢ could be evaluated more efficiently than by

(3) 1f the distribution belonged to 9, when k 1s small The following theorem gives
an analogous result for the d\"s.

Theorem 11. If £ 1s the discrete density of R, |a, b), then
A

QN d7=Y a,+b) fG-j)+a,d,]. =12, )
J=1i

Proof. We ntroduce the power series

% &
a(sy= 2 a,s' é(s) = z (ta,+ b)) s'
=1

=1

&)= Y s d(s)=Y, d"s'
=1 =1

0

HOEDWION

=1

From (5) we see that

(28) sy =é(s) +a(s)é ),
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and from (25) we obtain

(29) d"(s) = e () (s)

By multiplying (28) by f(s) and inserting (29) we obtain

(30) d(s) = e f(s)+a(s)d"(s),

and by comparing coefficients in the power series expansions of both sides of (30)
we obtain (27). QED.

Analogous to Theorem 2, when determining a and b by Theorem 4, (27) brings
us back to (26).

5C. Let us now consider the special case when f 1s the discrete density of
R.(a,b”] (r = 1, ., n) Application of (24) and (27) gives
n n A
1 1
fO=—= X d7=— 3 ¥ [Ua,+b")f@-j)+a,d?|=
1l r=1 L r=1y=1
k

l n . n
= X loya,+ T 50 fGi-)+a, Z] d?,]=

J=1 r=1

k n A
i_ Y [ma,+ X b f=)+a,0=))fG =)=, [a,+ﬁ)f<f—1>,
I y=1 r=1 =1 4

with b given by (8), that is, we obtain the defining recursion (1) of R, [a, b]. Thus
we have found yet another proof of Theorem 3.

In particular, 1f the n distributions are 1dentical and a and 5" are determined by
Theorem 4, then Theorem 10 and (24) give De Pril’s (1985) recursion for the n-fold
convolution of a distribution 1n R,,. This has also been pointed out by Dhaene &
Vandebroek (1994)

5D. Unlike ¢, the ds do not only depend on f, but also on the other
distributions If we were only to evaluate the convolution of n given distributions,
this 1s not a drawback. However, if we also want to evaluate the convolution of
other combinations of the same distributions, then we can immediately apply the De
Pril transforms that we have already evaluated, for evaluating the convolutions by
Theorem 1 and formula (3).
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