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A B S T R A C T  

In this paper we study a transform introduced by DE PRIL (1989) for recurslve 
evaluation of  convolutions of  counting dls tnbuuons with a positive probablhty in 
zero. We discuss some cases where the evaluauon of thas transform is s~mplified 
and relate the transform to infinitely divisible distributions. Finally we discuss an 
a lgonthm presented by DHAENE & VANDEBROEK (1994) for recursive evaluation of  
convolutions 

K E Y W O R D S  

Transforms;  recurs lons ,  convolutions. 

I I N T R O D U C T I O N  

IA.  In SUNDT (1992) we discussed the properties of a class of  counting 
distributions F whose discrete density f satisfies a recurs~on in the form 

wlth f ( t ) =  0 for i <  O. We obviously must have f ( O ) >  0. The dlstnbutton given 
by (1) was denoted by R~[a,b] with a = (al . . . . .  ak) and b = (bl . . . .  b~). 
Furthermore, we denoted by ~ the class of such distributions with a fixed number 
k of  terms in the recurslon, and we introduced 

~ 0  = ,.~ _ y~_  ~; (k = I, 2, . .) 

the class ~0  consists of  the degenerate distribution concentrated in zero. 
Expressing a distribution in the form R~ la, b] can m many cases simplify 

evaluation of  convolutions and compound distributions, and such representations 
therefore seem to be of  some interest. 

In particular, any counting dls tnbuuon F with a positive probabdlty in zero can 
be expressed in the form R= [0, c I, and thus ~ =  ~s the class of all such distributions. 
By solwng 

I ' 
(2) f 0 ) = -  ~ c j f ( i - j )  

I J = l  
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w~th respect to c, we obtain 

'[ 1 (3) c , = f ( O )  t f ( : )  s=,~ csf(i J) ; (t = 1, 2 , . . )  

in this paper we interpret .2..., = 0 when s < r. From the way we constructed this 
i = r  

recursion it is obvious that the sequence c is uniquely determined. We shall call c 
the De Phi transform of the distribution F When we m the following discuss the 
De Pril transform of a d~stnbutlon, it is silently assumed that the dlstrxbut~on 
belongs to ~ = .  

The following theorem indicates the usefulness of De Pnl transforms. 

T h e o r e m  1. The De Prd transform of  the convolution of  a finite number of 
dzstrlbut~ons m ~ is the sun of  the De Pril transforms of these distributions. 

Theorem I was first proved by De Phi (1989) and restated in terms of  the classes 
~ by Sundt (1992). 

From Theorem 1 we see that we can evaluate the convolution of  a fimte number 
of  distributions in ~ by first evaluating the De Pnl transform of each of the 
distrnbutions by (3), then findmg the De Phi transform of the convolution by 
summing the De Pril transforms of the individual distributions, and finally finding 
the discrete density of the convolution by (2). 

As we have seen, a distribution is umquely determined by its De Prd transform. 
However,  unfortunately we cannot apply the recurs~on (2) directly to find a discrete 
density if we only know the De Pril transform as we also need the initial value f ( 0 ) .  
I f f h a s  a finite support, then we can m principle start with an arbitrary value o f f ( 0 )  
and then rescale afterwards so that the probabi lmes sum to one However, the 
situation is much simpler when f ( 0 )  is known, and this would normally be the case. 
For instance, when calculating convolutions by using (3), Theorem I, and (2), we 
know that the probabili ty in zero of  the convolution is the product of  the 
probabihtms in zero of  the original distributions. 

It should be emphaslsed that when using Theorem l to evaluate convolutions, 
then the condition that each of  the individual distributions should have a positive 
probabihty at zero, is not a serious restrichon. If one of the distributions, F, has a 
positive probabili ty in the integer m 4:0 and probabihty zero in all integers less than 
m, then we can replace it wxth the shifted distribution F0 given by 

F 0(i) = F ( : - m )  (: = 1, 2, . . )  

and shift the resulting convolution the opposite way. 
Unfortunately, calculating convolutions by Theorem 1 can sometimes be rather 

t ime-consuming as for each of  the individual distributions we first have to evaluate 
the elements of its De Phi transform recurs~vely by (3), and then perform the 
recursion (2) after having summed the c,'s from the different distributions. 
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Therefore, De Phi (1989) suggested a less ume-consuming approximation to the 
De Prll transform Such approximations have been further studied by Dhaene & 
De Prll (1994) and Dhaene & Sundt (1994). 

lB.  In Section 2 of the present paper we shall deduce a recurslve algorithm for 
evaluating the De Prll transform of dlstr|butlons |n the form R~ [a, b] in terms of a 
and b If k is small, this algor|thm seems to be more efficient than using (3). When 
k = I, we can easdy find simple exphclt expressions for the elements of  the De Pnl 
transfonn from the algorithm of Sect|on 2, and this ~s the topic of  Section 3 
Secuon 4 is devoted to De Pr|l transforms of  compound dlstrlbutxons Finally, in 
Section 5 we consider an alternative way of  evaluating convolutions, recently 
presented by Dhaene & Vandebroek (1994) 

Some of the results that we prove .n this paper, have been proved earlier, but we 
have Included new proofs to relate the results to De Pnl transforms 

2. THE CLASSES ~ 

2A. The following result can be applied for recurs|re evaluation of the De Pril 
transform of a dlStrlbutlon m ~ .  

Theorem 2. The De Phi transform c ol the dlstnbutlon ~ t [ a ,  b] satisfies the 
r e c u r s l o n  

(4) c, = la, + b, + Y ,  a j c , _  1 (i = I, 2 . . . .  ) 
j = l  

wzth a , = b , = O  for i > k  and c ,=O for t--<O. 

Proof.  In Sundt (1992) It was shown that a distribution is |n the fornl  RAta,  b] if 
and only |f the derivative of  the natural logarithm of |Is probability generating 
funcnon can be expressed as ~a(0s-  ' /(I - d(s))  with 

~(s) = ~, a,s' ~(s) = Y~ Oa, + b,)s'. 
t= l  ,'=l 

Thus 

has to satisfy 

cc 

~7(s) = ~., c,~' 
t= l  

e ( s ) s - ' -  e(s)s-I  
I - ~ ( 0  
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which we rewrite as 

(5) ~(s) = ~(s) + ,~(s)~(s)  

By expressing the right-hand s~de as a power series and comparing coefficients with 
the left-hand side, we obtain (4) Q.E.D 

As some of  the quantmes in (4) are equal to zero, this formula can be rewritten as 

I - 1  

(6) c, = ta, + b, + ~ ajc,_j (i = 1,2 . . . .  k) 
j = l  

(7) c, = ~ ajc,_j. (i = k + l ,k  + 2 . . . .  ) 
J = l  

We see that (7) is a homogeneous hnear difference equation of  order k with 
constant coefftc~ents. In pnnc~ple it can be solved by using the values of c~ . . . . .  c~ as 
constraints when k<oo.  However,  for numerical evaluauon ~t would normally be 
more efficient to use the recurslve form (6)-(7). 

2B. From Theorems 1 and 2 we easdy obtain the following result, which was also 
proved in Sundt (1992) 

Theorem 3. The convolution of the n distributions R~[a,b tr)] (r = I, .,n) ts 
Rt [a, b] with 

(8) b , = ( n - l ) l a , +  ~ b~ r~. ( l = l , .  ,k)  
r = l  

Proof .  Let c (r) denote the De Prll transform of R k[a, b Crl] (r = I . . . . .  n) and c the 
De Prll transform of  their convolution. Then 

n n ,! 

r = l  r = l  j = l  

n k k 

l a ,+(n -1 ) ia l+  2 b, (r)+ E a ,  c , - j = l a , + b ,  + E a j c , _ j ,  
r = l  t = l  )=1  

which proves the theorem Q E D. 

By letting k =oo and a = 0  in Theorem 3, we obtain Theorem I 

2C. In Sundt (1992) we proved the following theorem. 

Theorem 4. A distribution on the range {0, 1 , . ,  k} with a positive probabd~ty at 
zero and discrete density f can be expressed as Rt [a, b] with 

f ( 0  f 0 )  
(9) a , =  - b , = 2 t - -  (1= 1, . ,k) 

f (0 )  f (0 )  
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By inserting (9) in (4) we obtain (3). Hence, by applying Theorem 4 to express a 
dls tnbuuon in the form R~ [a, b] we simply obtain the original recursion (3) for the 
De Pril transform and no Sllnphflcatmn. 

3 THE CASE k = 1 

When the dlstnbutmn is m the form Ri [a, b], (6) and (7) reduce to 

c I = a + b  
c, = a c , _ l ,  ( t = 2 , 3 ,  . ) .  

from which we obtain 

(10) c, = ( a + b ) a  ' - I  (t = 1 , 2 , . . )  

The following theorem is proved m Sundt & Jewell (1981). 

T h e o r e m  5. The distribution Ri [a, b] IS binomial if a < 0 ,  Pmsson if a = 0 ,  and 
negative binomial ff a > 0  

Let us look at (10) m the three cases described m Theorem 5. 

I) B i n o m i a l  

Then 

(11) 

(I - n ) ' - '  ( i =  0, I . . . . .  t; t = I, 2, ..; 0 < a t < l )  

7/7 
a -  b = - - ( t +  I) 

1 - : z  1 - ~  

c ,=  - t  (i = 1, 2, . . )  

Formula (11) dlustrates a disappointing aspect of  apphcation of  Theorem 1 for 
calculating convolutions. Although f ( i ) =  0 for all t >  t, c, :1:0 for all values of  t, 
even for t > t ,  and if : r > ~ ,  then c is unbounded. 

il) P o i s s o n  

f ( O = - - e  -~ (l = O, l,  . . '  2 > 0 )  
t! 
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Then 

a = O  b = 2  

(12) c , = ) . 6 1 , , ,  (t = I, 2, ) 

where f},.j denotes the Kronecker delta. This snnple result is not surpns,ng. Already 
from Theorem 5 we had that the Polsson d~stnbut,on could be represented m the 
form R~ [0, b]. Only the degenerate dlstr, buuon concentrated m zero has a simpler 
De Phi transform than the Po~sson distr ibution,  for the degenerate d~stnbutlon all 
elements of the De Phi transform are equal to zero. 

liO Negative binomial 

(°+; '/ f ( I )  = . (1 - s r ) ~  '. 

In that case 

(t = O, 1, . .; o~>0,  0 < ~ <  1) 

a = ~  b = ( a - l ) ~  

(13) c , = a n ' .  (t = 1, 2, .) 

We see that unhke the binomial distribution, the negatwe binomml distribution will 
always have a bounded De Pnl transform 

4 COMPOUND DISTRIBUTIONS 

4A. The following theorem is proved in Sundt (1992) 

T h e o r e m  6. A compound distribution m ~ with counting distribution R~ [a, b] and 
severity dls tnbuuon with discrete density h can be expressed as R= [d, e] with 

Y~ ajhJ~ (O i bJ hj" O) 
j=l j=J j 

(14) d , =  c , =  (t = I, 2, ) 

x - - h 

J= l  J= l  

To find the De Phi transform of the compound dlstrlbunon, one can first evaluate 
d and c by (14) and then use Theorem 2 to find the De Prll transform However, a 
natural question is whether one could a m v e  more directly from the De Pnl 
transform of the counting distribution If this transform is known. The following 
corollary to Theorem 6 expresses the De Phi transform of the compound 
dlstnbutlon m terms of the De Phi transform of  the counting distribution and the 
discrete density of  the sever, ty distribution and is obtained from Theorem 6 by 
putting k = ~ and a = 0. 
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Corol lary  1. A compound distribution in ~ =  with counting distribution R=[0, bl 
and severity distribution with discrete density h has De Prll transform c with 

oc 
bj 

(15) c, = t ~_, - -  h:* O). (i = 1, 2, ..) 
j = l J  

We have silently assumed that the sum In (15) (as well as the sums in the 
numerators in (14) when k=o~) converges to a finite value In the following we 
shall discuss some cases where the sumrnand m this sum differs from zero only for 
a fimte number of values of j ,  and then thin condition is obviously tulfilled. In 
pamcular we see that if h ( 0 ) = 0 ,  then h i * ( 0 = 0  tbr i < j ,  and (15) reduces to 

I 

(16) c ,=  t ~ ,  --bJ h :*( t ) .  (t = 1, 2, . ) 
J = l  J 

4B. We now consider the case 

(17) h 0 ) = 6  ..... 0 = 0, I, . )  

for some positive integer m, that is, all severmes are equal to m wlth probability 
one. Then 

hJ*( t )  = 6~j,,,),, (t = O, I . . . .  J = I, 2 . . . .  ) 

Insertion in (15) gives that 

(18) q , ,  = mb~ ( k =  I, 2 . . . .  ) 

and c, = 0 for all other values of t. 
The relation (18) can be applied ~f we want to find the De Pnl transform of an 

arithmetic dlsmbutJon wJth span m >  I. In this case we first rescale the distribution 
so that it obtains span one, then we find the b,'s, e g. by (3) or Theorem 2, and 
finally we find the c, 's  by (18). 

It is interesting to compare (18) with evaluation of the De PrJl transform d of the 
m-fold convolution of R:~[0, b] From Theorem I follows that 

d, = mb, ,  (z = 1, 2 . . . .  ) 

that IS, we get the same elements as in the case when m is a scaling factor, but in 
the latter case these elements are more "spread out".  

4C. Let us now consider the case when the counting distribution ts the Polsson 

dlstrlbutlon presented in Section 3, that is, RE 10, 2] in that case (15) reduces to 

(19) c, = 12h(t)  (I = I, 2, ..) 

We shall deduce a charactensatlon of compound Pmsson distributions in terms of 
De Phi t rans forms  For that purpose we shall need the following lemma 
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L e m m a  1. A distribution m ~ =  with a non-negatwe De Prll transform c satisfies 
the condition 

o~ ~c, 
- - ~ .  

t = l  i 

Proof .  L e t f b e  the discrete density of a distribution in ~ with a non-negative De 
Pnl transform ¢. From (3) we obtain for i = 1, 2, . 

I f(O) I j= ,  f (O) 

as the sum is obviously non-negauve. Summation over ~ gives 
~c 

~;, c, f (O 1 - f ( O )  
_ _ <  ~ _ _ - _ _  <oo.  Q.E.D 

,=l t ,=, f ( 0 )  f (0 )  

T h e o r e m  7. A distribution In .~=¢ iS a compound Polsson distribution if and only if 
its De Pril transform is non-negauve. 

Proof .  From (19) we immediately see that the De Phi transform of  a compound 
Polsson  distribution is non-negative 

Now let us consider a distribution in , ~  with a non-negatwe De Prll transform c. 
From Lemma 1 we see that 

cc 
~ . = ~  c, 

_ _ ~ o o .  

~=1 I 

Then the function h defined by 

C t 
(20) h ( t ) -  (t = I, 2, ..) 

12 

IS non-negatwe and satisfies the condition ~ h ( t ) =  1. Thus h IS the dls- 
I = l  

crete densgy of a probab,l i ty distribution on the non-negative integers, and as c 
satisfies (19), c is the De Prll transform of  a compound Polsson distribution with 
Poisson parameter 2 and severity distribution on the non-negatwe integers with 
discrete density h 

This completes the proof  of Theorem 7. Q E D. 

From Theorem 1 and (19) we easily obtain the following well-known result 

T h e o r e m  8. The convolution of  n compound Polsson distributions with Polsson 
parameter  j Cr) and discrete severity density h <rl on the non-negative integers (r  = 1, 
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. ,  n) is a compound Polsson dlstnbut~on with Poisson parameter 

n 

3' = ~.a 3 '(r)  

r = l  

and discrete seventy density 

I n 

h = -  ~ 2(rlh Crl 
3' r = l  

Proof.  Let c ~r) denote the De Prd transform of the rth compound distribution 
(r = I . . . . .  n) and c the De Phi transform of the convolution. Then 

tl n 

c ,=  ~ c,~r)= ~ i3'(r) h~')(t)=t3'h(t), 
r = l  r = l  

that ~s, c ~s the De Pril transform of a compound Po~sson distribution with Po~sson 
parameter 3. and discrete severity density h This proves the theorem Q E.D. 

Now let f denote the discrete density of the compound distribution. If h (0)= 0, 
then f ( 0 ) = e  -'t, that is, 

(21) 3' = - I n  f (0)  

Furthermore h is gwen by (20) In general, also if c does not represent a compound 
Po~sson distribution, we can always define a quantity 3' by (21) and a function h by 
(20), so that the distribution formally looks like a compound Polsson distribution. 
This has motivated Hurhmann (1990) to call distributions m ,.~= pseudo compound 
Potsson distributions The function h Is a proper dTscrete probability density ff and 
only f f f  ~s the discrete density of a compound Po~sson distribution 

4D. A distribution F ts called mfimtely divisible ~f for all integers n there exists 
a distribution F, such that F is the n-fold convolution of  F,,. It can be shown (cf. 
e.g Feller (1968, Section XI.2)) that a distribution In ~o~ IS infimtely divisible if 
and only ~f ~t can be expressed as a compound Poisson distribution. Combining this 
result with Theorem 7 gives the tbllowlng characterlsatlon of  infinitely divisible 
distributions in ,..~ in terms of  De Pnl transforms, which was proved by Kattl 
(1967). 

Theorem 9. A distribution m ~ o  is infinitely dwlslble if and only if its De Phi 
transform c is non-negative. 

By applying Theorem 9 together with (13) and (11), we see that negative 
binomial d~strlbut~ons are mfimtely d~v~slble whereas binomial d~stnbut~ons are 
not. 
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4E. Let us now consider the case when the counting d~smbunon ~s a Bernoulli 
d,stribut~on with probaNhty.  In thzs case 

= 1 - f ( 0 )  

f( , )  
h ( i ) = - - ,  (t = 1, 2 . . . .  ) 

1 - f ( 0 )  

that is, Jr ~s the p robabday  that the compound variable is posmve, and h is the 
discrete density of  the conditional distribution of  th~s variable given that ~t is 
positive 

lnsemon of  (11) m (16) gives 

(22) c , = - t  g = ~ - - j \ ~ _ l )  hJ~'(t). (i = 1, 2 . . . .  ) 

Thus we have now obtained an exphclt  expressmn for c, that holds for all 
d lsmbutmns m ~ .  Formula (22) was deduced by De Phi (1989) 

4F. With a hfe assurance policy we often have the snuanon that when a clmm 
occurs, then ~t has a fixed amount m We assume that m is a posmve integer. Let er 
be the probablhty that a claim occurs. 

We are now m the frame-work of  the previous subsection with h gwen by (17) 
and obtmn 

= - m  (k = 1, 2, . )  
k z r - I  

and c, = 0 for all other values of  r. 
This model has been studied by De Phi (1986) 

5. THE DHAENE-VANDEBROEK ALGORITHM 

5A. We want to evaluate the discrete density f of the convolunon of  n 
distributions In ~ with discrete d e n s t t y f  (r~ and De Phi transform c (r~ (r = 1, . ,  n). 
Let c denote the De Phi transform of the convolution. By Theorem I 

C = ~ C (r). 

As described m Section 1, we can evaluate f recurslvely by evaluating c, ('~ 
recur~wely by (3) for each I, summing 

t l  

(23) c, = ~ c~ ~), 
r=l 

and finally evaluating f 0 )  by (2). 
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Let us look a bit more closely at the two last steps. By insertion of (23) in (2) and 
interchanging the order of summations we obtain 

I " 
f ( 0  = - -  Y_~ d l  r) (t = 1, 2 ,  ) 

! r = l  

(24) 

with 

(25) 

I 

d,(~'= ~ c)(~)fO-j) (, = I, 2 . . . . .  r = I , .  , n) 
y= l  

For convemence we also introduce d~r)= 0 for i--< 0. 
Dhaene & Vandebroek (1994) have deduced the following algorithm for 

recurswe evaluation of the d}°'s and shown that in many situations f can be 
evaluated more efficiently by using this algorithm together with (24) than by 
applying the procedure described above 

Theorem 10. The d}°'s defined by (25) can be evaluated recurswely by 

l t 
- d  (r) ] ¢ r ) ( J )  ( / =  I 2 ,  ) (26) d~ r)- ~ [ j f ( i - j )  -,-s , • 

f(r)(o) j = l  

5B. In Theorem 2 we showed that c (r) could be evaluated more efficiently than by 
(3) if the distribution belonged to ~ when k ~s small The following theorem gives 
an analogous result for the dlr)'s. 

Theorem 11. l f f  (~) is the discrete denstty of R~la, b], then 
L 

(27) d~r)= ~ [( jas+b:)fO-j)+ajdl~,] .  
]=1 

Proof. We introduce the power series 

5(0 = ~ a,s' 
t = l  

c+~(~) = ~ c}r)s ' 
t = l  

From (5) we see that 

(28) 

(t = 1, 2 ,  .) 

k 

e(s) = ~ Oa,+ b,)s' 
t = l  

a"'(s)  = ~ dlr), ' 
i = l  

f (s)  = 2 fO)s '  
t = l  

8r)  (s) = ~ (s) + a (s) c ~ r)(s), 
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and from (25) we obtain 

(29) ~(r) (S) = ~r) (S)?(S) 

By multiplying (28) by f(a)  and inserting (29) we obtain 

(30) h'(r~(s) = e(s)y(s) + a (s) ~(r~(s), 

and by comparing coefficients m the power series expansions of both sides of  (30) 
we obtain (27). Q E D. 

Analogous to Theorem 2, when determining a and b by Theorem 4, (27) brings 
us back to (26). 

5C. Let us now consider the special case w h e n  f(r) IS the discrete density of 
Rt [a, b ~rl] (r = 1 . . . .  n) Apphcation of (24) and (27) gives 

1 " I " + 
f(t)=-- ~ d, ('-)=- ~ ~ [(yaj+b)~))f(,-j)+ajd(,#j]= 

l r = l  I r= l  /=1 

k n . n 

_1 ~ [(njaj + ~ bJ"))f(i-j)+aj ~ d[~j] = 
I J = ]  r = l  r = l  

-- [(njaj+ Z b~r))f(t-J)+al(t-J)f(t-J)] = aj+ f ( i - j ) ,  
i )=] r=l j = l  

with b given by (8), that is, we obtain the defining recursion (1) of R~[a, b]. Thus 
we have found yet another proof of Theorem 3. 

In particular, if the n distributions are identical and a and b (~) are determined by 
Theorem 4, then Theorem 10 and (24) give De Prd's  (1985) recurston for the n-fold 
convolution of  a distribution in ~ .  This has also been pointed out by Dhaene & 
Vandebroek (1994) 

5D. Unlike c (r), the dlr)'s do not only depend on f(r), but also on the other 
distributions If we were only to evaluate the convolution of  n given distributions, 
this is not a drawback. However, if we also want to evaluate the convolution of 
other combinations of  the same distributions, then we can lmmedmtely apply the De 
Phi transforms that we have already evaluated, for evaluating the convolutions by 
Theorem 1 and formula (3). 
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