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ABSTRACT 

Credibility theory is closely related to Kalman filtering. As a consequence, methods 
proposed for robustifying the Kalman filter can often be specialised to obtain robust 
credibility rating procedures. The application of one such method to several 
classical credibility models is shown in this paper. 

I. INTRODUCTION 

Credibility theory is a very old branch of risk theory and non-life insurance 
mathematics. Eearly results are by MOWBRAY (1914) and WHITNEY (1918). A 
theoretically elegant approach was given by BOHLMANN (1967) and BOHLMANN & 
STRAUB (I 970). 

The classical models presented by those authors can be generalised to regression 
models, hierarchical models and evolutionary models. Generalisations have been 
studies intensively in the actuarial literature over the past twenty years. Some key 
references are HACHEMEISTER (1975), TAYLOR (1979), SUNDT (1980, 1983), 
NORBERG (1980, 1986), KREMER (1988a, 1988b). 

In later years several authors have investigated ways of robustifying credibility 
rating methods. The aim of robustification is to limit the influence of extremely 
large claim amounts on the estimated premium. The reader is referred to, e.g. 
GISLER (1980), BOHLMANN et al. (1982), KREMER (1991), KONSCH (1992), GISLER 

REINHARD (1993). 
MEHRA (1973) pointed out that credibility estimation can be achieved by the 

Kalman filtering technique. DE JONG 8,.... ZEHNWIRTH (1983) explored the correspon- 
dence for the classical credibility models, and ZEHNWIRTH (1985) explored its 
implications for evolutionary models. 

Robust versions of the Kalman filter have been studies for some time, for 
example by MASRELIEZ & MARTIN (1977), MEINHOLD & SINGPURWALLA (1989) 
and CIPRA & ROMERA (1991). Due to the close relation between Kalman filtering 
and credibility theory, it is obvious that corresponding robust versions of credibility 
rating techniques can be derived. 'In the present paper we specialise the method 
proposed by CIPRA & ROMERA (1991) tO the three most important credibility 
models. The resulting robust credibility techniques turn out to be quite tractable. 
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2. PRELIMINARIES 

Suppose that all probabilistic statements are based on a probability space (~ ,  A, P) 
and consider a risk during periods with indices i = l, 2, 3 . . . . .  n + 1. Assume that 
the claims behavior of  a risk over all periods can be described by a parameter 0. 
Suppose that the value of this parameter is unknown and interpret it as a realisation 
of  a random variable: 

0 : (~2, zl, P) ~ (O, r ) ,  

with the parameter space O and the a-algebra r on O. Let the observed claims 
amounts (or loss ratios) of  the risk be represented by the nonnegative random 
variables : 

Xi, with i = 1 , 2 , 3  . . . . .  n + l ,  

defined on (~2, zl, P). It is assumed that all X i lie in the Hilbert space L 2 of  
measurables, square integrable functions f (identified with the equivalence class of  
all 9 which are P-a.e. equal to f )  defined on zl with scalar product: 

( f l  ,f2 ) = E ( f |  ' f2) 

and norm : 

Ilfll = E ( f 2 )  '/2. 

In the given insurance context the conditional expectation 

mi = E(XiIO) 

is called the net  p r e m i u m  (or net  loss  rat io)  in period no. i. Then the credibility 
estimator is nothing else but the linear-affine prediction of  mn+~ from 
X~, X2 . . . . .  X,,. Defining the subspace An of  all linear-affine combinations 

f n = a 0  + ~ ai'Xi, 
i=1 

the credibility es t imator  is defined as the projection of  m n + t on A n, i.e. as the 
random variable m n + t ~ An with 

II mn+ i - rfin +~ 1[ -< 1[ mn +, -f , ,  II 

for all f,, ~ A n . 

In general the credibility estimator can be determined by solving certain normal 
equations. Under more. special model assumptions one can derive explicit formulas 
for the credibility estimator. Three special models are given in the Section 4. 
Especially in the regression model one can calculate explicit credibility estimators, 
see e.g. NORBERG (1980). 

It is well-known that the usual credibility estimators are not robust against 
extremely large claim amounts. This has led to attempts to contruct robust versions 
of  the classical credibility estimators. One method to robustify the credibility 
estimator was given by Gisler already in 1980. 
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Alternative robustifications, which also cover the general regression model, are 
given by KREMER (1991). 

3. ROBUST KALMAN FILTERING 

The KALMAN filter is a well-known instrument for recursive prediction in dynamic 
linear systems. A dynamic linear system is defined by the two stochastic linear 
recursions : 

X i = H i • b, + v i 

b i = F ,  • b i _ i + w i ,  

where X, is a p-dimensional stochastic vector of observations, Hi a known 
(pxq)-dimensional design matrix, b~ a q-dimensional stochastic parameter vector 
and F i a known (qxq)-dimensional transition matrix. The v~, wi are random 
disturbances with : 

E (vi) = O, 

e(v,  vf) = O, 

E ( v  i . vi T ) =  R i ,  

E(vi .  ~f)  = o, 

E (u,i) = 0, 

e(w,. w/) =o, 
g ( wi " w~) = ai 

iCj ,  

i¢~j 

where R i ,  Qi are known covariance matrices. The Kalman filter algorithm gives 
handy recursions for the optimal affine-linear predictor of bi from Xt, X2 . . . . .  Xi_ i- 
For more details see Section 3 in DE JONG et al. (1983). 

Like other standard methods the Kalman filter is not robust to outliers. As a 
consequence, several authors have proposed robust versions of the usual Kalman 
filter algorithm. Recently, a handy robutistification was proposed by Clean & 
ROMERA (1991). We give a brief summary of their result. 

Denote by /~i, the one-step ahead prediction of bi, based on the observations 
X~ . . . . .  X~_ ~, and define its error covariance matrix as 

Ci = E ( b i  - hi)  (b i  - bi)  T.  

For a given covariance matrix M, we define as M-i/2 any matric which satisfies 
M - l / 2  . M .  ( M - I / 2 ) T =  I. 

With this convention we now introduce the matrices 

Aiq×q = Ci-112,  

O i P × q = R i  - I / 2  H i ,  

and the random vectors 

p x l  = R i - I / 2  si 

p q ×  I = A i  " t~i 

X i ,  
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Note that, conditional on b~, the stochastic vector s~ has mean D~. b i and 
covariance matrix /. Further note that 

E ( p i  - m i  " b i )  ( P i  - A i  " b i )  T = ! .  

In the spirit of  M-Est imat ion ,  CIPRA & ROMERA (1991) propose to determine the 
updated estimate b~ of bi, given all observations X~ . . . . .  X~, as the solution of a 
minimisation problem, namely 

(3.1) minimise ~ p,k(pk,-a~r~.[~[)+ ~ p2 j ( s~ , . - 4~ . /~ )  
k = l  j = l  

Here Pt~ . . . . .  ,ol q >-- 0 and Pz~ . . . . .  P2q >- 0 are arbitrary robustifying functions, 
the k-th row of Ai is denoted by a~i, and the j-th row of D, is denoted by d r .  
Denote the derivatives of  the functions P by ~.  

It is seen that the resulting estimator /~i will be the result of  a compromise 
between the desire to minimise deviation from the one-step ahead prediction (note 
p~ - A~./~ = 0) and the desire to have/~[ reflect the information in the new data as 
represented by si. 

Having solved (3.1) to obta in /~ ,  one obtains the one-step ahead prediction to use 
in the next recursion by 

f~i + , = Fi+ l " t ~ .  

For bl one has the normal equations (see (2.8) in CIPRA & ROMERA (1991)): 

q p 

(3.2) ~ a~i" ~l,(Pki-a~'b~) + ~ d~.W2j(sy~-df.t~)=O. 
~ = l  j = t  

By approximating b~ by b~ (3.2) gives a certain approximate normal equation 

q P 

(3.3) ~ w~,i.a~,.(pk~-a~;.t~[) + ~ w2j~.df .(sj,-4iT.l~)=O 
k = l  j = l  

where the weights wl ~, w2ii are defined as:  

~2:(s1~ - d r .  hi) 
W 2 j  I = 

sji 7 dr. t~, 

So far for the general robustification of the Kalman-filter. Turn now to more 
practicable, special cases. 

It is reasonable to assume that the disturbances w, do not produce outliers. This 
results in the choice: 

~ul k (x) = x. 
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Furthermore one is willing to take: 

~2j (') = ~ ( ' )  

independent of  j,  e.g. : 

225 

f u n c t i o n  : 

~ n  (z) = z, for z -< c 

= c, for z > c,  

(3.4) 

where : 

(3.5) 

(3.6) 

Ci F i i- i = .Ci_ i  F ,  T +Qi  

C i  Hi r" Hi. Ci 
C / =  C, - 

Hi" Ci" HiT + Ri/ki 

!tt (Ri-I/2. ( X i  - H i • b , ) )  

(3.7) ki = 
Ri- I/2 . (X i _ Hi . t~i) 

Note that the 'ordinary '  Kalman filter is just (3.4)-(3.6) with ki = 1. 
For the special ~ = We one gets from (3.2) in case p = 1 the recurs/on : 

I R, ' /2"(X/-H/ ' I~i)  I 
(3.8) l~= bi+C/" Hir" Ri- 'n" ~H H--~ : C~:HIr--+-R~ 

Cipra & Romera propose to update Ct like in the original (nonrobust) Kalman- 
filter, i.e. : 

i - I  (3.9) Ci = F," Ci_ I " Fi r + Qi 

Ci. Hir. H i  Ci 
(3.10) C / =  C, - 

H i • C i • H/r+ Ri 

Obviously the resulting recursions are quite tractable. 

where c is a given positive constant. CIPRA & ROMERA (1991) propose tO take (3.2) 
in case of the Huber-function ~H for ~ and the approximation (3.3) in case of  
general ~.  For general ~ the .formula (3.3) gives the following recurs/on in case 
that p = 1 : 

f,i = b, + . . . . .  ( x , -  H/ .  ~/) 
H i . C i • Hi T + Ri [ki 

~2j (') = ~ H  (') 

In the practical case p = I one can choose the so called (one-sided) Huber -  
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4. ROBUST CREDIBILITY 

We consider three well-known credibility models. For each model the robustifica- 
tions (3.4)-(3.10) are presented, giving recursions for a robust credibility estima- 
tor. 

4.1. Biihlmann-Straub (1970) model 

Suppose that X I . . . . .  Xn+ t are conditionally independent given 0. There exist 
measurable functions 

It : (O , r ) - - . - ) ( IR ,  IB) 

(;2 : ( 0 ,  ~;) ---) (IR + , IB + ) 

such that: 

E (x~ I o) = ~ (o) 
Var (Xi I O) = o 2 (O)/V,., 

where Vi, i _> 1 are known volume measures. Explicit formulas for the credibility 
estimator th,,+~ can be found in the original article, equivalent recursions for it 
based on the classical Kalman filter in DE JONG et al. (1983). Obviously a dynamic 
linear model like in Section 3 is given with: 

p = 1, H i = 1, R i = ~72/V~. 

q =  1, F, = 1, Qi=O, 

where : 

One has : 

o0 2 = E ( o  2 ( 0 ) ) .  

bi = mi = I~ (0) 

E,, = ~ , ' : I  = ,~, ,  c,  = el_-,' 

implying from (3.4), (3.6), (3.7) in case of  general ~ :  

t C " V ~ ' k '  1 . (X~_rh~)  

cT .v , ,  k, 
C i  + 1 = C i  - 

G "  v~ . I~ + a 2 

tls (Vi'lz. ( x , -  m,)lcro) 
k i = 

V/1/2. ( X  i - -  m,)/o o 
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and from (3.8), (3.10) in case of  special ~ =  ~ n :  

m i +  ~ L = I~ l i+c i IV i l l2  - -  " IIJH ( " O ' O ' V i l l 2 " ( X i - f f l i ) )  . . . . . .  

Oo J Ci. V,. + o~ 

Ci + ~ = (V~Icr~ + C,- l) - l 

Obviously one has quite handy recursions for the (robust) credibility estimator 
r h  i . 

4.2. H acheme i s t e r ' s  (1975) regression model 

Conditionally given 0 the X~ . . . . .  Xn+ ~ are independent. Suppose that there exist 
functions : 

b : ( 0 ,  z) ~ (IR q, IB q) 

0 2 : (O, 'r)  ~ (IR+ , IB+) 

such that: 

E(Xi l O) = a f  . b(O) 

Var (Xi ] 0) = o 2 (0)/V/, 

where ai is a known q-dimensional vector and V~, i --> 1 are given volume measures. 
The credibility estimator ~h,, + i of  m,,+ l is given by : 

T 
r~/n+ I = a n +  I " n + l ,  

where b,,÷l is the (vector-valued) credibility estimator of  b(O) based on 
X I . . . . .  X,,. 

Explicit formulas for/~,,+ i can be found in the original paper of HACHEMEISTER 
(1975), equivalent recursions based on the classical Kalman-filter in DE JONG & 
ZEHNWIRTH (I 983). 
Obviously the model fits into the framework of Section 3. 
Choose simply there: 

p = 1, H i = a f ,  R i = O ~ / ~  

Fi= 1, Qi = 1, 

where : 

One has : 

og = e (0 2 (o)) .  

b i = b ( 0 )  

b, = b : : l ,  C i ~ c i i - i  I . 
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The recursion (3.4), (3.6), (3.7) give in case of  general ~ :  

( Ci " ai ' ~ " ki ) .  (Xi _ aiT. ~i) 

b , +  , = ~ ,  + a f  . C ,  . a ,  . V~ . k ,  + cro 2 

_ ( I 
Ci+l:Ci ~,af'Ci ai" Vi:ki+oo 2) 

and the recursions (3.8)-(3.10) in case of special ~ =  ~H. 

[',+ = b i  Ci a, - -  tPn . . . . . . . . . . .  
\ ao J a T .  Ci" ai" V, +O2o 

( C,.o,.o:._C!: ]. 
c ,+ ,=c ,  - E : c ,  , , .  v,+og) 

Obviously also these recursions for a (robust) credibility estimator are quite 
practicable. 

4.3. Gerber & Jones' (1975) evolutionary model 

Suppose that X~ . . . . .  Xn+ ~ are conditionally independent given 0. Furthermore 
assume that : 

mi = m i -  I + Wi , 

where the random disturbances satisfy: 

E(wi)  = O, E ( w i  2) = w 

E ( w  i • wj) = O, i ¢=j, E ( w ,  mo) = O. 

Finally let : 

such that : 

0 2 : ( 0 ,  r )  ~ (IR+ , IB+ 

Var (Xi [ 0) = 02 (0)IV/, 

where ~ ,  i --> 1 are given volume measures. Recursions for the credibility estimator 
are given e.g. in the paper SUNDT (1981). 

This model is a special case of  the dynamic linear model of  Section 3. Choose 
simply there : 

p = I, H i = 1, R i = Cro21Vi 

F i = 1, Qi = w ,  

with : 
Oo 2 = E (o 2 (0)). 
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The recursions (3.4), (3.6), (3.7) give in case of  general ~u: 

(- Ci'-V£~- i ).(Xi-~li) 
, ~ + , = &  + G T ~ . k ~ + o  ~ 

C7" ~ " k, 
Ci + I = Ci + w 

C,. v,. ki+o~ 

g'(V,Y 2. (X~- &)/o0) 
k i = 

V/I/2" (X,- nZi)/O 0 
and the recursions (3.8), (3 .10)in case of special ~P= Wn: 

thi+' tfii+(Ci+w) "k,--~o /" ~l'114( " aO" . . . . .  Vi+w" Vi+°20 

c7.  v~ 
Ci + I = Ci + w .  

c, . v, + o~ 

5. A SIMULATION STUDY 

For the model of  Section 4.1 data was simulated with the choice ~ = 1 for all i. The 
conditional distribution of X i given 0 = 0 was assumed to be given according 

(5.1) P ( X i  = k [ O ='~) = (1 - z r ) .  p o ( k  ) + ~ .  P o o ( k )  

( f o r k = 0 , 1 , 2 , 3  . . . .  ) 

with the Poisson-probabilities: 

p o ( k ) =  ~ - e x p ( - O )  

and a probability or. For 0 0 > 0 ~ can be interpreted as the probability of  an outlier 
occurring according to the probabilities POo (k) .  The risk parameter 0 was simulated 
according to the Gamma-model with density on (0, ~ ) :  

(5.2) f o ( o )  = . O~-i . exp ( - f t .  O) 
F ( a )  

where a and fl are the nonnegative parameters. One gets for zr = 0 as credibility 
estimator : 

I t  

o~ + £ X i 
i= l  

(5.3) trim + I - 
[~ + ll 
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what shall be compared with a robust variant calculated recursively according to the 
formulas : 

(5.4) th,,+ , =th, + ( C,/oo) . ~n" (~.( c,,X" - rh-"-hTo) + Oo ) 

og 
C n  + I - -  

I + (O2o/C,,) 

where a 2 = (odfl) and Wn is the Huber-function with c = 1.645. The recursions start 
with : 

~ ,  = (a//33), C ,  = ( a / f l 2 ) .  

The aim of  the study was to compare the results of  (5.3), (5.4) with the ' t r u e '  
value O and to see which one gives the smaller mean squared error:  

( 5 . 5 )  (rhi ÷ j - O)  2 , 
I ' l - - r i o +  I i = n  o 

where n o is an adequate number smaller than n. The claims data had to be simulated 
with a sufficiently large "3" 0 and an adequate small ~. The author chosed ~ = 0.05 
and for 0 o the values 20, 25, 30, whereas he took cz = 100, fl = 10, giving for E(O) 
the value 10. With these parameter choices he simulated 100 risk parameters # j ,  
j = I . . . . .  100 according to the model (5.2) and for each O = Oj independently ri = 9 
values X i according to (5. I) (with x = 0.05). In (5.5) he took ri0 = 6. He got for the 
overall mean squared error 

I00 I0 
I 

MSE= - -  2 2 (rfi~J+)l - tg)) 2 
5 0 0  j = I i= 6 

the results of  the following table:  

t~o = 20 25 30 

with 
(5.3) 0.956 1.231 1.593 
(5.4) 0 .806 0.807 0.807 

showing the strong superiority of  (5.4) for situations where bigger outliers can 
occur with small probabili ty but one wants to rate the normal risk (i.e. case zr = 0). 
For further illustration the simulation results shall be given for two typical cases. In 
the first row of  the following tables the simulated Xi are given, in the second the rhi 
of  (5.3) and in the third the rh, of (5.4). 

~o  = 2 0  : 
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9 13 I 1 22 13 15 14 14 16 - -  

10.00 9.91 10.17 10.23 I 1.07 I 1.20 I 1.44 I 1.59 I 1.72 I 1.95 

10.00 9.91 10.17 10.23 10.63 10.79 I 1.05 I 1.23 11.38 I 1.62 

Oj = 8.42 

21 8 12 9 4 8 9 19 8 - -  

10.00 11.00 10.75 10.85 10.71 10.27 10.13 10.06 10.56 10.42 

10.00 10.52 10.31 10.44 10.34 9.91 9.80 9.75 10.05 9.95 

00  = 25  : 

Oj = 9 .60  

7 19 II 11 II 33 12 II I1 - -  

10.00 9.73 10.50 10.54 10.57 10.60 12.00 12.00 I 1.94 11.89 

10.00 9.73 10.20 10.26 10.31 10.36 10.70 10.78 10.80 10.81 

Oj = 10.71 

12 8 24 12 15 15 10 13 11 - -  

10.00 10.18 10.(10 11.08 11.14 11.40 11.63 11.53 11.61 11.58 

10.00 10.18 10.00 10.43 10.55 10.84 11.10 II .03 I1.15 11.14 

19o = 3 0  : 

~j = 10.77 

I I 7 13 6 7 2 8  7 4 0  1 I - -  

10.00 10.09 9.83 9.79 9.60 9.60 10.75 10.53 12.17 12.11 

I 0.00 10.09 9.83 10.08 9.79 9.60 9.95 9.77 10.08 I 0.13 
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31 8 12 9 4 8 9 29 8 - -  

10.00 11.91 I 1.58 I 1.62 11.43 10.93 10.75 10.65 I 1.67 I 1.47 

10.00 10.52 10.31 10.44 10.34 9.91 9.80 9.75 10.05 9.95 

6. FINAL REMARKS 

By applying robustifications of the Kalman-filter to credibility models one can 
derive fairly practicable recursions for a (robust) credibility estimator. For the 
Btihlmann-Straub and Hachemeister models one gets an alternative to an already 
existing approach to robust credibility (see KREMER (1991), KONSCH (1992)). For 
practical application of the above robustified recursions one needs (robust) 
estimators for the unknown model parameters. Desirable would be such estimators 
in a recursive form. Obviously here is something left for further research. 
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