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ABSTRACT 

Weighted mortality rates are commonly used in actuarial work, but the 
inter-relationship between the weights used and the underlying mortality rates 
seems not to have been widely investigated. 

Calculation of the ratio of weighted mortality rates to conventional mortality 
rates provides a simple means for an insurance company to track changes in 
the underlying mortality of  its portfolio over time, and acts as an early warning 
system for possible deterioration of  underwriting results. Asymptotic distribu- 
tions are found for this ratio, and for the mortality rates themselves. It is 
suggested that insurance companies commence to gather data for the calcula- 
tion of  this ratio for the insurance sector as a whole, for the main annuity and 
assurance classes. 
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1, INTRODUCTION 

Conventional mortality rates are calculated as a ratio of  the number of  deaths 
to the number of  life years lived which gave rise to those deaths, and measure 
the probability of  dying within the next year at a given age. A variant on this 
theme in common use in actuarial work is the use of weighted mortality rates, 
attaching weights to each death and unit of exposure to risk: in life insurance 
these weights are typically sums assured or numbers of policies. For  monetary 
weights, for instance, the numerator is expressed as dollars or pounds which 
have 'd ied ' ,  the denominator in terms of  those sums which were exposed to 
this risk, measured in dollar or pound years. 

Weighting the rate estimates in this way is a natural thing to do, in that what 
matters ultimately to an insurance company is the monetary amounts requiring 
to be paid out. Multiplying total sums at risk in an age interval, for example, 
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by the central weighted mortality rate yields an estimate of total payments to 
that group over the next year, provided that the weights remain unaltered. This 
point notwithstanding, the use of weighted rates is clearly somewhat dangerous 
if the underlying mortality rates for a given age vary within the portfolio, and 
the inter-relationship between the weights and the mortality rates is not 
understood, or changes unexpectedly over time. 

The statistical heterogeneity caused by confounding mortality effects and 
financial factors may pose insurance companies a serious problem, because, 
while mortality changes relatively slowly over time, the inter-relationship 
between sums at risk and mortality may change suddenly and unpredictably. 
The 1956 Finance Act in the UK, to take an extreme example, radically 
changed the pattern of annuity purchases in the UK overnight : the annuitants' 
experience gathered by the insurance companies had thereafter to be separated 
into pre-1957 and post-1956 subgroups (CMIR1 (1973, p. 29)). Less extreme 
examples occur every year with changes to the financial environment, such as 
adjustments to tax rates, altering the balance of the different socio-economic 
groups purchasing various financial instruments, and changing the relative sizes 
of transactions as well. The danger is all the more acute in that such changes will 
tend to occur uniformly over ages, exacerbating the financial consequences. 

When numbers of policies are used as weights, on the other hand, the link 
between the weights and the underlying mortality may not be subject to such 
capricious political changes; nevertheless, the relationship is not at all well 
understood, and the effect of duplicate policies, especially at advanced ages, 
can be very marked (e.g., CMIR2 (1976, p. 69); see also CMIR6 (1983, 
p. 45)). 

Given the relatively crude understanding of the inter-relationship between 
weights used and the underlying mortality rates, the apparent lack of effort 
expended to investigate this connection is surprising, to say the least. It is not 
that the literature has nothing to offer on weighted averages of mortality rates. 
On the contrary, directly standardised demographic rates, of fertility or 
mortality etc., assume precisely the form of a weighted average; and ratios of 
weighted average mortality rates, such as the Comparative Mortality Factor 
(CMF) and the Standardised Mortality Ratio (SMR), are of central impor- 
tance in demography (Cox (1976, p. 298)). These two ratios, moreover, possess 
direct analogues in economics in the Laspeyres and Paasche price indices, 
which in turn have an extensive literature (KITAGAWA (1964, p. 302)). 

Nor is there a paucity of study on the dependence of mortality rates on many 
other factors, such as impairments. Both the North American Society of 
Actuaries and the UK actuarial bodies, amongst many other organisations, 
publish regular reports on impaired lives' mortality, and there is a voluminous 
literature. HABERMAN (1988), for example, deals with weighted averages of 
q/q', where q is the mortality rate of the impaired lives' group, and q' that of 
the population at large; and both the CMF and the SMR can also be recast as 
weighted averages of this ratio (Cox (1976. p. 298)). 

The point is, however, that the emphasis in most mortality studies is on the 
comparison between two sets of mortality rates, be they for two regions, or for 
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impaired and normal lives, etc.; the initial difficulty arising is that of finding 
appropriate weights to use in taking the averages of the rates. Here we are 
interested instead in the effects of using different possible weights applied to the 
one set of underlying mortality rates. The ratio R defined below is the analogue 
of the Area Comparability Factor, a factor designed to correct for the varying 
population profiles in different regions when calculating inter-censal mortality 
behaviour (Cox (1976, p. 305)). 

Nevertheless, the literature is not entirely silent on the dependence of 
mortality on the size of the insurance policy. In accord with the fact that the 
Society of Actuaries uses sums insured as weights for its mortality investiga- 
tions, while the UK actuarial bodies generally use numbers of policies, most of 
this work originates from North America. 

An early writer treating the behaviour of weighted rates such as those 
considered in this paper is CODY (1941), who finds expressions for the mean 
and variance of initial weighted mortality rates, and derives the ratio of the 
variances of the weighted and unweighted rates. More recently, KLUGMAN 
(1981) has contrasted the mean square errors of weighted and unweighted 
initial mortality rates, setting off the larger variance of the weighted rate 
against the bias implicit in using the unweighted rate. These theoretical 
developments notwithstanding, there is very little insurance data to which to 
apply the theory. Virtually the only publicly available data is gathered by the 
Society of Actuaries in its quinquennial survey of Mortality on Policies for 
Large Amounts (SocAcTs (1987)); and these reports are not sufficient detailed 
to enable one convincingly to model in detail this aspect of mortality. 

As KLUGMAN (1981) has pointed out, however, it is clear from these reports 
that mortality is generally lighter for policies with higher sums insured. This is 
consistent with the PA (90) and PL(90) mortality tables, both calculated from 
the same life insurance data for UK pensioners relating to 1967-1970. The 
acronyms stand for "pensioners' amounts" and "pensioners' lives" respec- 
tively; the weights used are annual annuity payments on the one hand, and 
unity on the other. The PA (90) rates are substantially lower than the PL(90) 
rates, implying that wealthier pensioners experience better mortality than their 
less well-off neighbours, and the former table is used in preference to the latter 
simply for reasons of financial conservatism (CMIR3 (1978, p. 20)). 

Mathematical methods cannot be expected to forecast mortality changes of 
the magnitude experienced in the UK in 1956, but one can at least expect them 
to track underwriting results which are changing less dramatically over time. In 
this paper we suggest the use of the ratio R of the weighted mortality rate to 
the unweighted rate for the purpose of alerting insurance companies to general 
alterations in portfolio characteristics, and in particular to potential deteriora- 
tion in underwriting results arising from changes in the interaction between the 
sums at risk and the underlying mortality rates. The statistic R is very simple to 
estimate, and can be calculated every year for each age, or group of ages. 
Moreover, it is readily expressed in terms of the correlation between the 
weights and the mortality rates, as is seen in Section 6, and its use accords well 
with one's intuition. 
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After preliminary definitions are given in Section 2, in Section 3 we find the 
asymptotic distribution of R as the sample size becomes infinite, so that its 
estimated value can be inserted in an approximate confidence interval. A 
by-product of  the calculations is that we also obtain the asymptotic distribu- 
tions of the weighted and unweighted mortality rates, for both central and 
initial rates. 

Simple simulations are carried out in Section 4 to obtain a rough idea of how 
large a sample is required before the asymptotic distributions of the ratio R 
and the mortality rates become acceptable approximations; a further purpose 
is to illustrate the use of weighted mortality rates in tracking the effect of 
mortality changes in a portfolio over time. Some problems of using weighted 
mortality rates in this manner are then addressed in Section 5. 

Finally a plea is entered in Section 6 to make a start to the collection of data 
to keep track of the problem of the inter-relationship between the weights and 
the underlying mortality, for the principal annuity and assurance classes. The 
data is no doubt investigated more thoroughly within individual insurance 
companies; but as stressed above, it seems that little attention has been devoted 
to this matter on a sectoral level. 

2. P R E L I M I N A R Y  D E F I N I T I O N S  

The (sample estimate of the) central weighted mortality rate is defined as 

N 

Z 
1 

( l )  M ~ = 
N 

Sj(l  -Ojuj)  
I 

where N is the sample size; Sj is the weight, labelled as the sum at risk, assigned 
to the j th  individual in the sample; the superscript ,4 denotes amount, reflecting 
the fact that the weights will frequently be monetary amounts; and 0j 
represents the fate of the j th  individual, assuming the value 1 if the person dies 
during the year of observation, and 0 otherwise (0, for Ootvotro¢, is a 
conventional symbol for death in actuarial work). Individuals who survive are 
given a full year's exposure in the denominator, while deaths contribute to the 
exposure only while they live: the variable uj represents the shortfall in 
exposure by those dying, so labelled because in practice it would frequently be 
taken to have a uniform distribution. All those in the sample are assumed to 
come under observation at the same time: there is no attempt to model 
entrance into the sample at varying ages or times, as is done in ROBERTS 
(1992b). 

The initial weighted mortality rate is similar, save that all individuals are 
given a full year's exposure to risk regardless of whether they live or die; i.e., 
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we set the variable u = 0 in (1)" 

(2) 

N 

I A 
Q A _  

N 

1 

The unweighted rates are labelled as life rates, and are obtained by setting 
S = 1 in (1) and (2)  

N N 

M L = ; QL -- 
N N 

Z 
l 

The population parameters corresponding to these latter sample estimates 
are customarily labelled m and q, whence the notation used above. 

For the ratios of weighted to unweighted rates we may use either the central 
or initial rates: 

R_... ~ M A ~ QA 
- -  ~ ; R Q - -  

M t QL 

3. A S Y M P T O T I C  D I S T R I B U T I O N S  

All individuals are assumed to be mutually independent: i.e., (Sj, 0j, uj) are 
mutually independent random vectors, f o r j  = I, . . . ,  N; and we further assume 
that uj is independent of both Sj and 0j, for each j. The variates Sj and 0j are 
not assumed independent: their possible dependence is the problem addressed 
in this paper. 

We shall obtain the asymptotic distribution of R n as the sample siz...e N ~ oo, 
from which the asymptotic distributions of M A, M L, RO, QA and QL may all 
be immediately inferred. Nevertheless, the general derivation is not so easy to 
follow, and we ill...ustrate the procedure briefly by first finding the asymptotic 
distribution of M A. 

A 
3.1. Asymptotic distribution of M A 

Dividing the numerator and denominator of M A by the (deterministic) sample 
size N, and letting N ~  ~ ,  both quantities tend to probability limits, say ~1 and 
~2 respectively" 

N 

SjOj /N ~ ~t -- E(SO), and 

T2 = Z Sj(I -Ojuj)/N-~ 2 = E(S)-E(u) E(SO); 
I 
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whence M----~ _ 7] 
T~ 

- - -  -4 M A = __¢1 in probability, as N ~ ~ .  
¢2 

Each of  the numerator  and denominator,  suitably centred and normalised, 
possesses a limiting no~____aal distribution by the Central Limit Theorem; and so 
will the mortality rate M A, an intuitive argument for which is as follows. 

M~" ~ _ ¢ l ( l + e O  _ ¢1 

¢2( 1 +e2) ¢2 
[1 + e l - c 2 +  o ( ~ + ~ ) ] ,  

where ej ~ 0 in probability, as N ~ o0, for j = 1, 2; and the expansion is valid 
as long as le21 < I. Neglecting the remainder term, and denoting the covariance 

matrix of  (¢j el ,  ~2e2)' by Eo/N, the asymptotic distribution of  ~ (M'~ - M A) 
is ~/:(0, ao2), with 

(3) 
,o _(n 

(MA) 2 ¢Jl 

1 

- 1/¢2 

at~ 2al2  0"22 + - -  

where all = E(SzO)-¢~; trl2 = E(S20)[I-E(u)]--~l¢2;  

and tr21 = E (S  2) - E(S z O) [2 E(u) - E(uZ)] - ¢2. 

all /N is the variance of  Ti, azz/N the variance of  T2, and al2/N their 
covariance. The formal justification for our conclusion follows from a standard 
functional central limit theorem (RAO (1973), p. 387). 

Instead of further d~eveloping this formula, we shall obtain the analogous 
result for the statistic.RR M, from which the asymptotic distributions of  the other 
statistics, including M A itself, are easily derived. 

A 

3.2. Asymptotic distribution of R M 

As above, we define the following random variables and probability limits. 

N N 

T3= E OJ/N--*¢3=E(O), T4= E (l-Ojuj)[N--*¢4= I - E ( u )  E(O), 
1 I 

so that R -''~ _ __Tt/T2 ---~ RM _ ¢1 ¢4 
T3/T4 ¢243 

- - -  in probability, as N ~ ~ .  

In analogy with the previous case, the limiting distribution of ~ (R M-  R M) 
is J/:(O,(RM)2~'Z¢), where ¢' = (¢~-1, _¢~-I, _¢f1,¢,i--I), and ~ contains 
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elements a~ 
ance matrix Z0 previously employed in (3). 

Defining 

= N x c o v  (~ ,  Ti). The leading 2x 2 submatrix of Z is the covari- 

E(SO) E(S 2 O) 
f l - -  , v , 

E(S) E(O) E(S) E(SO) 

ct = E(u) E(0); and fl = E (u2 ) -2E(u ) ,  

and making the innocuous assumption that the mortality rate qj for the j th 
individual is bounded away from unity, s_..o that qj < q < 1 for all j and some q, 
the asymptotic mean and variance of R M are given by 

- I = 
asmean(R M ) = R  M = p  I + I - a u  J 

A 

N x - - -  - 1  - 2 ( v - p )  
(RM) 2 E (0) 1 - ctp 

E(S2)+flE(S20) I + f i E ( O )  1 +pilE(O) 
+ + - 2  

[E(S)] 2 [I - O~lZ] 2 [1 --OC] 2 [I -0q  t] [1 -0c] 

I I~ 11 + O(1 ) E(S20) I 
- - - - -  - - -  + o ( 0  

E(O) [E(SO)] 2 E(O) 

I~ 1 z ( s )  _ 1 - I - 2 [ l - E ( u ) ] ( v - l t  ) + - -  -4- O(q) 
E(O) [E(S)] 2 

in an obvious, if rather cumbersome, notation• Details are given in ROBERTS 
(1992a). 

That v/p _> ! is easily shown from Schwarz' inequality; the inequality is strict 
unless S reduces to a constant (disallowing the pathological case in which 
E(O)-- 1). The factor ( v - p )  appearing in the expression for the variance is 
therefore positive unless all the sums at risk are equal. 

3.3. Asymptotic distributions for the remaining statistics 

A 

From the asymptotic distribution for R M, the limiting distribution of M A is 
found by setting T3 = T4 = 1, causing the corresponding terms in the covar- 
iance matrix to vanish, while that of M t is found by setting TI = T2 = 1. The 
limiting distributions of RQ, QA and QL are then deduced by setting the 
variable u = 0. 
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M A 

M L 

asymptotic variance 
asymptotic  mean 

(asymptotic mean) 2 

~g(O) E ( S  2 O) 1 - g ( u )  E(S  2) + f l g ( s  2 O) 
- 2 v - - +  

1 -~x l t  [ E ( S O ) ]  2 1 - c q ~  [ E ( S ) ]  2 [ I -  ~/~]2 

E(S 2 O) 
- - -  + 0 ( 1 )  

[E(SO)] 2 

E(O) I 1 - E ( u )  1 +fiE(O) 1 
- 2 - -  + - - -  + O ( i )  

1 - ct E (O)  I - oc [1 - ~x] 2 g ( o )  

For completeness we gather the remaing results together below. 

N x  

R Q 12 e(s) 1 v(s) ¢ v -  . >  - + [ 

E ( S 2 0 )  I 
- - -  - + O ( I )  

[E(SO)] 2 E(O) 

Q"~ liE(O) E ( S 2 0 )  2 v + E(S2) E ( S 2 0 )  
- - -  - + o ( I )  

[E(S0)] 2 [E(S)]  2 [E(S0)] 2 

Q-"~ E(O) l - l 
E(O) 

When deaths are uniformly distributed over the time period considered, i.e. 
when u has the uniform distribution between 0 and l, the expressions given 
involving the central rates simplify substantially. In that case, a = E(O)/2, 
fl = - 2 / 3  and E ( u ) =  .5. 

Regardless of  the sums at risk, when all individuals are subject to the 
s ame .  survival curve, ....~ay with central rate m0 and initial rate q0, then 
E ( M  L) = M L = m0, E ( Q  L) = QL = qo. The relationship between the two rates 
is given by m0 = qo / [1 -E (U)qo] :  see, i.a., ELANDT-JOHNSON and JOHNSON 
(1980). 

The asymptotic  bias arising from the use of  the weighted rates to estimate 
the unweighted rates, or vice versa, is seen to vanish when/1 = 1 ; i.e., when S 
and 0 are uncorrelated. In this case, it is to be expected that the variance is 
larger for the weighted rate, and this is verified for the initial rates below when 
S and 0 are independent. 

We note that the expressions given for the means and variances of  the centra.___l 
and ini__.tial rates agree as far as the highest order terms, as they also do for R M 
and Re. 

The asymptotic  distribution of  QA is found in KLUGMAN (1981), the variance 
agreeing with his formula for Var (4a). The numerical dominance of the first 
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term E(S20)[E(SO)] -2 in the variance is evident from th.£._succeeding 
calculations in Klugman's paper. The ratio of  the variances of QA and QL is 
E(S20) E(O) [E(SO)] -2 = v/~, neglecting lower order terms, which reduces to 
E(S  2) x [E(S)]-2 when S and 0 are independent, in agreement with formulae in 
Coo'," (1941, p. 71) and KLUGMAN (1981, Section II). The asymptotic variance 
of the weighted rate estimate exceeds that of the unweighted estimate unless all 
sums at risk are equal, because v > u, as noted above. 

The variance of  QL can be written as the "b inomia l "  variance Q ( I - Q ) / N ,  
with Q = E(O), conforming with POLLARD (1970, eqn. (8)) (in the notation of  
that paper, ni and qi are both deterministic). Pollard actually deals with the 
number of  deaths, but this is precisely a multiple of the unweighted initial 
mortality rate. 

Finally suppose that the j th  group has sum at risk Sj; that the individuals in 
that group have a common mortality rate of  q/; and that the probability of  an 
individual selected at random from the portfolio belonging to the j th group is 
nj, where Z rcj = 1. Then 

QA_ E(SO) _ Z SjTtjqj 
e(s) x 

Thus Q'~ is the weighted mean of the group mortality rates, with weights the 
sum at risk times the probability of  the policyholder belonging to that 
category. There are comparable results for the central rates. Armed with the 
further definitions dj = [ 1 -  E(u)qj]/[I- E(u)qo], where the 0th group has 
been chosen arbitrarily as a reference group, we have that 

E(SO) Z Sjnjdjmj 
M A _~ 

E(S)-E(u) E(SO) X Sj jdj 

The asymptotic mean is again a weighted sum of  the central rates for each 
group; the weights, while slightly more complicated, differ in value but little 
from the weights used for the initial rates, the parameters dj being close to 
unity. 

4. SIMULATION RESULTS 

The calculation of  mortality rates was simulated in order firstly to obtain a 
rough idea of  how large a sample needs to be before the asymptotically valid 
normal distribution becomes a reasonable approximation to the finite sample 
distribution. A second purpose was to investigate how effective the calculation 
of  the ratio of amounts '  and lives' mortality rates is at tracking the behaviour 
of  mortality within the portfolio over time. 

The sample investigated was considered to consist of  two groups, with equal 
numbers of individuals in each group. These numbers were assumed stationary 
through time, so that deaths are replaced by new lives in the investigation. 
Mortality rates were initially identical for the two groups, as were the sums at 
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risk; over the 10 year sampling period, however, while the characteristics of the. 
first group remained unchanged, the sum at risk of the second group increased 
by 5% p.a.; and the initial unweighted rates for the second group were 
successively assumed to increase, then to decrease, by 5% p.a. For each 
scenario, 500 simulations were carried out. 

Situations sampled ranged over mortality rates of .005, .01 and .05 at the 
beginning of the simulated period, and for sample sizes between 100 and 
100,000 life years per annum. 

For each run, the intervals bounded by the 2.5 and the 97.5 percentiles (95 % 
highest density regions, or HDRs) were found for both the empirical sample 
distribution and the approximating normal distribution; when these intervals 
were close to coincident, the asymptotic distribution was taken to be a good 
approximation to the finite sample distribution. Using this criterion, we 
conclude that the limiting normal distribution is an adequate approximation 
for all of the mortality rates as soon as the expected numbers of deaths reaches 
about 5; for the ratio R, whether using initial or central rates, this stage is not 
reached until expected deaths reaches about 10. The larger sample size required 
for R is probably due to the fact that a default value must be assigned to R 
when there are no deaths (for which purpose unity was chosen here): there is 
little possibility of approaching the limiting distribution unless there is a 
negligible chance of no deaths arising. 

Once the expected number of deaths reaches about 20, the limiting normal 
distribution would seem to be a good approximation for all statistics, in the 
sense that the two HDRs almost overlapped. Some typical results are shown 
below, for an initial mortality rate of 5 %, and with mortality increasing for 
half the population at 5 % p.a. We note that exact moments of the mortality 
rates for small sample sizes can be calculated from formulae given in ROBERTS 
(1992a); but this is impractical for other than very small samples. 

As regards the second purpose of the simulation, viz. that related to keeping 
track of changes in the portfolio over time, one wants the ratio R to differ 
significantly from unity for moderate sample sizes, when the weighted and 
unweighted rates are behaving differently from one another. The criterion 
chosen for deciding when R differs from unity is that the asymptotic mean of R 
should differ from unity by more than 4 (asymptotic) standard deviations. 
When this criterion is satisfied, there is at least a 97.5% probability that the 
95 % confidence interval surrounding the point estimate of R will not contain 
the value unity; thus the conventional two sided statistical test of whether 
R = 1 will be rejected at the 5~.~. level, with proba._.bility at least .975. 

To see this, recall that E(RQ)=u; let Var(R Q) = a 2 and suppose that 
u -  1 > 4rr. Using the normal approximation, Prob (R Q > ~ - 2 r r )  ~ .975. On 
the assumption that the standard error estimated from the sample is close to 
the true standard deviation, the width of the 95 % confidence interval encasing 
R"-Q will be close to 4rr, and Prob ( R 0 - 2 r r  > 1) > .975. 

The length of time, and/or the sample size, required to ascertain that R is 
diverging from unity is surprisingly large. The heavy unbroken lines in Figure 1 
map the asymptotic 95% HDR, viz. ~ i 2 a ,  over time. For a sample size of 
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Heavy conlJnuous line for esymplot ic HDR, heavy broken line for sample HDR, faint lines for typical individual simulations 

FIGURE I .  Simulated values of R 0 and Q~. 

10,000 life years p.a., 7 years is needed for the mean to exceed unity by four 
standard deviations; for a sample size of 1,000 p.a., the criterion is nowhere 
near being satisfied even after the 10 years shown, and in fact 18 years are 
required. Even for a sample size of  100,000 p.a., the criterion is not met until 
3 years have elapsed. 

For just two groups of identical, independent individuals, N times the 
variance o f /~  reduces to 

~2 I~ 1 be(a-l)2 
E(O) no3 qo( I  + a c )  2 (1 + b c )  3 

where a = Si/So; b = ql/qo; c = rcl/no; and only th..e.._highest order terms are 
retained (so that it is immaterial whether we use R M or Re). The criterion 
which we are using for assessing when R departs from ! becomes 

I 4 la -  11~/~ 1 +abc - 1 > 
I/1- 11 I B ~ 0  ( I +ac) (1 +bc) N ~ o  n03/2 ( 1 +ac) (1 +bc) 3/2 

Now set c = 1, no = 1/2. The criterion reduces to 

I ( l - a )  ( l - b )  I 4x23/2 , a -  llx/~ 
> " o r  

(1 +a)  ( i ~ b )  ~,/~qo (1 +a)  (1 +b)  3/2 ' 

128 b 
Nqo > 

(1 +b)  (1 - b )  2 
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Note that when b = 1, the requisite sample size is infinite: we cannot 
distinguish between two groups witti equal...~.ortality rates. When b = 0, the 
sample size required becomes zero because RQ reduces to a constant, distinct 
from unity unless a = 1. 

5. PRACTICAL CONSIDERATIONS 

Despite the simplicity of  the results in this paper, several problems may arise in 
their application to tracking the inter-relationship between mortality and 
weights over time. 

In view of  our simulation results, one could first admit that for smaller 
companies, or for the less popular classes of  insurance, the expected number of  
deaths in one portfolio over a year may be well short of  the 10 or 20 that seem 
to be needed for the limiting normal distribution to be valid. The second point 
arising concerns the large sample size necessary effectively to track the 
behaviour of  mortality over time, even for only broad subgroupings of  the 
exposure. On both counts, amalgamation of experience, either over time or 
over companies, may be necessary. 

Even assuming that companies are willing to undertake the calculation of  
weighted rates over time, however, and that there is sufficient data for this to 
be worthwhile, there remain technical problems to be overcome. Of primary 
importance is the bias introduced by selective withdrawals in the measurement 
of  mortality experience. This source of  possible bias assumes some importance 
given the very high level of  early withdrawals experienced by some classes of  
life insurance: in Australia, for example, 15% of  ordinary life insurance 
policies lapse within the first year, and some 50% have surrendered within 
about 6 years (ISC (1992, p. 96)). The use of  central mortality rates will 
decrease the potential bias, but the formulae derived above are far simpler for 
initial rates. Even if such problems are satisfactorily resolved within the 
individual company, moreover, there is still the problem at the sectorai level of 
obtaining data from the various companies on a comparable basis. 

It is theoretically straightforward to derive the asymptotic distribution of  
rates similar to those used above, allowing for other decrements besides death 
(such rates are set out in ROBERTS (1992b), although the asymptotic distribu, 
tions are not given there); but it is to be expected that there will be some 
correlation between sums at risk and lapse rates, and the accurate estimation of  
lapse and mortality rates for many different bands of  sums at risk may present 
difficulties. 

There is also the question of  what weight to choose as the " sum at r isk" 
For  the purposes of  the insurance sector as a whole, this may best be chosen as 
the sum assured plus accrued bonus, or annual annuity payment in force. 
Within an individual company, however, the difference between the sum 
assured and the reserve may be a more sensible choice for insurance policies for 
sufficiently large portfolios. BATTEN (1978, ch. 7) considers several possibilities 
for the weighting variable. 
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Finally, as KLUGMAN (1981) points out, the reason that weights used in 
practice are generally sums insured or numbers of policies is that of practical- 
ity : the information is easily available. The possibility arises then of  using such 
a ratio as R, with both the numerator  and denominator containing weighted 
mortality rates. The weights used in the numerator could remain sums insured, 
or other appropriate monetary weights; those in the denominator could be 
numbers of  policies. The analysis in this paper would still be valid : the variable 
0 would now refer to the death of  a policy, and the various terms like E(SO) 
would need to be interpreted as expected values over a population of policies. 

6. CONCLUSION 

Referring to Section 3.3, recall that the moments for the M and Q rates and 
their ratios agree as far as terms of  the highest order, and the following 
remarks will hold true whether one works with central or initial rates. The 
weights are assumed to be monetary weights, although comparable statements 
could be made for general weights. 

Consider the ratio RQ, the asymptotic mean of  which is: 

E(SO) cov (S, 0) 
R Q = p  - - 1 + 

E(S) E(O) E(S) E(O) 
- 1 + constant x corr (S, 0). 

We first note that the quantity p is dimensionless, so that inflation affecting 
all members of  the portfolio equally should not alter its value, as long as the 
underlying mortality rates in the portfolio remain unaltered (or the changes in 
mortality act uniformly on the whole portfolio). The second point to note is the 
ease with which p is estimated, or rather RQ calculated : e.g., E(SO) = Z Sj/N, 
where the summation is taken over deaths. 

A third aspect is the appeal to our intuition engendered by the quantity p, 
which is simply related to the correlation between S and O as shown: the 
constant is the product of  the coefficients of  variation (standard deviation 
divided by the mean) of  the two variates. A complete lack of  correlation, i.e. no 
differential mortality for wealthier individuals in the portfolio, means that/.t  
will remain as unity regardless of what happens separately to sums at risk and 
mortality. 

The insurance company will wish to estimate both the ratio p and its 
components QA = E(SO)/E(S)  and QL = E(O), for various classes of  business 
and for different age groups, and to track these quantities over time. The 
expected sum to be paid out is the exposure to risk times the former quantity, 
while the second factor follows changes in the underlying mortality over time. 
Estimates should be encased in a confidence interval, standard errors being 
estimated from the above expressions for the asymptotic variance. Insurance 
companies should also commence to calculate these quantities on a sectoral 
level, to oversee changes in the insurance market as a whole. 
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