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A B S T R A C T  

Based on a representatmn of the aggregate clatms random variable as hnear 
combination of  counting random variables, a hnear multivariate Bayesmn 
model of risk theory is defined In case of the classical risk theorettcal 
assumptions, that ts condlttonal Poisson hkehhood counting variates and 
Gamma structural density, the model is shown to identify with a Bayesmn 
version of the collective model of risk theory. An interesting multivariate 
credibility formula for the predlcttve mean is derived A new type of  recurslve 
algorithm, called three-stage nested recurswe scheme, allows to evaluate the 
predictive density and assocmted predtctive stop-loss premiums in an effective 
way. 
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I. INTRODUCTION 

It is well-known that the fluctuatton of basic probabilities m a portfoho of  rtsks 
plays an important role Early work has been done by AMMETER (1948/1949) 
and the subject is emphasized m BEARD et al. (1984) The actuarial hterature 
devoted to stochastic variation of mortahty and other types of  mortality 
variatton ts relatively scarce. A review of  known studtes is given by W O L T H U I S  

and VAN HOEK (1986), Section 7. More recent work includes NORBERG (1987) 
and KLUGMAN 0989)  Random variation in uncertain payments taking into 
account other sources of  vanatton is discussed in DE JONG (1983). 

In hfe insurance the observed mortality experience of  a group contract may 
deviate considerably from the expected mortality gxven by a hfe table Th~s 
means that the expected value of aggregate claims may also deviate consider- 
ably from the value obtained from a life table. Since pnormes  of  stop-loss 
contracts are usually expressed as percentages of the mean aggregate claims 
and stop-loss premiums are very sensitive wtth respect to this quantity, It 
follows that the impact of  the variation m basic probablllttes on the aggregate 

Thts work wa~ ortgmally presented at the meeting on Risk Theory m Oberwolfach, September 
16-22, 1990 
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claims distribution and derived quantities such as mean, standard deviation 
and stop-loss premiums may be important. When tariffing stop-loss contracts 
and in order to avoid mismatches in priorities, the estimation of the mean 
aggregate claims needs special attention. In this paper an attempt is made to 
take into account claims experience when evaluating aggregate claims distribu- 
tions and related stop-loss premiums. The considered Bayesian (analytical) 
model is derived from the well-known standard tools of Decision Theory The 
mathematical steps involved in the construction of  a feasible computational 
algorithm are however rather formidable and are based on previous results of  
the author. Analogous results for alternate Bayesian models chosen from 
among other natural conjugate families may be possible but are not considered 
m this paper. It is also most desirable to develop distribution-free formulas 
following eventually new paradigms as suggested by JEWELL (1990). In the 
following let us give a more detailed outline of  the paper with its main 
results. 

In Section 2 the random variable of  aggregate claims associated to a 
portfolio of  risks is viewed as a linear combination of counting random 
variables for which there exist computational algorithms to evaluate the 
corresponding distribution function (see H~RLIMANN (1990a)). It is assumed 
that risk units produce claims of  known amount  and that the probability of 
occurrence of  a given claim is an unknown following some structural density. 
Based on these assumptions a linear multivariate Bayesian model of  risk theory 
is defined. If one adds further the natural model assumptions used in life and 
general insurance, one obtains what we call hnear multivariate Poisson Gamma 
Bayeszan model of  risk theory. In the present work only this special model is 
studied To illustrate the results of  the paper a simple life insurance example is 
presented and used throughout. 

In Section 3 a link to classical collective risk theory is given It is shown that 
the linear multivariate Poisson Gamma Bayesian model coincides with a 
well-defined Bayesian version of  the collective model of  risk theory. 

The needed Bayesian formulas to perform later on effective stop-loss 
premium calculations are derelved in Section 4. As main results we obtain an 
appealing multivariate credibility formula for the predictive mean of  aggregate 
claims and an analytical representation of the predictive density defined earher 
by JEWELL (1974). 

Using two recurs~ve algorithms to evaluate the probablhty distribution 
function of  a hnear combinatmn of  independent random variables first derived 
in HURLIMANN (1990a) and reviewed in the Appendix, we derive in Section 5 a 
three-stage nested recursive scheme to evaluate the predictive density of  our 
Bayesian model. Previous numerical algorithms for aggregate claims probabil- 
ity models involved so far only one and two-stage nested recursive calculations 
as can be seen from the last advances in the insurance field by PANJER (1981), 
DE PRIL (1986/1989) and HORLIMANN (1990a/b) 

Finally in Section 6 a numerical example illustrates the important impact 
claims experience may have on mean, cumulative probabihty and stop-loss 
premiums evaluated in a Bayesian framework. 
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2. A LINEAR MULTIVARIATE BAYESIAN MODEL OF RISK THEORY 

For  the purpose of rating stop-loss and other non-proport ional  reinsurance 
contracts, we consider the random variable of  aggregate claims which is 
associated to a given portfolio of  risks. Assume that the risks in question are 
subject to the following rtsk classificatton system: 

- -  each risk unit ( =  individual policy exposed to risk) can produce a claim of  
a known amount  mk, k = 1, . . , r ,  where r Is the number  of  possible 
amounts  

- -  a claim is characterised by an unknown probabihty of  occurrence 0,, 
i = 1, . . . ,  s, where s is the number  of  different probabilities of  occurrence 

Example 2.1 

Consider a life insurance portfolio subject to the risk of  death and/or  disability. 
Each life consists of  at most three insurable risk units, two for death and one 
for disability, producing claims whose amounts  at risk can be evaluated using 
computer  programs In pension insurance they are routinely calculated using 
well-known formulas (e.g. BERTRAM and FEILMEIER (1987), Section 3.2.1, 
pp. 61-64). Given a life aged x, a claim for the risk of  death may occur with the 
unknown probabdlty q~ if the insured dies as active member,  or it may occur 
with the unknown probability q'~ if the insured dies as disabled member,  both 
with different amounts  at risk. A claim for the risk of  disability may occur with 
the unknown probabili ty i x. It is straightforward to obtain the above risk 
classification system by renaming the variables appropriately.  

Given the above risk classification system, let us consider the following 
mathematical  model of  aggregate claims. Let Xk, be the random variable 
counting the number  of  claims of  amount  at risk mk with probabili ty of  
occurrence 0,. Then the random variable representing the aggregate claims is 
given by 

( 2 1 )  X= ~ l'~lk ~ Xk,. 
k=l t=l 

The uncertainty about  0, is modelled by a prior or structural density denoted 
u,(0,), i = l . . . . .  s. We assume independence between the 0/s. Therefore the 
structural density of  the parameter  vector 0 = (0j . . . . .  0s) is given by 

(2.2) u(O) = ~ u,(O,). 
r=l  

Specifying different assumptions on the condltxonal probabilities 
Pr (Xkr = JI0,) t h a t j  claims of  amount  m k (given 0r) occur, and on the structural 
densities u,(O,), it is possible to obtain different Bayesian models to describe 
and analyze the aggregate claims random variable X. The following natural 
model assumptwns are widely used in life as well as in general insurance: 
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(I) Condi t ional ly  on 0 the r andom variables X~, are independent  and depend 
upon  01 th rough  the PoJsson l ikehhood 

(2.3) Pr (Xkl =JI0,)  = Po (j ,  O, nkl) e -° .... (01nk'Y " = - - ,  j = 0 , 1 , 2  . . . . .  
J~ 

where nk, is the number  o f  risk umts w~th amoun t  at risk ms and 
probabdi ty  o f  occurrence 01. 

(II) The structural densities u,(O,) are G a m m a  densities given by 

f l ~ ,O ~ , - l  e - f l ,  O, 
(2.4) u,(01) = G a m m a  (01; ct,, ill) - , t = 1, 2 . . . . .  s, a,, fll > 0. 

r(c~,) 

At this stage it is possible to get formulas  for the moments  o f  X The 
expected value, which will be needed later on, ~s calculated as follows: 

(2.5) E [X]  = ~ me ~ E[Xkl] = ~ m k ~ Eo,[E[Xk,101] ] 
k=l  1=1 k=l  I=1 

= m k rtkl 
1=1 fit  k = l  

The results o f  the present paper  wdl be illustrated numerically at the 
following simple life insurance portfolio.  

E x a m p l e  2 . 2  

Given Is a portfol io  o f  1500 active persons insured against  the risk o f  death. It 
is divided into s = 3 age classes cor responding  to the approximate  ages 
x = 30, 40, 50 with p robabdmes  o f  death q30 = 0.00051, q4o = 0.00114, 
qs0 = 0.00344 borrowed from the EVK80 table, which Is the life table of  the 
"E~dgenSsslche Vers lcherungskasse"  used in Swiss pension insurance for 
rat ing risk o f  death and dlsabdlty. Each age class is subdivided into r = 5 risk 
sums subclasses with lump sums 500'000, 1'000'000, 1'500'000, 2 '000'000 and 
2'500'000. Choos ing  a risk umt  o f  zl = 500'000, this means that m k = k, 
k = I, 2 . . . . .  5 The number  nk, of  persons m each of  the 15 subclasses is as 
fo l lows '  

Ilkt 

k =  I k = 2  k =  3 k = 4  k = 5  

z = I 200 150 50 50 50 
t = 2 100 100 100 100 100 
t = 3 50 50 200 100 100 
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The structural parameters  a , ,  fl, defining the structural  density in (2.4) are to 
be estimated. Usually this step depends heawly on the apphcat ion  as well on 
the knowledge o f  the situation. Let us illustrate a simple est imation procedure  
that applies to the typmal case o f  the mortal i ty  risk m life insurance. One can 
set 0, = qx for a certain age x, whmh is interpreted as un unknown  condntional 
p robabih ty  o f  death, gzven alive at age x As a possible method to estimate 
~,, fl,, we propose to use the estimate qx* o f  q,  gtven by the life table as well as 
an estimate o f  the uncertainty in the es t imatmn o f  q~. In other  words  estimate 
o~,, fl, by solving the momen t  equat ions 

OC I a t 
- , V a r  D~]  = - - ,  (2.6) E[qx] #, /32, 

and using estnmators o f  the mean and variance o f  q~ One can take q~* ~ E[q,] 
and a good approxnmatlon of  the variance o f  q,  ns gwen by 

q,*(I - q , * )  
(2.7) Var [q.,] ~_ , 

E,  

where E,  is the exposure,  that  ~s the number  o f  risk years under  observat ion for 
the est imation o f  q, m a hfe table (e.g. LONDON (1988), chap 6.2, p. 115). It 
follows that  

(2 .8 )  

For  the EVK80 table 
ages between 20 and 65 ns 470'937. A rough approximat ion  ns thus E, 
In our  example one has 

E~ 
fl, - , a ,  = fl, q ?  

I - q :  

It is known that  the total exposure Z E, for the active 
10'000. 

10000 
(2.9) fit - - -  - 10005 103, at = fllq3o = 5.103, 

1-- q30 

10000 
f12 - - 10011 413, a2 = fl2q~ = 11.413, 

I - q40 

10000 
f13 - - -  - 10034.519, a3 = fl3qs0 = 34.519, 

I - qs0 

According to (2.5) the expected value o f  the aggregate claims ss equal to 
E[X] = 3'973'500 Since oq/fl, = q, this ~s equal to the expected value o f  
aggregate claims evaluated using the hfe table m the tradit ional way. 

R e m a r k s  

(i) In Section 5 we wdl assume that the amoun t s  at risk m~ are non-negatwe 
integers. This is an assumpt ion made  in most  papers o f  present-day 
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(li) 

applied risk theory. However  in pension insurance negative amounts  at 
risk often occur. In this case special mathematical  treatment IS needed (see 
e.g. HORLIMANN (1991) and the relevant references mentioned there). 

Since Pr (Xk, =JI0,) and u,(O,) are Poisson, resp. G a m m a  distributed, it 
follows that the unconditional probabili ty Pr(Xk, = j )  belongs to the 
negative binomial distribution. 

3. L I N K  T O  T H E  C O L L E C T I V E  M O D E L  O F  R I S K  T H E O R Y  

Before undertaking the Bayesian analysis of  the linear multivariate Polsson 
G a m m a  Bayesian model, we show that it actually identifies wtth a Bayesian 
version of  the classical collective model of  risk theory. 

First of  all we derive a simple formula for the likelihood f(xlO) of  an 
aggregate claims observable 

(3.1) x - -  ~ mk ~ Xk, 
k ~ l  t ~ l  

in the Bayesian set-up of  Section 2. 
(xl ,  • . ,  x~) r of  dimension sxr, where x, 
vectors of  dimension r, and the scalar 

Consider the matrix x = (Xk,) r =  
= (X I . . . . .  Xr,), l =  1 . . . . .  S, are row 

(3.2) x , =  (x ,, l,), = ~ xk,, 
k = ¿  

where ,, denotes matrix multiphcatlon and lr  = (1, 
dimension r. 

Let m = (m~ . . . . .  mr) r be the vector of  possible claim amounts.  The scalar 
product  of  vectors is denoted by the bracket  ( . , . ) .  Then the aggregate claims 
observable x may be indifferently identified as scalar product, sum of  scalar 
products, and sum of  scalars: 

(3.3) x =  (x~ra ,  I , ) =  ~ ( x , r , m )  = ~ ~ Xk, mtc , 
i = l  l = l  k = l  

where Is = (1 . . . . .  I) T is a unit vector of  dImension s. The above notations are 
also defined for the random variable X instead of x and are used throughout.  
By assumption one has 

, 1) T is a unit vector of  

(3.4) f(x[O) = Pr ( ( X  o m, 1~) = x[O) 

= Z Pr (Xk, = xk,, k = 1, 
(xom. I,)= 

(xom, l s ) - x  t=l k=l 

.. , r, i = 1 . . . . .  slO) 
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where the sum goes over all non-negative integer solutions Xk,, k = 1 . . . . .  r, 
i = 1, ...9 s, to the linear inhomogeneous Dlophantine equation 
(x  ore, I s ) = x ,  and p(xk, lO,) = Pr(Xk,=Xk, lO,). For  later use we set for 
short 

(3.5) 
l= l  k = l  

Therefore the likelihood density is given by 

(3.6) f(xlO) = ~ p(xlO). 
(xom,  I , ) = ~  

To obtain the desired hnk with classical collective risk theory, let us show the 
following mathematical  result. 

Proposition 3.1 

Assume that the stochastic system of  aggregate clmms (X, 0) satisfies the model 
assumptions (I) and (II) of  Section 2. Then the likelihood density of  aggregate 
claims is conditional compound Poisson of the form 

co 

(3.7) f(xlO) = 2 q(nlO) h*"(xlO), with 
n=0 

(0)" 
q(nlO) = e - ; ( ° ) - - ,  2(0) = 0,n,, 

n !  ~=1 

where n, = ~ nk, IS the number of  risk units producing claims with proba-  
k = l  

bihty 0,, 

h(xlO) = / 2k(0) 
9 

t ~(0) 

2k(O) = ~ O, nk, 
t=l 

if x = m  k, k =  1 . . . . .  r ,  

0, else, 

Proof: 

(GERBER (1979), pp. 13-14). Since Xk, given 0, is Poisson distributed with 
parameter  O, nk,, the conditional moment  generating function of  the random 
variable m k.~'k~ IS equal to 

(3.8) Mk,(t, 0,) = E[e'mkx~'lO,] = e °'~*'le'%- i) 
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With the condmonal  independence assumption of  (I) one obtains 

(3 9) M,( t ,  0) = E[e'Xlo] : ~I ~ M,,(t, 0,) 
t - I  k - I  

= i~ I C 2 ' (0 ) ( ' ' ' ' ~ - ' )  c)(O) (~., z,(O) = ST0] e'-~- i) . 

But this is the conditional moment  generating function of a conditional 
compound Polsson dJstnbunon with likelihood (3 7). The result is shown 

The above proof  actually identifies the linear multivariate Poisson G a m m a  
Bayesian model with the following compound Potsson Gamma Bayesian collec- 
rive model of  risk theory. One has 

N 

(3.~o) x = ~ Y,, 
l 

i=1 

and the following model assumptions are fulfilled" 

(l ') Conditionally on 0 the random variables Yi . . . .  YN, N are independent 
and the Y~'s are identically distributed, that is Y~ = Y for all k The 
random variable N depends upon 0 through the likelihood density q(nlO) 
and Y depends upon 0 through h(xlO) both defined m (3 7) 

(II ' )  The structural densities u,(O,) are G a m m a  densities given by (2.4). 

Research problem 

It has been shown that the Bayesian model (1), (II) identifies with the Bayesian 
model (1'), (II ' )  In general, that is when p(xt,lO,) and q(nlO) are not 
conditionally Polsson distributed, the models (I), (II) and (I'), (II ' )  will not 
coincide It seems true that they will coincide only m the Poisson case 

4 BAYESIAN ANALYSIS OI-. THE LINEAR MULTIVARIATE 
POISSON G A M M A  MODEL 

Gwen statlsncally independent observations of  the claims for the different 
amounts  at r~k, Bayesian analysis allows to up-date the aggregate clmms 
model Taking into account available past information, it is thus possible to 
make predictions about  the " t r u e "  aggregate claims model associated to a 
porffoho of  risks 

In the first subsechon we derive the ubiquitous parameter  posterior density 
[ (OLD) given a data set D It allows to calculate the posterior-to-data expected 
value E[g(O)[D] for any funchon g(O) of the parameter  vector O. In particular 
one obtains E[OID] 

In the second subsection we are interested in predictions about  the random 
variable Y of  future aggregate claims in the Bayesian model (I), ([I) Given a 
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data  set D, the p re&ctwe  mean  E[YID] is directly obta ined  f rom the formula  
for E[OID], while for the ca lcu lanon o f  the predlc twe densi ty f (y lD) ,  defined 
by JEWELL (1974), one needs the formula  for f(OID) obta ined  in the first 
subsecuon 

4.1 Posterior-to-data parameter estimation 

The observation hkehhood dens'tO, of  the Bayesmn model  (1), (II)  has been 
derived in Section 3, fo rmula  (3 5). Let us write 

(4 I) p(x]O) n e-°'"' " = 0, C(x , ) ,  with 

(4.2) C ( x , )  = n~, 

- I X k t  ! 

Consider  now the data hkehhood densay f(DlO) for an observa t ion  da ta  
matr ix  D = ( x  °) . . . . .  x (")) o f  d imension sx(n.r)  conta in ing n statistically 
mdepedent  observa t ion  matr iccs x I j) = (x}/)) r of  d imension sxr, which repre- 
sent the claims (same no ta tmn  as In Section 2 with the addi t ional  superscr ipt  
( j )  number ing  the observat ion) .  

Related quanu tms  o f  interest are the row vectors  x, (j) = (x~/), . , x~/)) of  
d imension r and the scalars 

(4.3) x, (/) = ~ x~/). 

Consider  the vector  D , =  (x[ I) . . . . .  x, <')) o f  d lmensmn n.r  such that  
D = (Di . . . . .  D,) r. The scalar 

(4 4) T, = ~ x, I/), 
/~1 

l =  1, . .  , s ,  

represents the total numbe r  of  claIms with unknown  probabi l i ty  of  occurrence  
0,, and turns out  to be a sufficient statlstm for the considered model  One 
obta ins  

(4.5) 

T o  simplify set 

(4 6) 

/=1 ~--1 / - - I  

t = l  I=1 J-=l 
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Then one has 

(4.7) f (DlO)  = C ( D )  I ~  e-"°'"'OT" 
~=1 

From this representation one gets the data probability density by evaluation 
of a multiple integral, which separates as follows: 

II , I  (4.8) f ( D )  = f(D[O) u(O) dO = C ( D )  e-$'+""')°'dO, 
,= ~ F ( o O  

= C ( D )  ILl F (~ ,+  T,) fl~,' . 
J. l 1"~(0~1) (fl, + nn,) ~' + r' 

It follows that the parameter posterior density Is given by 

(4.9) f (OID)  - f ( O )  u(O) _ (-I  Gamma (0,; a,, b,), with 
f (  O ) , =, 

(4.10) a, = ~,+ T,, b, = f l ,+nn,,  i = 1 . . . . .  s.  

One sees that it Is of the same form as the structural density with up-dated 
hyperparameters 

At this stage the posterior-to-data expected value E[g (0)ID] of any function 
9 (0) is obtained by evaluation of the multiple integral 

(4.11) E[9(O)ID] = I I 9(O)f(OID)dO" 

In particular one gets 

(4.12) E[OID] = ( . . ,  Eo[O,IO] . . . .  ) = I II 
( a, ) 

b, 

4.2 Posterior-to.data predictions 

Future observations of the aggregate claims and related quantities are written 
with the letter y instead of x. Our object of study is now the random 
variable 

(4.13) Y = ( Y o m ,  Is)  = ~ mk ~ Yk, 
k = l  l = l  

representing future aggregate claims in the Bayesian model (I), (lI). Immediate 
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and of  primary importance is the predictive mean of  the aggregate claims. Using 
(4.12) it is obtained as follows: 

± = Eo[O,[D] m~nk, = mknk,. 
t=l k=l t~l  ~ k= |  

I f  D is the empty set, corresponding to the SltUaUon m which no observation 
~s available about  the portfolio of  risk, one has 

(4 15) E[Y] Eo[E[Y]O]] ~ o~, = = _ _  m k H k l  

t=  I f i t  k =  I 

clearly the same expression as given in (2.5). In the case of  life insurance this 
means that the expected value of  aggregate claims ~s evaluated according to the 
hfe table when no data experience is avadable 

I f  D is a non empty set, one has n > 1, and using (4.10) the formula (4 14) 
may be rearranged to yield the following multtvariate credtbihty formula: 

= - • - -  mknk, , where 
I=l n n t k=l  

nn  t 
Z t  - -  

fit -{'- nnt  
~s a credibihty factor, 

E[O,n,] = n , -  
E 

T, 

n 

L ~ m k n k t  

n I k ~ l  

is the expected number  of  claims with unknown probabili ty 

of  occurrence 0,, 

is the observed mean number of  claims with unknown 

probablhty of  occurrence O, 

~S the mean amount  at risk for risk umts subject to clmms 

with probabili ty O, 

To evaluate predictive or exact Bayesian stop-loss premmms,  one needs besides 
the predictive mean also the predictive density f ( y l D )  of  the future aggregate 
claims. Due to the simple structure of  our model, ~t is not difficult to obtain an 
exphclt analytical formula for the predictive density W~th the future observa- 
tion of aggregate claims y = (y  o m, 1,> one has from (3.6) and (4.1) 

(4.17) f (y lO) = 2 p(ylO) = 2 (-~ C(yi) e-°'"'O~ ''. 
(yore, I,>=y ~om. 1,>=~, ,=l 
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The predictive density, which by the way is known to be the unbiased 
least-squares estimate off(YlOr) for the true value Or of 0 (e.g. JEWELL (1974)), 
is obtained by evaluating the multiple integral 

(4.18) f(ylD) = I I f(ylO)f(OID)dO. 

Using (4.9) and (4.17) the multiple integral separates as follows: 

s I b'~'O~'+Y'-I 
(4.19) f(yID) = Z H C(yi) e-(b,+n,)°,dO, 

~,,~m.l,)=y ,=l F(a,) 

ILI C(y,) F(al+y,) b~' 
~om. I,)=y ,-I F(a,) (b,+n,) ~'+y' 

Using (4 2) and rearranging one obtains the analytical representation 

(4.20) f(ylD)= Z I~ C(y,) 
~),c3rn, I,)~y I=1 

t/k_.__..__j_ - ]Y*' 

r(a,) bl+n, 

5. A RECURSIVE ALGORITHM FOR PREDICTIVE STOP-LOSS PREMIUMS 

In th~s section we assume for s~mphoty that mk = k, k = 1, . , r, that is 
m = (1, . . . ,  r) Other notations remain the same. 

Consider the new random varmbles 

yl = ~ k Ykl, with reahzations 
k=l  

y' = ~ kyk,, i =  l , . . . , s .  
k - I  

The set of all non-negative integer solutions to the Diophantme equation 

t=l  k=l  

~s in one-to-one correspondence with the set of all non-negatwe integer 
solutions to the simultaneous Diophantine equations 

(5.2) ~ y , = y ,  (y r, m) = ~ kyk, = y', i= 1 . . . . .  s 
t=l  k=l  
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Moreover each Diophantme equation 

(y  r, m)  = y', t = 1 . . . . .  s, 

is in one-to-one correspondence with the infinite number of simultaneous 
Diophantme equahons 

(5.3) (y  r, m)  = y,, Y, = ~ Yk, = k,, k, = O, 1,2 . . . .  
k = l  

Using these correspondences the expression (4.20) for the predictive density 
can be rearranged as follows 

(5.4) f ( y [ D ) =  ~ Sk, , k , ( y  ~ . . . .  y~), 
zy'=e k~, .k, oO ,=l r(a,) n, ' 

S k i ,  , k , ( Y l ,  . ,y~) = 
~v , r ,m)=y  ' t = l  k = l  

y, = k, 
1=1, ,S 

tllk""""~'-- I y~ 

be+n, ! 

Yk,! 

Using Poisson hkehhoods this last expression can be written as 

(55) Sk,, .k,(y z . . . . .  y~)= e ~ -  Po Yk,; 
(~,T,m)~,' ,=l k=l b,+n, 

I', = k~ 
t = ] ,  ,$  

e b,Tn, _ _  Yk ,  ; - - -  • 
t = l  ( y , r , m ) = y '  k = l  b,+n, 

yj = k~ 
, = l ,  ,S 

Let us show how an expression in curly brackets can be evaluated. Each of 
these sums defines a function of the form 

(5.6) gk(y)  = ~ ILI PO(Xj,2j), 
xGS~ tt J = l  

S y  ~ ( 

2 / > 0 the Polsson parameter, 

k = 0 ,  1,.. , y ,  

x = ( x '  . . . .  'Xr): ~ J x t : Y }  
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Apply ing  a lgor i thm 2 in the Appendix ,  one 
c o m p u t e d  recurslvely using the fo rmulas  

(5.7) go(Y) = e-~'6(Y) ,  2 = ~ 2j, 
3=1 I=l 

where the funct ions  c,(z) are defined by 

c(i,j), if z=o' ,  j =  l . . . .  r, i =  1,2 . . . .  
(5.8) c , (z)  = 0, else, 

with c(i,j) determined  by the recursive relat ion 
I--1 

(5.9) ic(i,J) P° (O;2 j )= ia° ( i ;2J  ) -  E k c ( k , j ) P o ( i - k ; 2 j ) .  
k = l  

One checks immedia te ly  tha t  

c(i,J) = { 2 J '  t = 1, j =  1 . . . .  r 
( 0, else. 

Hence  one has cl(z) = 0, t > 1, and 

( J ) - -  / 23, j =  1 . . . .  , r  
CI 

t 0, else. 

finds that  gk(Y) can 

k 

kgk(Y) = E i(c,* gk-,) (y) ,  

be 

There fore  one obta ins  the fol lowing recurslve formula  

(5.10) go(Y) = e-X ~(Y), gk(O) = O, 
mm (r, y)  

kgk(Y) = E 2J g k - ' ( y - J ) '  k =  1,2 . . . .  
j = l  

Apply  this result to the recurslve evaluat ion  o f  the sum in (5.5) above.  Define 
funchons  g~(y), i = 1, . . . ,  s, recursively as fol lows.  

n I 

(5.1 !) go(Y) = e b,+,, ~(y),  g~(O) = O, 

mm (r, y) 

kgk(Y) = E nj, gk - t (Y -J ) ,  
j = l  b,+n, 

For  use in numerical  evaluat ion  note that  

(5 12) g~(y)=O, if y = 0 , 1  . . . . .  k - I  or 

g ~ ( y ) ~ 0 ,  if y = k , k + l , .  , k . r .  
With (5.1 1) one obta ins  the fol lowing fo rmula  

S nl 

(5.13) Ski, ,k,(y l . . . . .  Y~) = E eb,+n, g~,(y') 

k =  1 , 2 , . . .  

y > k . r ,  
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Since g~,(y') = 0 for k, > y',  it follows that 

(5.14) f(ylD) = E eb,+,,, g~,(Y') 
~'y'=y ,=1 k=o F(a,) 
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Remark 

In the special case s = r = 1, one recovers the well-known negative binomial 
density 

I YO' y =  O, 1,2, .. 

Using algorithm I in the Appendix, it is possible now to evaluate 
formula (5.14) in a recurslve manner as follows. Define 

(5.15) f~(x) = eb,+,, g~(X). 
k = 0  

Then one has from (5.14) 

(5 16) f(ylO) = E ~ f(Y')" 
Ey~=y I= 1 

Using algorithm l one obtains the following recurslve algorithm for the 
exact evaluation of  the predictive density: 

(5.17) f (01D)  = ~ 

j - I  

(5.18) J c(j ,k)fk(O)=ffk(j)-  Z ic(i'k)fk(J-i)'  
t = [  

the fk(J) 'S  being themselves recursively computed using formulas (5.11) and 
(5.15). Note that according to (5.12) only summands for which g~(Y) -~ 0 are 
calculated in (5.15) It is important to remark that the numerical process to 
evaluate f(ylD) involves a three-stage nested recursive scheme. Indeed the 
functions g~,(Y), c(j, k) and f(ylO) are successively recursively computed. 
However the computation process needs only finitely many operations. The 
numerical illustration of  the next section is based on a concrete computer  
implementation of  the present algorithm. 
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Formulas  for the recursive evaluation of  predtcttve stop-loss premiums are 
now easily obtained. For  each non-negatwe integer T let 

(5.19) SL(T]D)  = E [ ( Y -  T)+ID] 

be the predictive stop-loss premium to the priority T. Then one has the 
recursive relations 

(5.20) SL (OLD) = E[ YID], 

S L ( T +  l iD) = S L ( T I D ) -  1 +F(TID) ,  T = O, l, 2, , 

F(0iD)  = f (01D),  

F(TID)  = F ( T - I I D ) + f ( T [ D ) ,  T =  l, 2 . . . .  

Note  that the predictive mean E[YID] is computed according to the 
credibility formula (4.16) 

6. A NUMERICAL EXAMPLE 

The following tables are based on the szmple example 2.2 They dlustrate 
several extreme situations of  interest. 

The needed structural parameters  ~,, fl,, t = I, 2, 3, have been estimated m 
Section 2. Given an n-year observation period, the up-dated hyperparameters  
a r e  

b ,= f l ,+nn , ,  a,=c~,+ T~, t =  I . . . .  s, 

where T, is the number  of observed deaths in age class i over n years. 
I f  in the linear multivariate model of  Section 2 the 0,'s are assumed to be 

known with certamty (e g. the traditional q~ of the life table) and the Xk, are 
independent and Polsson (03 distributed, one gets the traditional collective 
model of  risk theory, that ~s the usual compound Polsson approxtmatton of  the 
exact individual model of  aggregate claims. In Table I we compare  this 
classical model with the no data predtcttve density obtained by setting n = 0, 
T, = 0, t = 1, 2, 3 Table 2 shows the dependency of the predtctive distribution 
and stop-loss premiums upon claims experience. The time of  observation is 
fixed to n = 5 years and T, varies. In Table 3 the dependency upon time is 
illustrated assuming an extreme no claims experience over several periods of  
observation. 

Concerning the dIsplayed figures, note that sometimes, due to roundmg 
effects, the cumulative probabili ty may be one, while the corresponding 
stop-loss premium may not be zero. 

TABLE I 

COMPOUND POISSON (CPM) vs NO DATA PREDICTIVE MODEL (DPM) 

CPM DPM 

Expected value 3'973'500 3'973'500 
Standard devlahon 2'697'638 2'755'165 
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Cumulatwe probabdlty Stop-loss premiums 
Aggregate claims 

CPM DPM CPM DPM 

10A 0 7131 0 7120 680'833 703'125 
20,d 0 9769 0 9743 41 '324 48'057 
30 zJ 0 9993 0 9990 I'120 I '618 
40 zl 1 0000 I 0000 16 32 

TABLE 2 

DEPENDENCY ON EXPERIENCE BY FIXED TIME OF OBSERVATION (n = 5) 

Clmms expermnce 

Ti 0 0 I 1 2 2 
T2 0 I 2 3 4 4 
Tj 0 3 5 8 10 14 

Pred~chve mean 

3' 180'542 3'437'942 3'673'506 3'930'906 4' 166'469 4'429'742 

Standard devlahon 

2'454'680 2'553'414 2'637'293 2'729'429 2'808'054 2'897'092 

Aggregate 
clmms Pred~cttve cumulatwe probability 

0 0 13568 0 11602 0 09920 0 08483 0 07253 0 06202 
10zJ 081224 078071 075113 0.71777 068700 065213 
20,d 0 98971 0 98582 0 98155 0 97584 0 96979 0 96179 
30 A 0 99976 0 99961 0 99941 0 99911 0 99875 0 99819 
40 zJ I 00000 0 99999 0 99999 0 99998 0 99997 0 99995 

Aggregate 
claims Predictive stop-loss premiums 

0 3'180'512 3'437'942 3'673'506 3'930'906 4'166'469 4'429'742 
10A 394'778 483'804 572'673 680'274 785'832 914'391 
20~ 17'059 24'405 32'805 44'538 57'477 75'378 
30A 352 590 904 1'409 2'041 3'037 
40~ 4 8 14 26 42 71 

TABLE 3 

DEPENDENCY ON TIME OF OBSERVATION FOR NO CLAIMS EXPERIENCE 

Observatlon period 

n I 2 3 4 5 10 

Credlbdlty faclors 

Zi 0 04760 0 09087 0 13038 0 16660 0 19992 0 33322 
Z 2 0 04757 0 09081 0 13031 0 16651 0 19982 0 33308 
Z 3 0 04746 0 09062 0 13004 0 16619 0 19945 0 33257 
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Pred~ctwe mean 

Y784'779 Y61Y172 3'456'452 Y312'762 3'180'542 2'651'420 

Standard devmuon 

2'686'154 2'622'212 2'562'622 2'506'912 2'454'680 2'235'012 

Aggregate 
claims Pred~ctwe cumulative probabd~ty 

0 0 09364 0 10401 0 11451 0 12507 0 13568 0 18815 
10A 0 73655 0 75856 0 77836 0 79618 0 81224 0 87230 
204 0 97885 0 98249 0 98541 0 98778 0 98971 0 99532 
30 4 0 99926 0 99945 0 99959 0 99969 0 99976 0 99993 
404 0 99999 0 99999 0 99999 I 00000 I 00000 1 00000 

Aggregate 
claims Predictive stop-loss premmms 

0 3'784'779 3'613'172 3'456'452 3'312'762 3'180'542 2'651'420 
10 4 621'345 551'480 491'478 439'688 394'778 241'494 
20A 38'469 31'048 25'251 20'685 17'059 7'106 
30A 1'164 849 626 467 352 98 
40A 21 14 9 6 4 1 

APPENDIX 

In order  to be self-contained, as well as for  the convemence  of  the reader, the 
main results o f  HORLIMANN (1990a) are reproduced wi thout  proof.  

Let Xj, j = l, 2 . . . .  be mutual ly  independent  r andom variables taking values 
in the non-negat ive integers. Let f , ( i )  = Pr (Xj = t) and assume that  f j (0)  > 0. 
Consider  a linear combina t ion  o f  r andom variables 

(A.1) Y = ~ ak Xk, ak ~ No. 
k = l  

Assume that a I ~ a 2 _> . .  ~ ak > 0, k = 1, 2, .. Given the ak's and the 
f j ( t ) ' s ,  the following two-stage nested recurslve a lgor i thm for the exact 
compu ta t i on  o f  f ( y )  = Pr (Y = y )  is available (Theorem I m HORLIMANN 
(1990a)). 

Algorithm 1 

Under  the above condi t ions  one has 

(A.2) f(0) = [ I  f (0) 
./c I~c 
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If y > 0 then one has 

(A.3) y f  (y) = 
[y/a,] 

2 ak 2 sc(s 'k ) f (y- -sak)  
k~ly s = l  

Y 

(A.4) = 2 s 2 akc(s ,k ) f (y- -sak) .  
s = 1 k E IIy:d 

In these formulas 

(A.5) Iy = {k • 0 < ak < y}, 

(A.6) Ioo = {k "a k > 0}, 

(A.7) [y] is the greatest integer contained in y ,  

and c(s, k) is determined by the recurslve relation 

S--I 

(A.8) sc(s, k)fk(O) = sfk(s) - Z jc( j ,  k ) f k ( s - j )  
J = l  

The apparent complexity of  Algorithm 1 is reduced by abstraction as 
follows. For each s = I, 2 , . . . ,  define 

(A.9) cs(z) = I c(s, k), If z = s a  k for some k, 

t 0, otherwise. 

Note the index notation error in HORLIMANN (1990a), where the indices s, k 
must be exchanged m order to yield correct practical results. With the change 
of variable z = sak the relation (A.4) can be rewritten as 

(A.10) Yf(Y)  = 2 z c , ( z ) f ( y - z )  
z = l  s = l  

Then set 2 = - I n  {f(0)} and define the function 

(A.I l) h ( z )  = Cs(Z). 
5=1 

Then Algorithm 1 is equivalent to the simple Panjer-like recursion 

(A.12) f ( 0 )  = e- ; ' ,  

Y 

y J ( y ) = 2  Z z h ( z ) f ( y - z ) .  
Z=I  

The second important computational result contained in HORLIMANN 
(1990a), theorem 2, concerns an alternative recurswe procedure to evaluate 
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f (y) .  For this one considers for each y 6 N o the D]ophantine set 

S y = l x = ( 0  . . . . .  O, Xk,+,,Xk,+Z ..... Xko,Xko+, .... ) x~eNo, E akXk=yt (A.13) 
ket~ ) 

consisting of all non-neganve integer solutions of  the hnear equatton 

a k  X k  = f t .  
k= 

In this defimtion 

and it follows that 

k, = / max {k ak > x}, if x < a l ,  

t O, If x > _ a  I . 

(A.14) f ( y )  = Cy E H fj(x), 
tES~ ]EI~ 

Consider the following subsets of  Sy: 

ly = {ky + 1, ky + 2 . . . .  , k0}.  

From the independence of  the Xj's, one deduces that 

c~ = ~ f~(o). 
j= l  

k = 0 , 1  . . . . .  y ,  

and define functions 

(A.16) gk(Y) -= Cy E H £(xj), k 6 No, 
xES~ k j ~ l ~  

with the convention that gk(Y) = 0 whenever the sum is empty. From (A.14) 
one sees that 

(A.17) f ( ) ' )  = ~ gk(Y). 
k=0 

Algorithm 2 shows how to compute f ( y )  by the successive recurswe 
evaluanon of  gk(Y) using the ck(y) 's  defined m (A 9) 

A l g o r i t h m  2 

One has the following recursive formula 

(A 18) go(Y) = f ( 0 )  6(y), 
k 

kg~(y) = E J(cj*gk-J ) (y)" 
j= l  
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It ~s important to observe that Algorithm 2 is a Panjer-like recursion in the 
space of discrete distributions with addmon and convolution as operations. It 
~s worthwJle to mention that Algorithm 2 generalizes the results obtamed 
through the shovelboard approach of VAN KLINKEN (1960) recently revlstted 
by ALTING YON GEUSAU (1990). 
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