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A B S T R A C T  

For some time now, the convenient and fast calculabdlty of collectwe risk 
models using the Panjer-algonthm has been a well-known fact, and indeed 
pracnnoners almost always make use of collective risk models m their dally 
numerical computanons In doing so, a standard hnk has been preferred for 
relating such calculations to the underlying heterogeneous risk portfoho and to 
the approximation of  the aggregate claims distribution function m the individ- 
ual risk model. In this procedure until now, the apprommation quality of  the 
collecnve risk model upon which such calculations are based is unknown 

It is proved that the approxlmanon error which arises does not converge to 
zero ~f the risk portfolio in question continues to grow. Therefore, necessary 
and sufficient con&nons are derived m order to obtain well-adjusted collectwe 
risk models which supply convergent approximanons. Moreover, it Is shown 
how in practical situanons the previous natural hnk between the Individual and 
the collective risk model can easily be too&fled to improve its calculation 
accuracy. A numerical example elucidates this 

K E Y W O R D S  

Indwldual risk model; colletwe risk model; mo&fied natural approximation; 
aggregate claims dis tnbunon;  Berry-Ess6en bound. 

I N T R O D U C T I O N  

For decades one of  the central themes of risk theory has been the calculation of  
the aggregate claims dlstribunon of  a portfolio. The aim of this paper is to take 
this subject and shed a new light on theorencal aspects and practical 
apphcanons 

In the e~ght~es, with the development of  recurswe algorithms, a considerable 
degree of progress was made towards the numerical calculation of the aggregate 
claims dls tnbunon for both the mdwidual and the collective risk model. In 
parncular, the special collecnve risk models considered by PANJER (1981) are 
generally accepted by practitioners as being adequate, and the use of  Panjer's 
algorithm has meanwhile become a widespread standard technique of  actuaries. 
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In applied risk theory the n policies X, of  which a portfoho is composed are 
usually independent but, as a rule, not identically distributed random variables 
Instead of  the collective risk model, in practice one is initially concerned with 
the individual risk model, m which the calculation of  the distribution function 
of  

S rod= ~ X, 
t=l 

is a fundamental task. The fact that the above-mentioned collectwe risk model 
can be calculated so quickly has led in the practical application to a switch 
from the individual risk model to a collective risk model, in the hope that the 
error which inevitably occurs as a result is sufficiently small. So a (hopefully) 
appropriate collective risk model is linked to the individual risk model 

Until now, when this link was being made, it was not the whole class of 
collective risk models 

N 
S coil = ~~ Z, 

t=l 

(with independent identically distributed random variables Z, and random 
claims number N independent of the sequence of  single claims amounts Z,,  N 
in the Panjer-class) which was considered with regard to its suitability. Rather, 
in literature and in practice a "classical l ink",  which is described precisely e.g 
in GERBER (1979, p. 50), and, for our purposes, in Section 1, Remark 1.4, has 
become generally accepted. Here, the N (whether binomial, Polsson or negative 
binomial distributed) and the (Z,), both characterizing the collective risk model, 
are clearly determined by the individual risk model In practice N is almost 
always chosen as the Polsson distributed claims number. 

For  the error 

(i) ,d = sup IP(S 'nd _< x ) - P ( S  c°lt _< x)l 

the paper by HIPP (1985) provides an error estimate for the classtcal hnk to the 
compound Polsson model which is small enough for various practical applica- 
tions. This sharpens an error estimate given by GERBER (1984) 

However, for very large portfohos, these error estimates become so bad that 
they are unusable - -  which does not of course rule out the fact that the error ,d 
itself may converge to zero for portfohos which are becoming increasingly 
large. (The meaning of  this is to be defined more specifically.) 

With regard to the standard link to the compound Polsson model, in 
Section l of  this paper, proof  is supplied for the (surprlslng9) results that this 
error does not in fact converge to zero. This also apphes when the Poisson 
distribution is replaced by the negative binomial distribution. In the binomial 
case, the situation has proved to be ambiguous (cf. Section l, Model 1.1). In 
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short, the methods normally used in practice have proved to be bad for large 
portfohos. 

These results can be derived from the answers to more general questions 
concerning the connections between the indwldual and collectwe risk models. 
These questions are of  interest in their own right and of  fundamental 
significance, and they refer in the first instance to general collective risk models 
with weak additional con&tions. In particular there is no requirement for a 
collective risk model to emerge from an Individual risk model iia the standard 
manner. 

The requirement 

(2) ~ ~ 0 

(for portfolio size growing to infinity) is obviously a theoretically reasonable 
(asymptotic) quality criterion for judging whether individual risk models can be 
adjusted precisely by means of collective risk models. This immediately gives 
rise to two questions: 

With regard to (2), are there eqmvalent and simple conditions which make ~t 
possible to check the vall&ty of  (2) in concrete cases? Is the theoretical quality 
criterion (2) also a relevant measure of quality for practical applications, or, to 
put it more precisely, ~s the assumption contained m (2) that A becomes small 
equivalent to the assertion that the difference in the two risk premiums does 
not become overly large9 

Both questions are answered in the affirmative with Theorem 2.1, the first 
questton m particular being answered by the fact that (2) is eqmvalent to the 
(mostly easily verifiable) condition 

Var S c°ll 
(3) ~ 1. 

Var S md 

The more comprehensive result of  Theorem 2.2 represents a quantltatwe 
sharpening of Theorem 2.! which is particularly interesting because equivalent 
conditions are given for situations where the difference in the two portfolio 
premiums even remains bounded. A useful tool for proving these central 
statements of  the paper is provided by the often neglected paper by YON 
CHOSSY, R. and G. RAPPL (1983); here the possibility of  representing 
stochastic sums by means of determmistlc sums is proved These results and 
required Berry-Ess6en bounds are presented separately in the Appendix. 

An important point for the practical application is that for good approxima- 
tions, in ad&tion to the requirement that the expected values should be equal, 
it would now, in wew of  (3), be appropriate to seek and construct collectwe 
risk models w~th 

Var S 'rid = Var S ¢°H. 

In order to ensure that collective risk models can be calculated quickly, only 
collective risk models belonging to the Panjer-class are suitable. On the other 
hand--as  mentioned at the beginning of this paper--collective risk models 
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which emerge from an individual risk model via the standard hnk are ruled out. 
However,  converging approximation models which are simple to construct can 
be obtained by scaling the range of the single claims amount  in the standard 
link. 

I f  an appropriate  scaling factor and the parameter  modifications correspond- 
ing to it are chosen, then for all three claims number  distributions of  the 
Panjer-class, the equahty of the first two moments  can be achieved In the 
individual and the collective risk model. Moreover,  in Section 3 an analysis is 
carried out to show that the best adjustment should be reached with the 
compound binomial model. This is also verified by several numerical examples, 
which can be taken from the Gerber  portfolio (GERBER 1979, p. 53). Thus, in 
practical applications, instead of  the standard link to the compound Polsson 
model, a modified compound binomial model, which is described precisely in 
Section 3, should be used (cf. JEWELL and SUND'r (1981)). 

1. The link between a given individual risk model and the related 
collective risk model 

In the following X, denotes the amount  of  claims produced by risk t, i ~ IN. The 
single risks are understood to be numbered in a statable way. Their, in future, 
undefined claims amounts  are understood as random variables. The accidental 
aggregate claims amount  resulting from a segment of  n risks, that is the sum of 
all single claims amounts,  IS called an Individual risk model, if the following is 
valid : 

Definition 1.1. (Individual risk model, cf BOWERS et al (1987), p 25). 

The individual claims amounts  X,, 1_< i_< n, n t i N ,  set up a sequence of  
independent, in general not identically distributed random variables X, such 
that X, _> 0. X, = 0 means that risk t does not produce a claIm. The random 

variable S 'no = ~ X, is called the aggregate claims amount  of  the individual 

risk model. 
We shall write S,', no instead of S ~nd to indicate the dependency of  S on the 

size of  the underlying risk segment. As no misunderstanding is possible below, 
we will drop the index n there. In view of later considerations and in order to 
make the model tractable, we shall impose addltlona} condItions. 

Assumption 1.1. The sequence of  random variables (X,), t e iN, fulfills the 
inequalities 0 < c _< EX, _< d < oo and 0 < a < Var X, _< b < oo, where a, b, c, d 
are real-valued constants 

Assumption 1.1 does not impose any restrictions on practical apphcatlons, 
excluding only unrealistic cases The validity of  Assumption 1.1 follows, as a 
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rule, from the fact that m practical applications the sequence of  random 
varmbles X, are even uniformly bounded, that is sup IX, I < oo 

Remark 1.1. In accordance with the sequence (X,), l~  IN, we can define a 
sequence of  independent random variables (I,), t~  IN, by setting 1, = l lx,>0/. In 
addition to this we can go on to construct a sequence of independent random 
variables (Y,), i t  N, by postulating for their one-dimensional distribution 
functions : 

P ( X ,  _< x )  - P ( X ,  = O) 
(I.1) P ( Y , < x ) -  if x > 0 ;  P ( Y , = 0 ) = 0  

P(X ,  > O) 

Thus, we have the representation X, g I, Y, for each t ~ IN. Y, can be interpreted 
as the claims amount  of  risk i, provided that this risk produces 
a claim The claims number N* m the individual risk model is established 
by 

N* ~ I, " = = , l , ~ f l ( 1 ,  q,) with q, P ( X , > 0 )  and fl the bmomml distribution. 
t= l  

The events {I, = 1} and {Y, < x}, x > 0 arbitrary, are independent. 
In many practical situations the calculation of the distribution function F '"d 

of  the individual aggregate claims amount  S '"d ~s of  fundamental  importance. 
However, ~ts precise numerical computat ion Js m general impossible without 
the support  o f  a computer  and, m spxte of  recent recursive algorithms 
(KoRNYA (1983), HIPP (1985, 1986), DE PRIL (1989)), stall Costly. Therefore, at 
a very early stage of risk theory, the question of the calculabihty of  Fmd led to 
the concept of  the collectwe risk model (BOWERS et al. (1987), p. 317), which is 
easier to handle when theoretical considerations are made. Its fast numeri- 
cal calculabdity (Panjer-class) is another,  more recent reason for using ~t. 

In the following we shall denote by N the random number  of  claims occurmg 
m a risk portfoho m a gwen period, and by Z, the accidental amount  of  the 
tth-clalm, t _< N. We will then be speaking of  a collectwe risk model, if we state 
the following 

Definition 1.2, (Collectwe risk model, cf. BOWERS et al. (1987), p. 317). 

The random collectwe claims amounts  Z, ,  i t  IN, set up a sequence of  
independent, indentlcally distributed random variables such that Z, > 0 for 
each I e IN. The sequence Z,, i ~ IN, is assumed to be independent of  the random 
claims number N. The random variable N takes on non-negatwe integer values. 

N 
The random variable S c°tt = ~ Z, (with S c°ll= 0 if N =  0) is then called 

t--I 

the aggregate claims amount of the collectwe risk model For N and (Z,), t~ ~q, we 
assume m addition' 0 < E N  < oo, 0 < Var N < ~ ,  0 < E Z  t < oo, 0 < Vat Z, < oo. 
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Remark 1.2. S ~°H satisfies ES ~°H= ENEZi  and Var S ~°n = E N V a r  Z t +  
Var N(EZO 2. 

The hnk between Definition 1.1 and Definitmn 1.2 at once becomes clear 
when we refer to the indiwdual risk model with independent, identically 
distnbuted random varxables X,, I _~l_~ ill. This, m turn, brings us to 

Remark 1.3. If the individual model satifies X, 2, F for each i, it follows that 
N* ,Z fl(n, q) with q =  P(Xi > 0). Put N g  N* and Zi ,ZG, where G(x)  = 
( F ( x ) - ( l - q ) ) / q  for x ) 0 .  Thus we get S ma.-~S c°ll w~th claims number 
distribution fl(n, q) m the collective risk model. 

In general the question arises how the distribution functions of N and Zl 
should be chosen such that the distnbut~on function F c°H of S c°~l supplies a 
good approxxmatmn to the distribution function Fmd o f  S rod, The following 
procedure is usual: 

Remark 1.4. Define the d~stnbutton function G of Zt by 

(1 2) G(x)  = ~ q'-- G,(x) with a , ( x ) =  F F , (x ) - (1 -q , )  , x_> 0, 
~- I nq q, 

and 

(1.3) q =  q,, q , = P ( X , > O ) ,  X , = I , Y , ,  X, Z F , ,  Y, 'ZG,.  
/Y/ ~=1 

In this remark the representation X, "--' I, Y, is such as given in Remark 1 1. 

Consequently we have Zi > 0 and EZ~' - EX, m < oo, m = 1, 2. 
nq t=l 

Assumptmn 1.1 estabhshes the existence of  real-valued constants a ' ,  b', c ' ,  d'  
(independent of n) with 0 < c'_< EZ~ _< d' < co and 0 < a '  _< Var Z~ _< b' < co. 
Note that the distribution functmn G of Z~ depends on n. 

The last remark results in three different collective risk models, each of  them 
specified by the choice of the claims number distribution (Pan ler-class). 

Model 1.1. 

Let 

N,Z fl(n, q) 

G as defined in (1 2). Then 

ES c°ll= ES 'no and 

The natural approximation (compound binomial approximation). 

and Zi 2., G, 

Var S c°ll ~- V a r  smd-t-ZlBa, 
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As, = (EX,)2 - __1 EX, . 
i = l  H/ t = l  

AB, >-- O, since n (EX,) 2 > EX, . 
i= l  I = l  

As. = O ~ E X ,  = EXi  for each i = 1 . . . . .  n. 

The  natural  app rox ima t ion  can also be derived f rom an individual  risk 
model  as follows. Put 

S c°ll = ~ Z,* with Z , * ~ G * ,  
t= l  

where for  x >_ 0 

(1.5) 

Since 

G * (x)  = - F, (x)  and X, Z F, 
H t=¿ 

'k '± 
(l 6) G * ( x )  = - ( l - q , )  + q, 

iv/ t= l  // t= l  

= ( l - q ) + q G ( x ) ,  

we conclude f rom the character is t ic  funcuon  

F , ( x ) -  (1 - q , )  

q, 

(1.7) ( S ) (Ee"Z")  " =  ( l - q ) + q  e " X G ( d x )  
0 

= n (1 _ q ) n - k  qk e"" G * k ( d x ) ,  

k=0  k 0 

that  the two approaches  lead to the same col lecuve model .  

Model 1.2. The  c o m p o u n d  Polsson app rox ima t ion  

Let 

N ~ ~(nq) ,  ~t the Poisson distr ibut ion,  and Z I ~ G,  

G as defined in (1.2). Then 

E S  c°ll = E S  md and Var S ¢°" = V a r  s 'nd-FApo, 
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where 

(1.8) ~po = ~ (EX,) 2. 
t= l  

Model 1.3. The compound negative binomial approximation 

Let 

N ,Z ../ ( ' ) + q  n ,  , 1 - -  A ~' the negative bmomlal distribution, and Zl v G, 

G as defined In (1.2). Then 

ESCOn = E S  md 

where 

and Var S c°n = V a r  smd-[-ANB, 

1 (ESmd) 2 (1.9) .4NA ---- EX,  2 + - 
l - I  r/ 

I (ESmd)2. = Var S 'nd + (EX,)  2 + 
i--I F/ 

Thus, the three collective risk approxJmatmn models correctly adjust the 

expected claims number E ~ I~x,>0~ = nq = E N  and the expected aggregate 
t - I  

claims amount,  although they overestimate V a r S  'na. Obviously, for the 
overestimation the following is valid: 

0 ~ ABi < AVo < ANB. 

In respect of  Assumption 1.I a simple calculation leads to the following 
result, because EX,  and Var X, are uniformly bounded. 

(I) N binomial distributed' 

(1 lo) V rS ° I 
Var S md ~ 

L Var X, 

(u) N Potsson distributed" 

VarSC° 
(1.11) Var Smd 1 - 

Var X, 
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(ni) N negatwe binomial &str ibuted"  

Var sc°ll I - ~ (  n 1- ) d 2 (  1 )1  (1.12) 1 - ANB ~ 1+ 1+ , 1 + - -  1+ -- . 
Var Smd ~ a n 

L Var X, 
1 = 1  

Hence,  only in the case o f  binomial distr ibuted claims number  N we can 
achieve Var S 'nJ = Var  S ~°n. For  instance, this is fulfilled if EX, = EX~ for all 
t = 1, . . . ,  n or if even all of  the X, are identically distr ibuted (cf. Model  1.1). 
The  following example shows that m general the variance ratio m the 
compound  binomial approximat ion  does not  equal to 1 exther. 

Example 1.1. Look at a sequence of  r andom variables (X,), 
X, E {0, 1}. Let for  each t 

P ( X , = I )  = I 3 / 4 '  i e v e n  

t 1/4, t odd. 

Therefore  we have 

1 < i < _ n ,  

EX = { 3 / 4 ,  / e v e n  and V a r X , = {  3/16' t even 

1/4, t odd 3/16, l odd. 

F rom that  

Var S c°ll ( 4 / 3  , n even 

Var S'"d ( 4 / 3 ) -  I/(3 nZ), n odd 

easily is concluded.  

Fur ther  on we shall analyze the impact to which Var S 'nd 4: Var S c°ll leads in 
the case o f  p remmm calculations which are based on the above-ment ioned  
approximat ion  models instead of  the individual risk model.  As these assertions 
depend on the number  n o f  risks underlying the por t fol io  at issue, we shall now 
add the dropped  index n to our  previous notat ions,  thus S,  'ha instead o f  S 'nJ, 
S,  ~°ll instead o f  S c°ll, etc. 

Assumpt ion  1.1 instantly implies ES~ nJ , o% Var S "°d , oo, and, as 
g t ~ O 9  t l  ~ ~30 

E . ~ m d  L '.~c°ll a l s o  F. ' ,~c°ll _,, = __,  . . . .  ,, . ~ .  As shown above,  the variances of  the col- 
f l O O D  

lectwe and the individual risk models differ f rom one another  in general. 
Only in the case o f  binomial distr ibuted claims number  the variance ratio 

can converge to 1. In part icular  we have Var  ,~'c°H-Var ,~,,,d --n --n , oo In  most  
n ~  Go 

situations. 
The consequences of  the overest imated actual variance for p r emmm calcula- 

tion by means of  collective risk models is demons t ra ted  using the percentile 
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premium. Let 

(1.13) .~,~,d (~) = mf {xlp(g,~nd < x) _> ~x} 

wzth security level 0 ~ ( 0 ,  1), .~oll(~) analogously That is, the premmm 
..5'~,~ "d (~) is not exceeded by the aggregate claims amount S,~ "~ with probabihty 
~. Of course the difference ,5",,'~e(oO-./ffll(~ ) is of  interest. This heuristic 
reflection serves to motwate the following. Under assumptions which are 
always satisfied in practice, we obtain approximately the following result if n is 
large enough (cf. Lemma A.2 (i)): 

.y , .~(~)  ~ ,°~ ,°d ~#° + q~- I (~) a. (i.14) 

and 

(l.15) coil . S o .  (~) ~ #~o.+  # , - ,  (~) a .  . 

where #'. "d F . ~  md oll F.~coll ,nd ~ .~, md coil ~ .~ coil I 

denotes the inverse function of standardized normal distribution function qs. 
Thus, as # , , d =  #eoU the premium difference .Y]°H(~)--.9','"d(a) of the risk 

models under consideration directly depends on the difference of the standard 
deviation, namely 

~ncoll _ ,_~/~nmd z coil md\ I (1.16) ,~ (~) (~x)~ta,  - a ,  ) ~ -  (~x)>0. 
coil ind A further analysis shall show that the difference a~ - a ,  Is strictly related 

to the term sup IF~"d(x)-F~°H(x)l. 
z¢ 

2. Approximation of  an individual risk model by a collective risk model 

In this section, at first we focus our analysis on the approximation of  

individual risk models S, 'nd = ~ X, of growing size by a sequence of SO- 
N. 

called homogeneous collective risk models S~ °ll = E Z,. We shall deduce 
i=l  

our main results in Theorem 2.1 and Theorem 2.2 and then apply these results 
to a reasonable concept for a portfolio growth which conducts to Corollary 2. I 
and Corollary 2 2 We start with 

Definition 2.1. We call (S,~°H),~ a sequence of homogeneous collective risk 
Nn 

models if, for each n~  IN, S~ ° l l=  E Z, is a collective risk model and the 
t=l  

distribution function of Z, is independent of n. In addition we assume that N, 
possesses a representation N, Z L *n with arbitrary distribution function L on 
/No (cf. Proposition A.1). 
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In the following, the nota t ions  used are the same as m Section 1. The  
sequence (X,),~t4 is supposed  to fulfill D e f i n m o n  1.1, Assumpt ion  1.1 and 

sup {EX, 3} < oo In addi t ion to Defini t ion 2 1, we assume that  EZ~ 3 < oo, 
Je~q 

E N ,  3 < oo for all n e tq. Unde r  these condit ions,  all the results listed m the 
Appendix  are appl icable  to S,~ nd and S~ °~ and to their dis t r ibut ion funct ions 
F,~ "d and F,~ °". 

Let  our  analysis s tar t  f rom the s u p r e m u m  n o r m  o f  the difference o f  the two 
dis tr ibut ion functions F,~ "d and F,~ °H, i e. 

~lnd  t x ~coll (2.1) An = sup r,; t x ) - r , ~  (x)]. 
x 

With F "°d ( x )  = P (Sn Ind _~ x ) ,  (prod (X) ~-- ~ ((X --/,/Lnnd)/o',~nd ) ; Fn c°ll and q~¢o, 

logously,  note that  
ana-  

(2.2) F~nd(x) -F~° l l (x  ) = (F~nd(x ) - -~ ' "d ( x ) )+  (dp.'"d (X)--~.c°" "(X)) 

+ (~col, (X) -- r ~  °" (X)).  

Since 

• /  ~ E I X , -  EX, I 3 ~ sup { E I X , -  EX, r 3} 
t = l  t e n  

(2.3) _< ,0, 

Var X, n m f  {Var X,} 
l= I fEW 

the central  hmlt  theorem for S.  '°d (cf. T h e o r e m  A. l )  is appl icable  to the first 
term o f  (2.2) and Propos i t ion  A 2 can be applied to the third term o f  (2.2), the 
following assert ion is valid. 

Proposi t ion 2.1. Under  the assumptmons st ipulated at  the beginning of  this 
section we have 

(2.4) A. , 0  <:~ rod, coil coil . . . .  II a.  /a .  , 1 and (#, .d ,, ~ ~o ,,400 - -  f l ~  )lan ,, _ ~o, 0 

Proof.  Referr ing to (2.2) it remains  to be shown that  

(2 5) ~'n nd ( x ) -  ¢b. ¢°ll (x)  . -  o0' 0 u m f o r m l y  in x 

IS equivalent  to the right side of  the assert ion.  
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md~ coil W i t h  rn = a .  ~an , we  have  

(2.6) ~ , ° l l  ( x )  = 

= ~  

x -  f,'; °'. ) 
coil 

a n  coil) 
md rn + fin - -  fin . 

coil 
an an 

" ~ " .  T h e  a s s e r t i o n  ~s t rue ,  as ¢,) is a u n i f o r m l y  c o n t i n u o u s  func t i on .  

" ~ " .  Because  • is a s t r i c t ly  i n c r e a s i n g  func t i on ,  A ,  , 0  supp l i e s  n~oo 

(2.7) - - -  r ,  - , 0  u n i f o r m l y  in x 
md md coil n ~ 

an a n  an 

By r e p l a c i n g  x w i t h  ruin nd we ge t  (f 'n "d -- Pnc°ll")/anC°H . ~ co' 0. 

T h e n  by  r e p l a c i n g  x wi th  f 'n"°+ ,,d an , we o b t a i n  r n ) I .  

F u r t h e r m o r e ,  fo r  the  d i f f e r e n c e  ._~'~nC°ll(00--,~nmd(~) o f  the p e r c e n t d e  p re -  
m i u m s  r e l a t ed  to  S,~ "d a n d  x 'c°ll ~n , we o b t a i n  a resul t  wh ich  c o r r e s p o n d s  to  
P r o p o s i t i o n  2.1. 

P r o p o s i t i o n  2.2. 
s ec t ion  we h a v e  

(2.8) 

~.'"~ (~) - , ~ 7  °'' (~)  = o (a .  '"d) 

rod/  coll an /an , 1 a n d  z md coil.., coil t ~ .  -Pn )/an 
n ~  O0 

U n d e r  the  a s s u m p t i o n s  s t i p u l a t e d  a t  the  b e g i n n i n g  o f  thas 

,0. //400 

Proof. 

(2.9) 

F o r  al l  0c e (0, 1) the  f o l l o w i n g  i d e n t i t y  is t rue  : 

L~anCO II ( 0 0 -  ,_~nl n d ( 0 ~ ) (  ,_UnCOil (0~) _ fnCOll ) coil 
= x a__n__ _ 

md coil md 
(7 n a n Gn 

+ 
md md 

a n o n 

T h e n ,  L e m m a  A.2  (i) s u p p l i e s  

~ n  cOIl (00 -- Un cOil ,~n 'rld (0~) -- I/In "d 
(2, l O) ) ~ - -  I (00, COIl n ~ oo 

O" n O'n md 

_ _ , ~ - l ( ~ ) .  
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Thus, the conclusion from the right side to the left side follows directly from 
the above mdentlty. The converse is also true, since ~ e (0, 1) ~s arbitrary. So is 

• ~ md coll'~ coil 
qb-I (0¢) .  A s  t,//n - I tn  )/o'n as independent o f  0¢, t h e  argumentation ~s 

complete. 
The following theorem can be gathered dwectly from the last two proposi- 

tions. 

Theorem 2.1. Under the assumptions above the following asseruons are 
equivalent" 

(1) sup F, '"d ( x ) -  F~ °" (x)l ~ 0, 
x 

(i 0 VarS,~"d,/Var~ c°ll , 1 and (ES,~nd-ES,~°ll)/x/~S,~°ll ,0, 
~n n ~ o o  n ~ o o  

0ii) .~,~°H(CC)--Y,~d(~) = O ( X / ~  S,~°H), c¢ ~ (0, 1), 

(IV) ,_~nc°'l(0c)-- ~,f]~p,lnd (~ )  "~-- O ( ~ / ~  s n n d ) ,  0~ ~ (0 ,  I ) .  

This result can be sharpened to a "bounded  version" of  (iv), i.e. the 
difference of  the two portfolio premmms even remains bounded under certain 
condmons. 

Theorem 2.2. Under the assumptions above the following assertions are 
equivalent" 

(i) sup Fmd(x)--F~°II(X)I = O(1/VX/-~ .~.,,d~ 
A 

(n) sup F~,"a (x ) -  F,~°ll (x )l = O ( l / x / ~  .~.coll~ 
x 

(ii0 ,~md .~,coll O(1) and _ _ ,  __ ,  = O(1) 

0v) .~,'nd(~X)--.~'2°ll(~ ) = O(1), CX e (0, 1). 

Proof. Let us sharpen our argumentaUon with regard to the equaUon (2.2). 
Since the Berry-Ess6en bounds from Theorem A.1 and Proposition A.3 are 
applicable to the first and the third term, Theorem 2.1 yields the following 
equivalence : 

= O(ll.,  o'') 

= 
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where zJ,, = s u p  ~lnnd (X) -- ~ n  c°ll (.X)I. According to Lemma A. I, (i) ~ (ii) ¢:, (iii) 
x 

has been proved. 
With y~nd (0 0 (.~n, nd (0 0 md . . . .  d = - # n  ) /a ,  , ?~°tl(00 analogously, ~x e (0, 1), we have 

(2. l 2) ,_.~ntnd (0 0 __ .Sja~neoll ( . )  . ,nd _ flneoll) ,nd 
= + an 

+ ¢,7" (m? °,7"). 
Consequently, Lemma A.2 and (i)~:~ (ni) supply ( i ) ~  (iv). 
It remains to prove ( i v ) ~  (i). For  all ~ ~ (0, 1) we have 

(2.13) O(1) = j , n d ( ~ ) _ ~ o H ( a )  
= ,  md collx-- (O.nmd__ o.#O11) t,u~ -#. )-r~,,~°"(~x) + O ( 1 ) ,  

again in respect of  Lemma A.2 (1i). 
By choosing ctt -¢ ct2, we can conclude that 

(2.14) O (1) --  (~n c°ll ((~1) - ~n c°ll (°~2)) (O'n md -- 0"I 011)" 

Again using y~oU(~) , ¢ ~ - i ( ~ ) ,  we have 
r/~O0 

(2.15) anmd -- a,c°' = O(1), hence #',nd-- u~°" = O(1).  

Thus (iv)=~ (ill) has been proved, and therefore 0 v ) ~  0) since 0 u ) ~ ( i ) .  

It should be noted that the statements of  Theorem 2.2 (i) and (ii) can be 
specified by deriving explicit constants in the O-estimates from the proofs. 

Each assertion of  Theorem 2.2 implies the corresponding one of  Theo- 
rem 2.1, but the converse is false, which becomes obvious In Example 2.1 at the 
end of  this section. 

For  the rest of  the section we consider a concept of  a portfolio growth 
described by an appropriately chosen sequence of  homogeneous collective risk 
models. Therefore at first we have to formulate some additional requirements 
to the underlying risk portfolio. These concern the mixture ratio of  its distract 
risk classes. 

Assumption 2.1. In addition to the previous assumptions the sequence of  risks 
and its random claims amounts (X,), i e IN, are required to fulfill the following: 
the set of  random variables (X, IIe ~q} consists of K distinct risk classes 

x 

~k ,  k = 1 . . . .  , K; thus {X, I i~ ~} = U ~'Fk. Each class is represented by 
k=l 

a distribution function F(k). X, e ~ k  means that X, ,Z F, and F, = F(k). Corre- 
spondingly q(k)~(O, 1] denotes the representative of  q,, if X , e . Z / k ,  where 
q, = P ( X ,  > 0) is related to A',. It is assumed that the mixture ratio of n risks 
satisfies the stability criteria below : For each n e IN define for all k = 1 . . . . .  K 
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an integer nk = Iix,~.2Z, i; thus n = ng. Assume, for each k there exists 
t = l  k = i  

a number Ck ~ (0, 1] independent of  n, which fulfills n k - n c  k = 0 ( I )  as n tends 
to infinity. 

Continuing to use the previous notations, we also introduce some new. 
Let 

(2.16) q(O 1 ~-, = - q, and tl = Ck q(k). 
n i = l  k = l  

This means that ~ e  (0, l], since Ck _< l for all k and Ck-~ 0 for at least one k. 
Furthermore,  let 

(2.17) G, , (x )  = 
q, 

,= I n q  In) 

that is 

(2.18) G, Ix) = 

Moreover,  let 

K 

(2.19) 

F , ( x ) -  (1 - q , )  
G,(x) with G,(x) = , x > 0 ,  

q, 

K 
nk q(k) 

k=~ n q(") G(k) (x ) .  

G(x) = 2 Ck q(k_) G(o(x) with Gik)(X ) = 
k = l  

Fib)Ix) - (1 - q(k)) 

q(k)  

, x > 0 .  

In the following, the claims number in the collective risk models specified in 
Section 1 (cf. Model 1.1-1.3) is denoted by N, and N,, refering to the 
parameters q(") and ~. We write ZI ,  Z~ resp. for the collective single claims 
amount  variable, where Z~ Z G, ,  Z~ Z (~ resp.; thus 

U. 
(220) ~ o , , =  2 Z , , Z , ~ Z ,  

1=1 

and 

(2.21) ,~,~oll = 2 Z , ,  Z , Z  Z t .  
t = l  

--coil the Finally, m the collective risk model ~,~oU we denote by ~oU and a ,  
mean value and the standard deviation resp., in line with ,u~ "d and o',~ "d 
above. 

In this framework the portfolio growth is defined by the corresponding 
: ~ c o l l x  w h i c h  f u l f i l l  sequence of homogeneous collective risk models ~,_,, j , ~  

AssumpUon 2.1 and to which Theorem 2.1 and Theorem 2.2 can be applied. 
Thus, we can prove the following" 
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Proposition 2.3. Under the assumptions of Sectmn 2 m all the three collective 
risk models described above (cf. Model 1.1-1.3) the dlstnbutmn functmn r'_,~ °d 
of --.'~lnd and .ff~°n, of ~,~¢°H resp., fulfill a Berry-Ess6en bound, i.e. 

(1) 

(ii) 

sup Fnmd(X)--gb~nd(X)l = O(1/x /~s t .n 'a ) ,  
x 

sup ILl °" ( x ) -  .g~o. (x)l = o (l /x/VZ; g,~o,.), 
x 

_~O.) 
where ~,~°U(x) = q~ 

O 

O" n 

Proof: 

(1) 
max {EEIX,-EX, I 3} < oe. Assumption 1.1 supphes Var S,~ °a 
tEN 

conclude 

EIX , -  EX, I 3 max {EIX, -  EX,[ 3} 
t~ ~q 

t=l 
(2.22) < < oo. 

~ Var X, a 

As EIXi-EX,13_< EXi3+(EX,) 3, we have from the assumptions 

_> na and thus we 

Consequently, from the Berry-Ess6en bound for non-identically distributed 
random variables (cf Theorem A.I) we obtain 

EIX, -  EX, I 3 
6 t=l 

(2.23) sup Ig,~"d(x)--~l,"d(x)l < ,,d for all n. 
x O" n _m 

~.~ Var X, 
I=1 

0i) Since EN,~ < oo and EZi 3 < or, the Berry-Ess6en bound for random sums 
according to Definition 2.1 can be applied (cf. Proposition A.3). When this is 
done, 

(2.24) V a r  ~ffoll = n(~ Var Zi + Var Zi (E21) 2) 

must be taken into consideration. 

Consequently S,~ "d and ,.~,7 °n fulfill in particular the central limit theorem with 
the standard normahzatlon and the law of large numbers. 

A result such as that in Proposition 2 3 valid for .~,~oU and ~,~oZl resp., 
~ c o l '  ( X )  ~ ( ( X - -  -coil  . . . . .  11\ = p. )/a. ), cannot be &rectly deduced from the Berry- 
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Ess6en bound in Proposition A.3 In fact, the distribution function G, of Zt 
depends on n. Thus G, and the distribution function of  N, do not satisfy the 
assumptions required in Defimtlon 2.1. 

Nevertheless, taking into account the stability of  the mixture ratio given in 
Assumption 2.1 we have 

(2.25) 

and 

(2.26) 

Together with 

E~Oll = F ~ o n  + 0 (1) 

- -  = x / ~  ~,~o, + 0 ( l / x / ~  ~o , , ) .  

(2.27) sup IP~°H(x)-~°n(x)l = O ( l / V a r  ~ o n ) .  

and the Berry-Ess&n bound for g~on and p coil, i.e. 

(2 28) sup ilion (x) - q~°" (x)l = O ( 1 / ~ ) ,  

we get ultimately the vahdlty of  Theorem 2.1 and Theorem 2 2 even for ,~,~on 
straightforward from the identity 

= ~o, ,  (x)) + (p~o,, ( x ) -  pro,, (x)) .  (2.29) F, 'nd (x) - p2on (x) (F, '°d (x) - .  , 

Thus we have proved 

Corollary 2.1. Under the assumptions of  Section 2 these assertions are 
equivalent : 

(0 s u p  IFlnnd(x)-P:c°ll(x)l-.~0, 
=g 

(ix) V a r  S . '"d /Var .~°n  , 1. 
n ~ o o  

(iii) ~°n (c t ) - - J~ 'nd (a )  = o(v/Var ~otl),  ct ~ (0, 1), 

(iv) ~n c°ll (00 -- cj;ncl (00 = O ( ~  S~ nd), 0C ~ (0, 1). 

The following result represents a quantitative sharpening of  Corollary 2.1. 

Corollary 2.2. Under the assumptions of Section 2 these assertions are 
eqmvalent '  

0) 

(ii) 

- , . d . .  ~-¢o,, o ( I / . ( V ~  s~ "d), sup r,; t x ) - r ,  ( x ) l =  

sup r,;-'°d'txj-rn" ~¢on (x)l = O(1/x/Va r ,~o~1), 
X 
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(iii) ~ S,~ na - x / ~  ~,~oH = 0(1) ,  

(iv) J, 'nd(~)--~f°ll(O 0 = O(1), ~ ~ (0, 1). 

Obviously each condition of  Corollary 2 1 follows from the corresponding 
one of  Corollary 2.2. The inverse conclusion is wrong as shown below by 
Example 2.1. Note that from the proofs gwen above exphclt constants can be 
derived to replace the O-constants in Corollary 2.2 0) and (ii). 

Accurate premium calculation or their equivalent, precise approximation of 
the distribution function in the individual model, depends mainly on well 
variance fitted collective risk models. The previous collective risk models do 
not achieve that as proved for Model 1.1-1.3. In the next section we shall look 
at modifications of  these models, which improve the variance fit. 

Example 2.1. Let us consider a sequence of posltwe random variables (X,) ,~ 
with distribution functmns 

(2.30) F,(x)  = ( 1 - q , ) + q , F ( x ) ,  q,~(O, 1), F ( x ) =  1 - e  -x , x ~ O. 

Therefore, 

(2 31) P(X,  > O) = q,, EX, = q,, Var X, = q , (2 -  q,), 

For each n ~ N, let 

t= l  t= l  

For S~ 'nd = ~ X,, this implies that 
/= l  

(2.33) ES~ nd= a, and Var S,~ "d = 2 a , - b , .  

N. 

We construct the collective risk model S,~ °ll= Z Z, corresponding t o  Sn md 

In the same way as described in Section 1, by means of the following equation" 

(2.34) G(x)  ~ q' a , (x )  with x > 0, q(~) 1 ~ 
= n ~  - = -  q "  J=l /1/ i = l  

where G,(x )=  (F , (x ) - (1 -q , ) ) /q ,  = F(x),  x ~  O. Thus, we have G ( x ) =  F(x). 
Assuming Z~ ~ G, we obtain EZ~ = Var Za = 1. 
Moreover, we stipulate that N~ is distributed as f l (n ,q  °')) Hence (cf. 
Model 1.1), 

2 

(2.35) /~.~coll = 2 an - - -  - - ~ n  = a n and V a r  .K 'c°ll a n  ~n  
n 
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Now,  for all c¢e (0, I/2), with a suitable choice o f  q, 6 (0, 1), i ~ N, 

(1--002 nl_2~ 
(2.36) a n . . . n - n  I -~  and b n . , , n - 2 n  I -~  + - -  

1 - 2 ~  

is fulfilled. For  instance, q, = 1 - ( 1 - o t ) / i  ~ is appropriate .  
For  p r o o f  o f  this, note that  

(2.37) ( 1 - f l ) i  - a  '-. ( 1 - f l ) x - ~ d x ~ n  '-1~, f l~ (0 ,  1). 
t = l  I 

All these definitions supply 

a n 
2 - - -  

V a r  .q, con 
~ n  n 

(2.38) - - -  , 1 ,  
Var  S "nd bn " "  co 

2 - - -  
an 

since a,,/n , 1 and bn /a ,  , 1. 
n ~ o o  n ~ o o  

However ,  

(2.39) x / ~  S,~ nd - 

a ~ - n b ,  
since - -  V/~] -4~ 

n ~  

- - _ _ ' , 2 _  ~. 2_oo/- ,+ _ _ _ _  
, T  ~ ,,~ ~ /Gs.  'od 

( 

{ -~ ,f ~(0,¼), 
1 

n ~ '  - -  I f  ~ = ~ ,  

o if ~(¼, ~), 

3. Modified collective risk models with variance adjusted to that of the underlying 
individual risk model 

In this section the assumpt ions  o f  Section 2 are stipulated. The nota t ions  used 
below are the same as stated previously. We drop  the index n because there is 
no mJsunders tandmg possible. 
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Corollary 2.1 and Corollary 2.2 proved above suggest to adjust not only 
E S  'nd = E S  ~°u but also Var S 'nd = Var S c°ll for all n In this case condmon (ill) 
and therefore all conditions of  Corollary 2.2 are valid. The classical 
approaches,  which derive collective risk models from an individual one, do not 
fulfill the two conditions (equality of  the mean values and the variances) 
simultaneously in general (cf. Model 1.1, 1.2, 1.3). JEWELL and SUNDT (1981) 
deal with this problem in their paper too. They discuss two different modifica- 
tions of  the compound binomial approximation (Model 1.1) by using modified 
counting distributions. In addition SUNDT (1985) studies an approach with an 
" a v e r a g e "  collective claims amount  distribution. 

We shall now derive a similar modification of our in Section 1 constructed 
collective risk models which ensures the equality of  their first two moments  
with those in the individual risk models given. In view of  practical applications 
(i.e. numerical computat ion by the Panjer algorithm) we presume the range of  
the collective claims amounts  to be discrete and arithmetic For  the purpose of  
modeling a new collecttve claims distribution function we define a random 
variable Z ~  °d with discrete range {kT[k ~ IN}, 7 > 0 fixed, by setting 

(3.1) P ( Z |  m°d = k'y) = g(k), k ~ IN, 

where (cf. Remark  1.4) 

q, P ( X ,  = k) 1 
(3.2) 9(k) L 9,(k), 9,(k) 2., = - -  - , q = - -  q,, q , = P ( X , > O ) .  

,=1 nq q, n t=l 

Z ~  °d differs from Z|  as constructed in the models provided above only by a 
simple t ransformation of  the range. Obviously we have (cf. Remark 1.4) 

(3.3) E z ~ o d =  y E Z  l _ 7 
nq ,=1 

and 

EX, 

(3.4) 
.f12 

E(Z~°d) z = y z E Z ~  - ~ EX,  2. 
nq ~-i 

N 

I f  one considers S ~°ll = E z'm°d' the basic requirement E S  'nd = E S  ¢°ll 
l=l 

results in E N  = nq/y, because E S  c°H = E N E Z ~  °d. The following is also valid in 
this case. 

(3.5) Var S c°u = E N E ( Z ~ ° d )  2 + (Var N -  E N )  ( E Z ~ ° e )  2 

- - -  (Var N -  E N )  (ES'nd) 2 
nq ,= | nq 
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1 ( Var N 
= 7 EX, 2 + 

,= I E N  E N  
- - -  1 (ES'"a) 2 

where 

(3.6) 

= V a r  S lIId + A ( ~ ) ,  

,=  ~ ,=  i E N  

Var N 

E N  
- - - 1  ) (es,.d)2. 

Therefore the following equivalence holds: 

(3.7) Var S c°H = Var S '"d ¢~ A (7,) = 0. 

A ( y )  = 0 cannot be fulfilled with ~' = I (cf. Model I 1-1.3), i.e. the original 
range of  the collective claims variables Z,,  t ~ N, must be transformed. 

Model 3.1. The modified natural approximation (modified compound binom- 
Ial approximation; cf JEWELL and SUNDT (1981)) 

(EX,) 2 - n - t (ES,,d)2 
I=1 

(3.8) y 1 - and ~/ = N ,,~ f l  ( n ,  q / ~ ) .  

EX2 

Then ? e  (0, 1], since (ES'"d) 2 _N n ~ (EX,) z and 

If q/y >_ 1 we mo&fy the parameters n, q, y, see below. Obviously we have 
d ( y )  = 0 and, hence, V a t S  'nd= V a t S  ~°n. However, with this stipulation 

E N  = nq/? differs from E ~ llx,>0} = nq. 

A simple mampulatlon of  the parameters n, q, 7 faclhtates obtaining in 

ad&tion E N =  E ~ llx,>0/. For this purpose, we set N ~ f l ( n ' , q ' / 7 " )  and 

adjust n',  q',  ~,' accordingly. The condition ES 'nd= ES  ¢°ll implies that 

n 
n ' q ' =  nq; consequently q'  = - - q  

n ~ 

Let 
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F r o m  the equivalence Var  S ' n d =  Var  S C ° " ¢ > z l ( y ) =  0 we deduce 

(3.9) y ' =  I - 

• (EX,) 2 -  (n ' ) -  I (ESmd)2 
t=l 

~ EX~ 

On the o ther  hand  E N  = E 2., 1ix,>0t¢=,7' = 1. 
t=l 

This leads to the choice 

(3.10) n' = I. ~ESmd)2 

f rom that  we have 7 ' ~  l ( y '>_  1) and n ' N  n as 

(ES'"d) 2 < n ~ (EX,) 2 . 
t=l 

However ,  note that  possibly 

q '  
- -  < I, where 
7'  

, [x] = greatest  integer m with m < x ,  

n q ' = - - q ,  
n '  

Js no longer vahd with such a choice o f  n ' .  Clearly,  increasing n '  ul t imately 
guarantees  q'/7' < 1. No te  that  n' = n.¢~ q' = q. However ,  y '  is then more  and 
more  different f rom !. 

To  show that  possibly q ' / y ' 2  1, let n_> 2. Choose  XI . . . .  , X,  such that  
q , = q 0  > 1/2 for  each t =  1 , . . ,  n and EX 2 = . .  = E X , , =  1. 
The  rat io  

(ESLnd) 2 (1 + ( n -  1) (EX2/EXt))  2 
(3 l l )  

~ (EX,) 2 1 + ( n -  1) (EX2/EXi)  2 

i=1 

takes on values near  n for EX~ close to l, and tends to l if EX I ~ oo. 
Therefore ,  we can choose  EX~ such that  

(ES'"d) 2 n 
(3.12) 

(EX,)2 2 
I=1 
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I f  n Is even we have n '  = n/2 and 7" = 1, however.  

q' nq 2 
- - - - n q o -  > 1. 

~' n '? '  n 

Model 3.2. The modified compound Poisson approximation.  

Let 

,= 1 Var S md 
(3.13) y =  1 - and 

EX2 ~ EX, 2 
t = l  /=1 

N ~ ,.~7~ 
(nq) 

7 

In this case we have zl (y) = 0, that is Var S 'nd = Var S c°ll. 

With this choice of  parameters,  EN = nq/~, differs from E ~ llx,>01 = nq. 
I=1 

The ha rmomza tmn of  these two quantities fails in this case, because we can 
select only two parameters.  

Model 3.3. 

Let 

(3.14) ~ -  

The modified compound negative binomial approximation.  

~ V a r  X, 
t = l  

t = l  

1 (ES'nd) 2 
1 - 

n ~ Var X, 

and N ~ _4/.ff¢ ( ' )  
1 + q/y 

Obviously y < VarX)/(   X2) < 1 .  

Hence, ) ,=  1 is impossible, that is equivalent to the assertion, that 

E N =  nq/7 differs from E ~ llx,>0j = nq. However, we have achieved d (~,)= 0. 
/ = l  

Application 3.1 In order to verify, whether our mo&fied collective risk models 
lead to good results also m the case of  small portfolios, we have calculated the 
stop loss p remmm (without any loading) by means of the distribution functions 
of  the &scussed standard and modified collectwe risk models (Model 1.1-1.3, 
Model 3.1-3.3 resp).  The calculations are based on the Gerber-Portfol io (cf 
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GERBER (1979), p. 53) and the 100-fold Gerber-Portfoho. Comparison was 
made between the different models by the relative error, that is the absolute 
error In percentage of  the " t r u e "  risk premium, which was exactly calculated 
by convolution. It can be easdy seen from the figures below, that the modified 
collective risk models lead almost always to smaller errors than in the case of 
the standard approximations. Obviously the absolute relative error depends on 
the underlying priority, I.e. the stop loss point. 

G e r b e r -  Portfoho of 31 Policies G e r b e r -  Portfolio of 3 I00 Policies 

Amount at Risk Amount at Risk 

P, P, 
I 2 3 4 5 I 2 3 4 5 

0 03 2 3 1 2 0 0 03 200 30 100 200 0 
0 04 0 1 2 2 l 0 04 0 10'0 200 200 100 
0 05 0 2 4 2 2 0 05 0 20,0 400 200 200 
0 06 0 2 2 2 1 0 06 0 200 200 200 100 

Total 0 06 0 35 0 43 0 36 0 20 Total 06 35 43 36 20 

• 10000- 

lO00- 
e 

100- 

2. 
I 1 0 -  
I- 

o 0.1 - 

Error of Stop-Loss Premiums 
for the Gerber-Portfolio 

related to the Standard and Modified Collective Models 

i~gaflv*-blnomlal 
I modlf, mNl.lbln~ 

. / - . ~ p o l ~ o n  

l / /  J r .  poluon 

/ 

/ " -  

/ Y / f ~  ~ l l l m  o "  t h e  por ' t ' f ro l * lo  

g# 
/ 
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Error of Stop-Loss Premiums 
for the lO0- fo ld  Gerber-Portfolio 

related to the Standard and Modified Collective Models 
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TABLE 1 

STANDARD COLLECTIVE MODELS FOR THE GERBER PORTFOLIO 
ERROR OF THE STOP LOSS PREMIUM 

(WITHOUT ANY LOADING) 

Stop Loss Error 
Security Level Stop Loss Premium in m % of the Stop Loss Premium 
of Percentile Point 

Prem,um the Ind Mod Binomial Polsson Neg Binomial 

50 4 I 776 0 16 1 68 35 52 
60 5 1 340 0 37 2 62 52 95 
70 6 1 001 0 54 3 68 75 10 
80 8 0 515 1 25 6 92 146 61 
90 10 0 251 2 35 II 39 268 31 
95 12 0 113 4 28 17 97 492 38 
99 16 0 019 9 87 37 51 1725 27 
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TABLE 2 

MODIFIED COLLECTIVE MODELS FOR THE GERBER PORTFOLIO 
ERROR OF THE STOP LOSS PREMIUM 

(WITHOUT ANY LOADING) 

Stop Loss Error 
Security Level Stop Loss Premium m in % of the Stop Loss Premium of Percentile Point 

Premium the Ind Mod Binomial Polsson Neg Binomial 

50 4 1 776 0 15 0 05 0 03 
60 5 ! 340 0 10 0 45 0 57 
70 6 1.001 0 12 0 38 0 27 
80 8 0 515 0 06 I 85 2 10 
90 10 0 251 044 3 71 3 95 
95 12 0 113 I 42 6 81 8 90 
99 16 0 019 4 31 15 89 24 79 

TABLE 3 

STANDARD COLLECTIVE MODELS FOR THE 100-FOLD GERBER PORTFOLIO 
ERROR OF THE STOP Loss PREMIUM 

(WITHOUT ANY LOADING) 

Security Level Stop Loss Stop Loss Error 
of Percentile Point Premium In In % of the Stop Loss Premium 

Premium the Ind Mod Binomial Polsson Neg Binomial 

50 448 16 10 044 2 46 951 24 
60 458 11 57 0 61 3 38 1332 18 
70 469 7 70 0 84 4 66 199985 
80 482 4 49 119 6 56 3406 36 
90 499 I 99 1 80 9 81 7503 74 
95 514 0 88 2 47 13 48 16554 90 
99 543 0 14 4 22 23 18 99879 00 

TABLE 4 

MODIFIED COLLECTIVE MODELS FOR THE I00-FOLD GERBER PORTFOLIO 
ERROR OF THE STOP LOSS PREMIUM 

(WITHOUT ANY LOADING) 

Security Level Stop Loss Stop Loss Error 
of  Percentile Point Premium in in % of the Stop Loss Premium 

Premium the lnd Mod Binomial Polsson Neg Blnomml 

50 448 16 10 0 00 0 00 0 01 
60 458 I I 57 0 00 0 03 0 04 
70 469 7 70 0 02 0 08 0 12 
80 482 4 49 0 04 0 17 0 28 
90 499 I 99 0 09 0 38 0 59 
95 514 0 88 0 16 0 67 I 05 
99 543 0 14 0 38 1.51 2 44 
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APPENDIX 

We start with a selection of results wh,ch are contained in a paper written by 
VON CHOSSY, R. and G. RAPPL (1983). Let 

N. 
(A.1) S"c°H 2 Y" n • IN, 

t= l  

be a random sum where (Y,)te)~ is a sequence of  real-valued, independent, 
identically distributed random varmbles, and (N~),c ~ xs a sequence of  Integer- 
valued random variables, N# > 0. N~ and (Y,),e~ are supposed to be indepen- 
dent for each n ~ N. Furthermore,  the second moments of  Yl and N, may exist 
in the proper sense (cfi Defimtlon 1.2). 

YON CHOSSV, R and G. RAPPL (1983, p 252) proved that, in certain cases xt 
~s possible to represent random sums as deterministic sums, 

Propos i t ion  A . I .  
n • i N  

(A 2) 

Further, let 

Let K be a distrlbutmn function on N 0 such that for each 

N,, ~ K*". 

O 
(A.3) P I F *k K(dk), yt .t ~ f .  

d ~0 

Then there exists a sequence (Yi, Y2, ..) of  independent and, according to F, 
mdentlcally distributed random variables with 

(A.4) _,X 'c°ll = ~ ~ I.e. YI = ~ Y, 
t = l  I = l  

for all n • IN. 

Definition A.1. The central hmit theorem (with standard normalization) is 
said to be vahd for a sequence of  random vanable (S,,),~N If 
( S , - E S , ) / x / ~  S, converges m dJstnbunon to a standard normal &stributed 

random variable as n ~ c~. i e. I F . ( x ) - ~ . ( x ) t  , 0  uniformly in x with 
n ~ c o  

F.(x) = P(S. <_ x) and ~ . ( x ) =  ¢ ( ( x - E S . ) / ~ r S . ) ,  ¢ the standard nor- 
mal dlstnbutmn funcuon 

From Proposmon A.I and the classical central limit theorem (cf. FELLER 
(1971), p. 515), YON CHOSS¥, R. and G. RAPPL (1983, p. 254) deduce 
&rectly '  
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Proposition A.2. Under the assumptions of  Proposition A 1 with Var 91 > 0, 

the central limit theorem is valid for the sequence (S~ °H- ES,~°H)/x/~S,~ °H'. 

Using the standard Berry-Ess6en inequality (cf. FELLER (1971), p 542), both 
authors proved, in addition, a Berry-Ess+en bound for special random sums. 

Proposition A.3. Let the assumptions of  Proposition A.l be fulfilled; further, 
let Var 9 l > 0, E]Y~I 3 < oo, ENn 3 < oo. Denote by F,~ °n the distribution func- 
tion of  S~ °ll and put 

(A 5) ~o,~ (x) = • ( ( x -  eSg°~')l,,/'~ S~°"), 

the standard normal dlstributlon function. Then, for all n e IN, we have 

3 EIg~-Eg~I 3 
(A.6) sup IF,~ °H (x) - ~o, l  (x)l _< 

x x/~ (Var 9,) 3/2 

Furthermore, it holds 

(A.7) Var 91 = Pl Var Yi+o'2(EYi) 2, 

where 

(A.8)  p t =  I kK(dk), a2= I (k-pt)2 K(dk), 
No ~o 

and 

(A.9) El Yt - EY, I 3 _< 4 ( (P3 - 3p2?t + 2P~)Pt + (3 ? 2 p t -  3 p~).u2 

+ p~/t3+lEYll3 I lk-p,13K(dk)), 
No 

where 

(A.10) P ' =  I k'K(dk), P'= I Ix-EYtI'F(dx), i = 1 , 2 , 3 .  
No I~ 

Remark A.I. If  N~ is Poisson distributed with parameter n2, 2 > 0, Proposi- 
tion A.l can be applied. The same is true m the case of  the binomial 
distribution with parameters (n, q), q e (0, I), and in the case of the negative 
binomial distribution with parameters (n, q), q ~ (0, 1) (cf. YON CHOSSY, R and 
G. RAPPL (1983), p. 253). Thus the assertions of  Proposition A.2 and 
Proposition A.3 are valid for collectwe risk models with these distribution 
functions, xf Yi is appropriate. 
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Finally, we formulate a Berry-Ess6en bound for deterministic sums of  
independent, not necessarily identically distributed random variables with finite 
absolute third moments  (cf. FELLER (1971), p. 544). 

T h e o r e m  A.1. Let the sequence of X, be independent variables and EX,  = It,, 
E ( X , - i z , )  z = a, z, EIX,-aa,I 3 = p,,  t ~ IN. 

P u t m ~ =  ~ , u , , s , ~ = ~  cr,2. r , Z = ~ p ,  and denote by F, the distribuhon 
t = l  t = l  t = l  

function of  the sum ~ X,, q~n(x)= ~ ( ( x - - m n ) s n - t ) ,  q~ the standard normal 
I=1 

distribution function. Then for all n ~ IN 

(A.I I) sup I F ~ ( x ) - ~ n ( x ) l  ~ 6rns~ 3 • 

The next two lemmata state some auxdmry results which are needed m 
Section 2. Notat ions and assumptions are such as stated there. 

Lemma A.I.  Let 

(A 12) An = sup [ ~ ) , " d ( x ) - - ~ ° " ( x ) l .  
x 

Then we have 

(A.13) El, "" . . . . .  It,=. coil md O(1) and col1 ,nd un - u .  = o 0 )  

md md  coil P r o o f .  Put a~= / tn  , a ~ = / z  ncoll, bn=o 'n  , bn' = a n  • 

" ~ " :  By applying the mean value theorem we obtain 

( )1 (A.14) , ~ n = s u  p ~ ' (~ , )  x - a ,  x - a n  , 
b .  b; ,  

where 

x -  a n x -  a', 
(A.15) ~, = ~ x , - -  + ( l - 0 c , ) - -  . 0c~(0 ,  1), x~llq 

bn b~ 

Choose a sequence xn = an + cb, for any 0 ~ c ~ ~ and replace x by xn. Hence 
in view of  the assumptions we have 

(A.16) ~. c ~ . c + ( l - ~ n )  a . - a n  = - -  + - -  ~ C .  

b'n b;  °-'~° 
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In addition, we have 

(A. ! 7) xn- -a  _ xn-a~b~ - c - ( an-a'n__ + , ~  ] 

= C - -  

t s 
b n - b .  a n - a , ,  + - -  

b'. b., 

Consequently, and because A . = O ( 1 / b ' ~ ) ,  ~ . ~ c # O .  q ; ( c ) > O ,  we get 
b . - b .  = O ( 1 )  and  a . - a .  0(1). 
" ~ " :  Again, by applying the mean value theorem, we have with rn = b . / b ' .  

o(c ) x - - a  n rn + a n - a n  - - - -  + ( l - a . )  x - a .  (A.18) ,3n = supx ctn~ b. b'. b~ ] 

( )l X - -  a n a n - -  a n 
x - - - - ( r . - l )  + - -  . 

b. b'. 

Therefore, according to the assumptions we have 

(A.19) ) b----~-- / - - ~ - -  (l- c t . ( l - G ) )  

(xo  )1 x - -  ( b . - b ; ) + ( a ~ - a ~ )  
b .  

Now the assertion follows from sup Ix~'(x)l = l / x / ~ .  
x 

Lemma A.2. 

(i) Let the central limit theorem be valid for F,~ °d and F,~ °". Then for all 
e (0, 1) we have 

(A.20) '~nmd (~) -- '/'/2nnd , ~coll _ flncoll 
, ~- ' (~), (=) , ~-' (~), 

a.,.e ~ - oo a~o, n ~ oo 

(ii) F n  md fulfills the Berry-Ess&n bound from Theorem A.I, F,~ °" that from 
Proposition A.3 
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If  lnd, coil tr, /tr, , l, then n~oo  

(A.21) ,nd 
O" n O.n coIl 

-= O(l /O'nmd),  0~ ~ (0,  1 ) .  

Proof. 

(i) Put 

(A.22) 

Then 

~,.'"J (~)  = 
.~n Ind (0 0 --  fllnnd 

md 
O" n 

, yn c°ll (0 0 analogously. 

q~ (y,nd (~)) = q~),d o (F,nO)- ' o F~nd (xnf {p e [0, oo)[F~ n° (p)  > oc}), 

(A.23) F~ "d (inf {p e [0, oo)[F~ "d (p)  > o~}) ~ oc, 

(j~md (Fnmd) - l  
n o ~ td n~ O0 

m v i e w  o f  t h e  assumptions;  t h u s  7n md (0 0 n ~ oo' ~j~-I (a)"  

The assertion for y2°"(ct) follows from a similar argumentat ion.  

(li) From ~,~nd (Ct) = (F,~nd)-I(Ct) we obtain 

(A.24) sup IF 'n° ( x ) -  q),~o (x)l = sup.. l y -  ~,~d o (find)-I (Y)I 
x ),~.f/  

where . / / =  {YlY = F,~ "° (x)} 

Using the mean value theorem, we have with suitably chosen ~n ~ (0, l) 

o)md l I ( ( F~nd) - ' ( Y ) - /l 'nnd ) 
(A.25) Y--n °(F,~"d) - (Y)=~°~- (y)--ch ,nd 

O" n 

= q~' (o~,~ qb- I (y )  + (1 - 0On) ylnd (y) )  (q5 - '  ( y )  -- ylnd (y ) ) .  

Because of  (i), 

(A.26) q) '(o~,qb-t(y)+(l--0C,)y,~n0(y)) , qYo q~-~ (y )  uniformly in y. 
n~O0 

q~, o ~ -  i (y) > 0 and the Berry-Ess6en bound now supply 

( a  27) ~/,-1 ( y )  --  y~nd ( y )  = O (]/O'nmd) . 
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The same argumentatton apphed to F~ °H and ~colX yields 

(A.28) qb -I ( y )  -- y~oH (y) = O (I/o',~°H). 

Finally, the assertion follows from the last two bounds taking cr n'nd'/crnc°N 
into account. 

- , 1  
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