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A B S T R A C T  

In this pape r  we discuss SOlne p roper t i e s  o f  coun t ing  d i s t r ibu t ions  whose 
3 co discrete  dens i ty  {l n},,=0 satisfies a recurslon in the form 

p,, = ~ a, + - -  p,, , (n = 1 ,2  . . . .  ) 
= t l  

with p,, = 0 for n < 0 and  present  an a l g o m h m  ['or recurswe eva lua t ion  o f  
c o r r e s p o n d i n g  c o m p o u n d  d is t r ibu t ions .  

] I N T R O D U C T I O N  

Fo l lowing  PANJER (1981) there has g rown up an extenswe h te ra tu re  on 
recursive e v a l u a u o n  o f  c o m p o u n d  d is t r ibu t ions .  Panjer  assumed that  the 
discrete  dens i ty  {p,,},,°~= 0 o f  the coun t ing  d i s t r ibu t ion  satisfied the recurslon 

p,, = a + P, , - i  (n = 1,2, ) 
n 

for  some cons tan t s  a and  b S u N o T a n d  JEWELL (1981) showed that  the only 
non-degene ra t e  member s  o f  this class are the Polsson,  the b inomia l ,  and  the 
negatxve b m o m m l  d l s m b u t l o n s  

SCHRO'rER (1990) generahsed  Panjer ' s  recurslve a lgo r i thm to the class of  
coun t ing  d l s m b u t l o n s  sat isfying the recursJon 

p ,  = a + - P, , - ,  + P,,-2 (n = 1,2, ) 
U 11 

wnh p _ ,  = 0 for some cons tan t s  a, b, and  c, and  discussed the proper t ies  o f  
this class. In pa r t i cu la r  he showed that  the convo lu t ion  o f  a Polsson d is t r ibu-  
t ion and a d l s t r l b u u o n  from Panjer ' s  class belongs to this ex tended  class 

In the present  p a p e r  we s tudy  the even more  general  class sat isfying the 
recurs ion 

(1) p,, = __ a, + p,,_, (n = 1, 2 . . . .  ) 
- , q  
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62 BJIZIRN SUNDT 

for  some integer k and cons tan t s  a, and  b, (t = I . . . .  k) with p,, = 0 for n < 0 
We see that  P0 > 0 for all d i s t r ibu t ions  in this class. 

In Sect ion 2 we in t roduce  some no ta t ion  and de f inmons  In Section 3 we 
discuss some proper t i e s  o f  coun t ing  d i s t r ibu t ions  sat isfying (1). In Section 4 we 
s tudy  convo lu t ions  o f  such d i s t r ibu t ions ,  and Sect ion 5 is devoted  to mixtures  
o f  d i s t r ibu t ions  sat isfying (1) In Sect ion 6 we generahse  Pan ler 's recurstve 
a lgo r i thm for c o m p o u n d  d i s t r ibu t ions  to count ing  d i s t r ibu t ions  sat isfying ( I )  
F ina l ly  we discuss some poss ible  generahsa t lons  m Section 7. 

2. D E F I N I T I O N S  A N D  NOTATION 

2A. We shall  deno te  a coun t ing  d i s t r ibu t ion  with discrete densi ty  satisfy- 
lng (1) by Rk[a, b] with a = (al . . . .  ak) and b = (h i ,  , bk) Let /2 k denote  
the class o f  such d i s t r ibu t ions  for fixed k We see that  any d i s t r ibu t ion  in / / k -  
can be cons idered  as a d i s t r ibu t ion  in ~ with a t = b k = 0. Thus  '~h_ ~ c //~ 
We in t roduce  

~k ° = . ~ k  ~ ~ - , ;  (k = 1,2,  . )  

the class ~'0 consists  o f  the degenera te  d i s t r ibu t ion  concen t ra t ed  at zero We see 
tha t  Pan je r ' s  class is equal  to ~ ,  and  Schro te r ' s  class is con ta ined  m //2 

j0 The def in i t ions  o f  Rk[a, b], ~k, and  Zk easily extend to k = oo. In that  
case (1) can be wri t ten as 

(2) p ,  = a, + - -  p,_,.  (n = 1,2, ..) 
s = l  n 

, 0 The class ~ consists  o f  all d i s t r ibu t ions  m ~ that  canno t  be expressed as a 
d i s t r ibu t ion  in '~'j for any  finite j .  

F o r  the rest o f  the pape r  we shall  for s implici ty  si lently assume that  
k > 0 .  

2B. The  stop loss transform P o f  a cumula t ive  d i s t r ibu t ion  F is defined by 

i i F(x)  = ( y - x )  dF(y )  = ( 1 - F ( y ) ) d y .  

q 

2C. We make  the conven t ion  that  Z = 0 i f q < p .  
I - - p  

3. SOME PROPERTIES OF .4')k 

3A. Let  {P,},T=0 denote  the discrete dens i ty  o f  Rk[a, b], and let ~, be the 
p r o b a b l h t y  genera t ing  funct ion o f  this d i s t r ibu t ion ,  tha t  is, 



ON SOME E X T E N S I O N S  OF  P A N J E R ' S  CLASS O F  C O U N T I N G  D I S T R I B U T I O N S  63 

We have 

~/(s)  = 

~(s )  = ~ pnS • 
n~O 

pnnSn-I = ns n-I 
n = l  n = l  t= l  

E (ha, + br) P , - ,  s " -  I = 
Ira[ n= l  r= l  

which gives 

(3) ~' (s) = 
1=1 

With 

we obtain 

ar + - -  P n - r  
tl 

E (nar+tar+br)pns "+r-I, 
n : O  

[arsr ~' (s)+(iar + b,)s '-I ~(s)]  

d ~,' (s) 
p(s) : -  l n ~ ( s )  = 

ds ~, (s) 

k 

Oa,+b,) s'-t 
t~l 

(4) p (s) = , 
k 

l - -  E OrS' 
/=1 

which together with the initial condition ~(1)  = I determines the distribution 
R k [a, b] umquely We therefore have the following theorem. 

Theorem 1. A counting distribution belongs to ~k tf and only if the denvatwe 
of the natural logarithm of  ~ts probabdlty generating function can be expressed 
as the ratio between a polynomml of  degree at most k -  1 and a polynomml of  
degree at most k with a non-zero constant term. 

By multiplying numerator  and denominator  m (4) by 1 + qs for an arbitrary 
number q and rearranging them, we obtain 

k + l  

E (ic'+d')s'-J 
t = l  

o(s)  = k+l 

1 -  E C~st 
t=l 

with 

c, = a,+qa,-i d, = b ,+q(b ,_ l -a ,_ t )  (t = 1,2 . . . .  k + l )  
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a 0 = - I  b0 = bk+l = ak+l = 0, 

and thus Rk[a, b] = R t + t [ c , d ] w i t h c =  (cl . . . .  ck+l) a n d d =  (dr, . , dk+ l )  
F r o m  this we conclude that  the k-tuples a and b are not uniquely determined 

>0 by R~ [a, b] If Rk [a, b] ~ .~ k 
On the o ther  hand,  if R~[a, b] ~ .e~, then there exists no k '  < k such that 

p ( s )  can be w m t e n  m the form 
/,.' 

(ta;+ b:)s '  J 
t - - I  

p ( s )  = ~' 

1 ~ ' ' 
- -  at  S 

t=I  

This means  that  the n u m e r a t o r  and the d e n o m i n a t o r  m (4) do not have any 
commnon factors,  and thus the coefficients o f  these po lynommls  must  be 
umquely  determined by p, which implies that  they are umquely  determined by 
Rk [a, b]. 

We have now proved the following theorem 

Theorem 2. The  k-tuples  a and b are uniquely determined by R~[a, b] If and 
only if R~ [a, b] ~ .e ° 

Example  !. The  Polsson distr ibution with discrete densIty 

satisfies the recursaon 

p,  = e ' (n = 0, 1, ..) 

2 
P,, = P,,-i (n = 1,2 . . . .  ) 

l l  

- 2  
P 0  = e  , 

that  is, this distr ibution Is equal  to R~[0, 2], and we have p( s )  = 2. However ,  
we can also write 

2 + q2s 
p ( s )  = - -  , 

1 +qs  

and thus R I [0, 2] = R 2 [ ( -  q, 0), ( 2 + q ,  q2)]. There fore  this distr ibution satls- 
ties the recurslon 

with p l 

2 + q  ) q2 
p,, = - q  + P,-~ + P,,-2 (n = 1,2, . )  

17 111 

= 0. This  example  has also been discussed by SCHRO'rER (1990). 



ON SOME EXTENSIONS OF PANJER'S  CLASS OF C O U N T I N G  D I S T R I B U T I O N S  65 

3B. 
and p ' ( l )  = Var N - E N ,  we obtain from (4) 

Oa, + b,) 

E N -  
k 

1 - 2  a, 

k k k 

2 ;(ta,+b,) 2 ( i a , + b , ) ~  jaj 
t=l t ~ l  J = l  

Vat  N = + = 

1 -  2 a, 1 -  a, 
t ~ J  = 

Thesc formulae generahse Proposi t ion 2 in SCHROTER (1990). 

Let N be a r andom variable with dlstr, but ion Re[a, b]. As p ( l )  = E N  

2 i [ ( i+EN)a ,+b , ]  
t = l  

k 

l-Za, 

3C. The following theorem shows that any distribution on the range 
{0, I , . .  , k} with posatlve probabdi ty  at zero is contained m c.4' k. 

Theorem 3. A distribution on the range {0 . . . .  k} with positive p robab ih ty  at 
zero and discrete density {P,,},,=0 can be expressed as Rk[a,b ] with 
a = (al ,  . , ak )  and b = (bj . . . . .  bk) given by 

Pl a, = - -  - b, = 2 i - -  p' (t = I , . . . , k )  
Po Po 

Proof. 
Uon {Pn}~=0, we have 

k k 

d ~ ' ( s )  ,=l '=J P0 
-- In ~ (s) -- -- -- 

k k 

With ~, denot ing the probabil i ty generat ing function o f  the distrlbu- 

and the theorem follows by compar i son  with (4). Q.E D 

The dmtnbut lon  in Theorem 3 is not  necessarily contained In  ,54 J°  For  
instance, if it Is binomial,  then it is contained in .~0 regardless o f  k. 

Theorem 3 holds m particular for k = co. Thus we see that all count ing  
distributions with positive probabil i ty at zero belong to '-#~o. 

4. CONVOLUTIONS 

4A. Let ~'l ,  ~u2, and ~, be the probablh ty  generat ing functions o f  R~[a, b], 
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Rt[c, d], and  their  convo lu t ion .  F r o m  (4) we ob ta in  

d I n v ( s )  = d I n [ w l ( s ) ~ 2 ( s ) ]  d I n ~ l ( s )  + d lnv2(s) 
ds ds ds ds 

k I 

E 
/=1 I L l  

+ 
k / 

1 -  ~ a,s' I -  ~ c,s' 
1=1 /=]  

k / / k 

k I 

o s)(l cs) 
This is the ra t io  o f  a po lynomia l  o f  degree at  most  k + l -  l and a po lynomia l  
o f  degree at  most  k + / w I t h  a non-zero  cons tan t  term, and from Theorem I we 
see that  the convo lu t ion  o f  Rk[a, b] and Rl[c, d] is con ta ined  in .¢~+~. Thus  we 
have the fol lowing result.  

Theorem 4. The  convo lu t ion  o f  a d i s t r ibu t ion  In -'¢k and a dlstr lbut~on in 'z~t is 
a d i s t r ibu t ion  in..Ck+t. 

Even if R~[a, b] ~//~ and Ri[¢, d] ~ //i °, we cannot  conclude that  their con- 

d 0 . volu t lon  is a dIs t r ibu t ion  in "Ok+t, f rom the way we cons t ruc ted  - -  In ~ ( s ) ,  
ds  

k / 

we see that  if the po lynomia l s  1 - Z a,s' and  1 - E c,s' have a c o m m o n  
i ~ l  t - I  

fac tor  o f  degree q, then the convo lu t ion  is a d i s t r ibu t ion  m / /~+ t -q .  In 
par t i cu la r ,  if  / = k and c = a, we ob ta in  

d 
- I n  ~v ( s )  = 

ds 

I, k 

E Oa,+b,)s'-' Z (,a,+a,)s'-' 
t - I  t = l  

+ 
k k 

1 -  E als' 1 -  2 als' 
t ~ l  , '=[ 

k 

E [ia,+(ta,+b,+d')]s'-t 
t - - [  

k 

1-- E a's~ 
t = l  
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that  is, the convolu t ion  of  Rk[a ,  b] and R~[a,  d] IS R~[a ,  e] 
e = ( e l ,  . , e k )  given by 

e, = t a , + b , + d ,  (t = 1, . , k )  

The  following theorem IS an obvious  general isat lon of  this result. 

67 

with 

Theorem 5. The  convolu t ion  o f  the dis t r ibut ions R k[a, b Cs)] with 
a =  (a l ,  . ,a t-)  and b < : ) =  ( b l J ) , . . , b ~  :)) (.! = 1 . . . .  , m )  Is R~[a,  fl] with 
fl = (ill . . . .  , fl~.) given by 

fl, = ( m - l ) t a ,  + ~ bl J). ( i =  1 . . . .  k) 
j - I  

Corol lary 1. The  m-fold convolu t ion  o f  R k[a, b] is R k[a,fl]  with 
fl = (ill, , ilk) given by 

fl, = ( m - l ) i a , + m b , .  ( i =  1, . , k )  

The  following corol lary  is a simple consequence o f  Theo rem 3 and Corol -  
lary 1 

Corol lary 2. The  m-fold convolu t ion  o f  a distr ibution on the range {0 . . . . .  k} 
with positive p robab lh ty  at zero and discrete densi ty {P,,},=0 is Rk[a ,  b] with 
a = ( a l ,  . . , a k )  and b = (hi . . . . .  b~) gwen by 

Pt 
a, = - b, = ( m + l ) t - -  p '  (t = 1, . .  , k )  

P0 P0 

The  recurslve a lgor i thm for eva luauon  o f  convolu t ions  indicated by Corol -  
lary 2, was presented by DE PRIt. (1985) 

4B. Any count ing distr ibution with positive probabi l i ty  at zero can be 
expressed in the form Roo [a, b] for  any sequence a = (a l ,  a2 . . . .  ), if {P,,}~=0 is 
the discrete density of  this &str lbut lon,  then we can let b = (b~, b2 . . . .  ) with 
the b,,'s gwen by the recurslve a lgor i thm 

n--] 

b,, = - -  n p . -  ( n a , + b , ) p , , _ ,  - nan ,  (n = 1, 2, . .) 
Po 

which IS obta ined by solving (2) with respect to b,,. By combin ing  this result 
with Theo rem 5, we obta in  the following recurslve a lgor i thm for evaluat ing  
convolut ions  o f  count ing dis t r ibut ions with p o s m v e  probabi l i ty  at zero. 

Theorem 6. The  discrete density {n,,},~°= 0 of  the convolu t ion  of  m count ing  
&s tnbu t lons  with p o s m v e  probabi l i ty  at zero and discrete densities respectively 
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{P~/)}~=0 (J = 1 . . . . .  m) can be evaluated recurswely by 

(6) n0 = ~ p~J) 
J = l  

with 

fl,, = ( m-  l)na,, + ~ b~ j) 
I=1 

( n =  1,2, . )  

'E 1 b~J)= p(o, ) nP~J)- ,-,2 (na,+bI'))P~)-' - ha, ( n =  1,2, ; j =  1, . , m )  

This algorithm holds for any sequence (a l ,  a2, . ) of  real numbers. 

The algorithm of Theorem 6 becomes much simpler m the special case 
a = 0, and normally one would presumably apply this choice of  a However, m 
some apphcat~ons one might get computer  overflow or underflow when 
performing the recurslons, and we might be able to overcome this problem by 
using non-zero values of  a, for some values of  i. For recurslve evaluanon of 
compound distributions when the counting distribution belongs to the Panjer 
class, the problem with overflow and underflow has been &scussed by PANJER 
and WILLMOT (1986). 

Let us now look at the special case when the m distributions are Idenncal 
For  s~mphcity we drop the top-scripts m th~s case, and we put a = 0. Under 
these assumpnons,  (5) and (6) reduce to 

(7) n,, = --  b ,n ,_,  (n = 1,2, .. ) 
H t = l  

( 8 )  n 0  = p6". 

It is remarkable that when we have calculated the b,'s, then we can easdy 
evaluate the m-fold convoluuon of  {Pn}~=0 for any m. It is interesting to 
compare  this algorithm with the algorithm imphed by Corollary 2 It  seems 
that if we want to evaluate the m-fold convolution for one particular value of  
m, then the algorithm of Corollary 2 would be preferable. However, if we want 
the m-fold convolunons for several values of  m, then It might be more efficient 
to first calculate the b,'s and then use (7) and (8). 

The recurswe algorithm of Theorem 6 was presented by DE PRIL (1989) with 
a = 0. De Phi also deduced a closed-form expression for the b,,'s. As the 
algorithm is rather nine-consuming, De Pril introduced a class of  approxima- 
tions, and he gave upper bounds for the inaccuracy of these approximations.  
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4C. For  the rest of  Section 4 we shall concentra te  on convolut ions  of  
dtstr tbutions in '2~. 

By putt ing k = I m Theorem 5 we obtain the following corollary.  

Corollary 3. 
R~ [a, ,B] with 

The convolut ion  of  the m distributions R I [a, bl], . . . ,  Ri [a, b,,] is 

fl = ( m - 1 ) a  + ~ bj 
3=1 

The following theorem is proved by SUNDT and JEWELL (1981). 

Theorem 7. A distribution R I [a, b] e 5?1 ° is binomial if a < 0, Polsson if a = 0, 
and negative binomial if a > 0. 

Let us apply Corollary 3 to each of  the three cases described in Theorem 7. 

i) Bmomtal 
Let the j th  distribution be binomml wtth parameters  (tj, q), that is, it has 
discrete density 

p~J)= ( tJ  I q " ( I - q ) ' J - " .  ( n =  0, l . . . .  t )  

Then 

q q 
a = - - -  b j -  (tj+I),  

I - q  1 - q  

and we obtain 

b = ( m -  1) ( q 
I - q  j=~ l - q  I - q  j=t 

that s t  convo,uto, s no a, w , q )  

n) Poisson 
Let t he j th  distr ibution be Pmsson with parameter  2j, that  Is, it has discrete 
density 

jn 
p~J) - "~J e -xj. (n = O, 1 , 2 , . . )  

nW 
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Then 

a = 0  b, = ,z,, 

and we obtain 

b =  ( m - 1 ) O +  ~ 2 j=  ~ 2j, 
J = l  J--I 

that is, the convolution IS Polsson with parameter ~ ~.a 
j = l  

fii) Negative binomial 
Let the jth distribution be negative binomial with parameters (~j, q), that 
is, it has discrete density 

P~J) = ( ~J+n-1) ( n = 0 , 1 , 2 , . . . )  

Then 

a - q bj = q(~ j -1) ,  

and we obtain 

b= (m-1)q + ~ q(~j- l) = q ~ %-I), 
J = l  

that is, the convolution IS negative binomial with parameters ( ~ ~/, q) 1=1 

The results shown above about convolunons in these three classes of 
d~stributions should be welt known. However, ~t seems interesting to consider 
them in relatmn to Corollary 3 

4D. Let us now more generally consider the convolution of the m dlstnbutmns 
Ri [aj, bl] . . . . .  Ri [a.,, bin]. 

We have the following result. 

Theorem 8. The convolution of the m dlsmbutlons Ri [al, b~], 
Is Rm[a, p], with a = (~l . . . .  ~m) and p = (ill . . . . .  tim) given by 

(9) 

(~0) 

, & [a . , ,  b.,] 

~x ,= ( -1 ) '+ '  E n a/~ ( i =  1 . . . .  m) 
I £/ i  <j2< <J, gm k = l  

~, = ( - , ) ' + '  b, 2 I-I ~,, (, = 2 . . . .  m) 
r = [  I ~ j l  < j 2 <  <J,- i~nl  ,~'=I 

j~@r(t=l ,  , t - - I )  
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(11) fll = ~ b; 
)=1 

Proof. 

(12) 

The probablhty generating function ~, of the convolutmn Is given by 

p(s) = d In q/(s) ~ aj+bj 
ds j=l 1-a js  

with the imtlal condition ~(1) = I. On the other hand, by Theorem 4 we see 
that the convolution is a distribution in.5¢,,,, whmh can be written in the form 
Rm [a, fl], and thus 

(13) p (s) = 

• (i~x,+fl,)s '-I 
t = l  

l -- ~ ~ t S  ~ 
i=1 

It remains to show that a and fl given by (9)-(1 I) satisfy (12) and (13). 
We rewrite (12) as 

(14) p(s) = 

• (aj+bj) I-I ( l -aks)  
j ~  1 k4j 

l~I (l--aks) 
k = l  

We see that (13) and (14) are satisfied if 

(15) 

(16) 

I =  I ) =  I kg- j  

t=l  k = l  

From (16) we obtain (9), and (15) gives (I I) and 

(17) fl,= ( -  1) '+t ((.lr"~-br) 2 l~Ia.& -lO{t 0 = 2 ,  ,m) 
r = l  ] <Jl <J2 < <]f_l~t~l k = [  

Jlg:r(t=l, , t - I )  

Insertion of  (9) m (17) gives (10). This completes the proof  of  Theorem 8 
Q.E.D. 
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We see that  the 0¢,'s do not  depend on the b:'s 
In the special case when all the bfs  have the same value b, then (10) sim- 

plifies to 

(18) ,6', = - ( m - i +  l ) b G _ l .  (t = 2 . . . .  m)  

In particular,  if b = 0, then (11) and (18) gwe that all the fl,'s are equal to zero 
too In thts case the j th  distr ibution is geometric with parameter  a:, that  Is, 
negative binomial  with parameters  (1, %). 

4E. Let us look at the case m = 2. In thxs case Theorem 8 reduces to the 
following corollary.  

Corollary 4. The convolut ion  o f  Ri [al ,  bl] and Rt [a2, b2] is 

R2[(al + a 2 ,  - a l  a2), (bl + b 2 ,  - ( a l  b2+a2b l ) ) ]  

Corol lary  4 was proved by SCHROTER (1990) m the specml case a2 = 0 
Corol lary  4 apphes m part icular  when a~ = a2 = a; m that case we obtain 

that the convolu t ion  is R2[ (2a  , - a Z ) , ( b l + b 2 , - a ( b l + b 2 ) ) ] .  However,  by 
Coro l la ry  3 this distr ibution does not  belong to ~ ,  and it is more convenient  
to express it as R l [a, a + b t + b 2 ] .  

Example 2. We consider  the convolut ion  o f  a bmomml  &stnbut~on with 
parameters  (t, q) and a negatwe binomial distribution with parameters  (~t, q). 
Then 

q q 
al = - - -  bt = - -  - ( t + l )  

1 - q  1 - q  

a 2 = q b 2 = q ( a -  1), 

and by Corol lary  4 the convolut ion  is equal to 

E( q2 q2)((,+q ) q2 )3 R 2 - , - -  , q + o~ , ( o ~ - t - 2 )  . 
l - q  1 - q  1 - q  l - q  

5. MIXTURES 

It is natural  to ask whether  a mixture o f  a distribution m '.Ok and a distribution 
i n ~  I belongs tO.~m for some fimte m when k and / are finite. Unfor tunate ly  we 
canno t  give a general yes or  not  to this question. There are cases where the 
proper ty  holds, but  there are also cases where it does not  In this section we 
shall look at some examples. 

We start w~th a tnwal  observat ion As a fimte mixture o f  count ing 
distr ibutions on a finite range with positive probabil i ty at zero is a count ing 
distr ibution on a fimte range with posltwe probablh ty  at zero, the property 
holds for distr ibutions on fimte ranges by Theorem 3. 
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. ( 2 h ~  s . o ) ~  and {v,  r,,-o be discrete densmes  m .¢, resp. 2~ with Now let ~v. s.=0 
probabi l i ty  generat ing functions ~l resp. I, u2. Let {P,},~=0 be the mixture  
defined by 

p,, = v p ~ l ) + ( l - - v ) p ~  2), (n = 0, 1 , 2 , . . , 0 <  v <  1) 

and let ~, denote  ~ts probabi l i ty  generat ing function. We have 

= Vq/i -F (1 - -  V) t//2, 

which imphes 

d vl,u', ( s ) + ( l  - v) ~ i ( s )  
= In i,u (s) . . . . . . .  . 

(19) p(s )  ds vtv, ( s ) + ( l - v )  ~2(s )  

We can apply  (19) and Theo rem 1 to demde whether  the mixture  belongs to.,¢m 
for some finite m. 

Example  3. We look at a m~xture between two Po~sson d~stributmns w~th 
pa ramete r s  2t and 22 with 21 4:22 Then 

Na(S) = e "~'(s-I) ~j'(S) = 2 je  ; , ( ' - I ) ,  ( j  = 1,2) 

and Insertion m ( 1 9 )  gives 

p ( s )  - - -  

v).i e~,(~ - i)+ (1 - v)22 e)2(s- I) 

ve;,(~-o+ (1 -- v)e  ~2(~- O 

which obviously  cannot  be writ ten as the ratio between two polynomials .  Thus  
the mixture  does not  belong t o .~m for any  fimte m 

Example  4. Let us look at a mixture  between two geometr ic  &st r lbu t lons  with 
pa ramete r s  q~ and q2 with q~ --/= q2. Then 

I - q j  q j ( l  - q , )  
~u,(s) = - ~ ;  ( s )  - 

I - q j s  ( l - % s )  2 
( j  = 1,2) 

Insert ion m (19) and some rearranging gives 

p(s )  = 
vql (I - q l )  (1 - q 2 s )  2 +(1 - v) q2 (1 --q2) (I - q l  s)  2 

v(l  - q 0  (1 - q l s )  (I -q2ss )2+(1  - v) (1 - q 2 )  (1 - q 2 s )  (1 - q t s )  2 

We see that  the n u m e r a t o r  in this f rac tmn is a po lynomia l  o f  degree two and 
the d e n o m i n a t o r  a po lynomia l  o f  degree three with a non-zero  cons tant  term 
Thus  the mixture  is conta ined m '~3 
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Example 5. We consider a mixture between two negative binomial distribu- 
tions with parameters (CXl, q) and (a2, q) with 0c 2 > 0~ I . Then 

~'J(s) = ( l l -~qq) : j - q s  ~J(s) = ~sq(1-q)aJ(l-qs) %+1 ( j  = 1,2) 

Insertion in (19) and some rearranging gives 

p ( s )  = - -  

vaq(l - qs)~+ (I - v) (a+fl) q(l _q)t~ 

v(l --qs) It+1 ÷(I  -- v) (1 -- q)t~(1 --qs) 

with a = ctl and fl = ct2-ctl. If fl is an integer, then the numerator is a 
polynomial of degree fl and the denominator a polynomial of degree fl+ 1 with 
a non-zero constant term, and thus the mixture belongs to J~+~ However, Iffl 
is not an integer, then the mixture does not belong to ..¢,, for any finite m. 

6. C O M P O U N D  D I S T R I B U T I O N S  

6A. Let N be a non-negative integer-valued random variable wIth distribution 
Rk[a, b], and let Yi, Y2 . . . .  be non-negative integer-valued random variables, 
mutually independent and identically distributed with common discrete density 
f ,  and independent of N We denote by {p,},°°=0 the discrete density of N Let g 
denote the discrete density of 

x = ~  ~, 
l = l  

that is, 

g = Z P , f " "  
n = 0  

For convenience we introduce q = f (0) .  

Theorem 9. 

(20) g(x) -  

We can evaluate g(x) recurswely by the algorithm 

k g(x--y) 2 a,+-- f " ( y )  
y = l  t= l  i 

I -  ~ a,q' 
t= l  

(21) g(0) = ~.~ p,q". 

(x=  1,2, ) 
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Proof. Formula  (21) obviously holds. 

Let X, = ~ Y, (n = 1,2, ). For x > 0  we have 
I = l  

g(x)  = p,J"* (x) = a, + - -  p ,_ , f ""  (x) 
n = l  n = l  t = l  /"/ 

= p._ ,  a ,+  - f " ' ( x )  = p._,  E ,+ . . . .  x f " ' ( x )  
t = l  = tl t=¿ n=t  1 X 

= 7 ,  Pn-, a, + - - - -  f ' * ( y ) f C " - ' ) ' ( x + y )  
= n=~ y = 0  i X 

= a, + - - -  " ( y )  p , , _ , f ( " - ' ) ' ( x - y )  
v = 0  t = l  l X n e t  

= a , + - - "  f ' * ( y ) g ( x - y ) =  g ( x - y )  a,+ (y ) ,  
.v=0 t = l  I X , =  t - I  l X 

which gwes (20). This completes the proof  of  Theorem 9. Q.E.D. 

As the severmes are usually assumed to be strictly posmve, we state the 
following corollary. 

Corollary 5. If  q = 0, then 

g ( x )  = g ( x - y )  a, + - - - -  f " ( y )  
y = l  = l X 

(x = 1 , 2 , . . )  

g(0) = P0- 

The recurswe algorithm presented by PANJER (1981) IS obtained as a special 
case of  Corollary 5 by letting k = 1. With k = 2 and a2---0 we obtain 
SCHROTER'S (1990) generahsaUon 

6B. Let 

m = max {y f ( y )  > 0}. 

As f " ( y )  = 0 for all y > mi, (20) can be written 

g (x )  = k Z g ( x - y )  E a, + - - "  f " ( y ) ,  
y = l  t = l  l X 

1 -  E a,q~ 
t = l  

(x = 1, 2 . . . .  ) 

and we obtain the following result 
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Theorem 10. 
d = (dr . . . . .  d.,k) given by 

k 

Z a , f ' "  ( y )  
a=l  

(22) % = k 

1 -  Z a,q' 
t = l  

Let 

The distribution o f  X is Rink[C, d] with c = ( c l , .  , Cmk) and 

Y ~ b , f , . ( y )  
i = l  1 

dr. = k , ( y  = 1, . , ink)  

1 -  ~ a,q' 
t = l  

M =  # { Y , > O : i _ <  N}. 

If  N zs the number  o f  claims occurred in an insurance por t foho  during a gwen 
period, and Y, is the a m o u n t  o f  the tth o f  these claims, then M is the number  o f  
non-zero  claims. The following corol lary to Theorem l0 shows that the 
distr ibution o f  M belongs to the same class as the distribution o f  N. Analogous  
results have been discussed by PANJER and WILLMOT (1984) and SUNDT 
(1991b) for the case k = 1 

Corollary 6. 
d = ( d l ,  . . . ,  dk) given by 

k 

a, q'-Y 
t=y y 

Cy = ( I  - -  q)Y 
k 

1 -  Z a,q~ 

The distribution o f  M is Rk[c,d] with c - - - ( c t  . . . . .  ck) and 

dy = ( l - q ) Y  
,=y y - 1  

1 - Z a,q' 

( y =  l . . . . .  k) 

Proof.  We obtain the corol lary from Theorem 10 by l e t t m g f b e  the discrete 
density f0 defined by 

and using that 

fo'" (y) = ( 

f0(O) = q = l - - f o ( I  ) 

i / ( 1 - q ) Y q ' - Y .  

Y / 
(y  = 0 . . . . .  t) Q.E D. 

Corollary 7. If  N has the distr ibution R~ [a, b] and m is a positive integer, then 
mm has the distr ibution Rink [c, d] with c = (cl . . . .  , c.,k) and d = (d~, , d.,k) 
given by 

cy = a~/m dy = mby/m (y  = m, 2m . . . . .  kin) 

and Cy = dy = 0 for all other  values o f  y. 
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Proof.  We can apply Theorem 10 with the Y,'s identically equal to m, that is, 
f ( y )  = 6my (Kronecker  delta) T h e n f " ( y )  = JI,,,,).y, and the corol lary follows 
by insertion m (22) Q.E .D 

6C. For  the present subsection we assume that q = 0. Fur the rmore  we 
assume that all the b,'s are equal to zero, like in the case with convolut ions  o f  
geometric distributions mentioned at the cnd of  subsection 4D. Then (20) 
simphfies to 

g(x) = g ( x - y )  2 a , f " ( y ) .  (x = 1,2 . . . .  ) 
~=1 t - I  

In this case we have Sm~llar recursions for the cor responding  cumulat ive 
distribution and its s top loss t ransform Let F and G be the cumulat ive 
distributions cor responding  to f and g respectively. Ana logous  to the deduc-  
tion o f  the corresponding formulae m the special case k = 1 m subsec- 
tion 10.4D in SUNDT (1991a) we obtain 

(23) G(x) = Po + G ( x - y )  a , / ; * ( y )  (x = 0, 1, .. ) 
y= l  t = l  

if(x) = z..., a , f " O ' )  (x = 1, 2, ) 
y - I  i= l  

G(0) = E X =  E N E Y .  
k 

If  all the a,'s are non-negative with ~ a, < I, then (23) is a renewal equa- 

k 

tion with defective distribution ~ a,F'* (cf FELLER (1971, Sechon XI6) ) ,  
I=l 

and we can obtain asymptot ic  expressions for g, G, and G analogous  to the 
ones deduced for the case k = 1 m SUNDT (1982). By Theorem 10, in our  case 
the d~stnbut~on of  N is a c o m p o u n d  d~stribut~on; its count ing  distr ibution ~s 
geometric with parameter  

k 

r ~ 2 (it' 
t=l  

and its severity distr ibution has discrete density {c,}~=t given by 

a~ 
c,  = ( t  = 1, . ,  k )  

r 

Thus G is a c o m p o u n d  d~stribuhon with geometric count ing  distr ibution 
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k 

with parameter r and compound severity distribution E c,F '°, and 
t = l  

this representation of  the G, we can apply the asymptotic 
SUNDT (1982). 

by using 

results in 

6D. Generahsatmn of Theorem 9 to cases where the Y,'s can also take 
negative values, IS m most cases rather comphcated. However, if there exist 
finite numbers Y0 and n o such that Y, _> Y0 and N < no with probability one, 
then we can proceed like m Section 6 of  SuNm" and JEWEt.L (1981) 

7. GENERALISATIONS 

7A. SUNDT and JEWELL (1981) generahsed PANJER'S (1981) recurslve algo- 
rithm to the class of  counting dls tnbunons  with discrete density {P,,},%0 
satisfying the recursmn 

p~ = a + -  P,,-I. (n = m + l , m + 2 ,  .) 
Ill 

Panjer 's class is obtained with m = 0. We make a similar extension of..-~a and 
consider the class of  counting distributions satisfying the recurslon 

(24) P,, = E a, + p,,_, (n = m + l , m + 2 , .  ) 
= n 

with Pn = 0 for n < 0 We obtam the following generahsatlon of Theorem 9 

Theorem 11. If {p,}~°_ 0 sansfies the recurslon (24), then g('¢) can be evaluated 
by the recursive algorithm 

k 

I -  E a,q' 
t=[  

(25) g(x) = , -  a , + - -  p,_, f "  ( x ) +  
n = l  t = l  /1/ 

+ g ( x - y )  a, + - ( y )  
y = l  I = l  l X 

(26) g(O) = ~ p,q" 
t l~O 

(x = 1 ,2 , . .  ) 
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Proof. Formula (26) obviously holds. For x > 0 we have 

g ( x )  = p , , f " "  ( x )  = p , , f " "  ( x )  + a, + 
n = I n = I n ~ m + I - 

b , )  p , , _ , f , , .  ( x ) ,  
17 

that is, 

(27) g(x)  = , - a, + 
,,=1 ,=, n P"- '  f 

+ a, + - p , , _ , f  ( x )  
n = l  i= I l 1  

Like in the proof  of Theorem 9 we obtain 

L 

Z O~ + 

t = l  
p , , _ , f ' * ( x )  = g ( x - y )  a, + " f ' *  ( y ) ,  

H y - - O  t =  I l A "  

and insertion in (27) and solving for g ( x )  gives (25). This completes the proof 
of Theorem 11 Q E.D 

7B. A natural question is, could we extend the results shown in Sections 3 
and 4 to the classes of counting distributions satisfying (24)9 Unfortunately, 
possible extensions are not trivial The deductions in Sections 3 and 4 depended 
very much on the simple form of p gwen by (4); m extended classes we do not 
get such a simple form. 

To indicate the difficulties, we look at a simple case. Let 

Pr,-, 07 > m) 
Pn = " t=l n 

O, (n < m)  

and let ~u denote the probabdlty generating function of this dlstrtbutlon 
Analogous to the deduction of (3) we obtain 

q / ( s )  = p ,  ns " - t  = mp,,,s ' ' '-I + ns ' '-I  a, + - p,,_, 
n = m  n = m +  I i= I H 

k 

= mpmSm-I  + Z 
t = ] 

[ a , s ' ~ u ' ( s ) + ( l a , + b , ) s  '-~ ~ (s)], 
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which gives 

k k 

+ mpms.,-I = 0.  

We see that the presence of  the term rnp,,,s"'-~ makes the s~tuatton much more 
comphcated  for rn > 0. 

REREFENCES 

DE PRIL, N (1985) Recurslon for convolutions of arithmetic distributions ASTIN Bulletm 15, 
135 139 
DE PRtL, N (1989) The aggregate claims distribution with arbitrary posltwe clamls ASTIN Bultettn 
19, 9 24. 
FELLER, W (1971) An introduction to probabthtv theory and tt~ apphcatton~ Vol ii (2 ed ) Wiley, 
New York 
PANJER, H H (1981) Recurslve evaluation of compound dtstmbutlons ASTIN Bulletin 12, 22 26 
PANJER, H H and WILLMOT, G E (1984) Computauonal  techmques m reinsurance models 
Tranvacttonv of  the 22nd lnternattonal CongresL~ of  Actuarwv 4, 1 I 1 120 
PANJER, H H and WILLMOT, G E (1986) Computat ional  aspects of  recurswe evalutlon of 
compound dmtnbuuons  Invuran~e Mathemattcs and Economics 5, 113-116 
SCHR6TER, K J (1990) On a class of  counting d l s tnbuuons  and recurslons for related compound 
distributions Scandmavtan Actuarial Journal, 161 175 
SUNDT, B (1982) Asymptotic behavlour of  compound distributions and stop-loss premiums ASTIN 
Bulletin 13, 89 98 Corrigendum ASTIN Bulletin 15, 44 
SUNDT, B (1991a) An tntroductton to non-hfe insurance mathemattca (2 ed ) Verlag Verslcherungs- 
wtrtschaft e V,  Karlsruhe 
SUNDT, B (1991b) On asymptotic rates on hnes m excess of  loss reinsurance Insurance 
Mathematws and f¢onomtcs 10, 61 67 
SUNDT, B and JEWELL, W S (1981) Further results on recurswe evaluation of  compound 
&strtbuttons ASTIN  Bulletin 12, 27-39 

BJORN S U N D T  

The Wyatt Company AS, P.O.Box 1508 Vtka, N-OIl70slo, Norway 
e-mad sundt@math u~o.no. 


