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ABSTRACT

A statistical analysis is performed on natural events which can produce
important damages to insurers. The analysis is based on hurricanes which have
been observed in the United States between 1954 et 1986.

At first, independence between the number and the amount of the losses is
examined. Different distributions (Poisson and negative binomial for frequency
and exponential, Pareto and lognormal for severity) are tested. Along classical
tests as chi-square, Kolmogorov-Smirnov and non parametric tests, a test with
weights on the upper tail of the distribution is used: the Anderson — Darling
test.

Confidence intervals for the probability of occurrence of a claim and
expected frequency for different potential levels of claims are derived.

The Poisson Log-normal model gives a very good fit to the data.

KEYWORDS

Catastrophe risk; fitting models; frequency; severity; XL treaties.

l. INTRODUCTION

The United States of America are regularly hit by different types of natural
events. Hurricanes affect the east part of the United States, tornadoes the
middle one. Hailstorms and winter freeze may take place all over the United
States. Earthquakes are observed in some specific zones as California (for
example 1906 and 1989 San Francisco quakes).

These events cause very important losses. On the average the insured losses
represent 4% of the premium income in classes as fire and multiperils for
homeowners, farmowners and commercial risks.
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A very important hurricane may induce a 8 billion US § insured loss which
would represent 20 % of the premium income of these classes for one year. This
percentage is even higher for an insurance company located in hurricane prone
zones (Texas, Florida, Georgia, ...).

Direct insurers and reinsurers (underwriting non proportional treaties) must
estimate their exposure in order to define an adequate reinsurance coverage.

The topic of the study is to get some resuits on the loss amount and
frequency distributions of these events. In order to do homogeneous analysis,
the study has been realized on a sample of hurricanes affecting the United
States.

ISO keeps in its data base all losses (natural events) since 1949 whose
amount exceeds 1 million US$ (5 millions US $ after 1982). Three factors
explain the evolution of the losses amount from 1949: inflation, the number of

TABLE |
HURRICANES EXCEEDING 30 MILLIONS $

Year Frequency First loss Second loss Other losses
1986 0

1985 5 39,7 582,0 439.9 47,1 83,9
1984 1 41,2

1983 1 893,1

1982 I 192,0

1981 0

1980 1 106,2

1979 2 216,7 1243 ,4

1978 0

1977 0

1976 1 52,8

1975 | 351,6

1974 1 36,2

1973 Q

1972 1 4315

1971 1 57,3

1970 1 1602,1

1969 | 822,2

1968 0

1967 1 260,1

1966 1 58,7

1965 1 6299,9

1964 3 8149 137,2 203,8
1963 0

1962 0

1961 2 1263,5 53,7

1960 1 1313,0

1959 2 118,4 167,8

1958 1 70,1

1957 1 503,7

1956 1 64,8

1955 2 5299 87,8

1954 3 24654 3179 2753,9
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people having the coverage against hurricanes in their insurance policy,
demographic evolution.

These three factors have been taken into account in the trending of the losses
(FRIEDMAN, 1987) in order to get an homogeneous data base in 1987 US §.
Nevertheless as the indexation coefficients for the first years were close to 100
and those for the years 1954 to 1982 were lower than 30, the observed period of
time has been shortened to 33 years (1954 to 1986). During these years
37 hurricanes have been observed (cost of each hurricane in 1987 USS$
exceeding 30 millions).

2. HYPOTHESIS

Consider N the random variable (r.v.) of the yearly loss frequency N (x;) the
r.v. of the losses exceeding x,, with x, fixed. Let X; be the amount of the loss i
and X = (X, ..., Xy) the r.v. of the yearly loss amounts; the distribution of
each X, is supposed continuous.

K observations years (K = 33) are available. They produce a realization
(me, x ) = 1, ...,  of a K-sample (Ny, XD), ..., (Ng, X)) of (N, X).

Two hypothesis are made

(H1) N and (X,, X,,...) are independent random variables

(H2) X,,X,,...are iid. random variables.

(H1) may be partly checked looking at the 25 years for which at least one
loss has been observed. The grouping of the first losses in three classes gives the

following contingency table (into parenthesis theoretical frequencies in case of
independence).

Loss
Yearly < 200 200 < < 1000 > 1000 Total
frequency
1 9 (7,92) 6 (6,48) 3 (3,60) 18
2 1 (1,76) 2 (1,44) 1 (0,80) 4
3 and over 1 (1,32) 1 (1,08) 1 (0,60) 3
Total 11 9 5 25

Chi-square independence test gives an observed x2,. = 1,23 which for the
significance level (P-value) is & = P(x?> x%) = 0,87. So (H1) is accepted.
Remark: A grouping of yearly frequencies in two classes in order to follow the

% 51V (i, /) and
h n

ni-nj

Cochran criterion [ > 5 for at least 80% of (i,j):|

would lead to the same conclusion.
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For (H2) independence of X, and X,, and identical distribution of X, X,
and X, are checked using three non parametric tests: Kendall, Spearman and
Kruskal-Wallis (G1BBONS, 1974).

— Independence of X, and X,

For the 7 years during which at least 2 losses have been observed, the Kendall
tau statistic can be written as follows:

2

T= A with
7(7-1) IQZ;KK Y

n,n2=2
I @ =x) @ -x) >0
dy={ 0 if (V=X &P -1 =0

-t K- x) (- x") <0

The critical region for Kendall test at level a« = 0,20 is W, = {|T| > 0,4286}.
The observed tau being T = —0,333, independence between X, et X, can be
assumed for any reasonable level.

Let R, be the rank of X among the 7 observations (ordered increasingly)
for which n, > 2 and S, be the rank of X%, the Spearman rho statistic is

Y (Re—R)(S,=93)
k
R =

\/Z (R~ R)? JZ (Sk—S)?
k k

The critical region for Spearman test with a level o of 0,20 is
W, = {I{R| > 0,536}, observed rho is computed at —0,464 so the conclusion is
the same as for Kendall test.

— Identical distribution of X,, X, and X,

Let F; ({ = 1,2, 3) be the cumulative distribution function (c.d.f.) of X;, only
years when at least i losses have occured being selected: {X¥: k with
n 2 i}.

The null hypothesis F, = F, = F; is tested against the alternative
3i,j: F; # F; by the Kruskal-Wallis test. Under the assumption that loss
amounts (X*)),,; are identically distributed, we have a m,-sample of
X, (m; = 25), a my-sample of X, (m, = 7) and a mz-sample of X;{m, = 5).
These samples are assumed to be independent.

3
Let M = Z m;, R; the sum of ranks of the ith sample observations in

i=1




STATISTICAL ANALYSIS OF NATURAL EVENTS IN THE UNITED STATES 257

the combined (increasingly) ordered configuration of the M observations

3
M(M+1
with ). R, = —(E_): R, = 482, R, = 128, Ry = 93. Under the null
i=1

. mM+1) .
hypothesis £(R)) = ——2—— Vi ([E(R)) = 475, E(R,) = 133, E(R;) = 95],

the Kruskal-Wallis statistic

2
W = _ m,-(M+1)}

3
MM+1) Z, m,-[ : 2

is free (its distribution is independent of the common F; distribution).
Asymptotically (m; = + oo Vi) KW is chi-squared distributed with 2 degrees of
freedom. This asymptotic distribution is used in practice when m;, > 5 Vi. Here
the critical region for the Kruskal-Wallis test {K# > ¢} has a significance level
& = P(x} > KW) = 0,97 (the observed KW statistic having a value of
0,054).

Remark:

1. If the size of the third sample m; (= 5) seems too small to use the
asymptotic distribution of KW, it is still possible to test F, = F' against
F, # F' [F' being the c.d.f. of X; (i = 2)] with a m,-sample of F, (m, = 25) and
a m'-sample of F'(m' = 12). In this case the Kruskal-Wallis test is the
Mann-Whitney-Wilcoxon test and has a significance level & = 0,82.

2. Under the assumption of the X;s independence the Kruskal-Wallis test
may be used to check the hypothesis (H1): no effect of the yearly loss
frequency upon their amount:

Considering the yearly loss amounts (x®: k with n, = 1} for years when
exactly one hurricane occurs, {X¥) = k with n, = 2; i = 1, 2} for years with
two hurricanes and {X® :k with n,>3; i= 1,2, ..., n} for years with
more than two hurricanes as independent samples with respective sizes
m; = 18, m, = 8, my = 11 of distributions G, G,, G;3, the Kruskal-Wallis
test of the null hypothesis G, = G, = G, gives a significance level & = 0,89
(observed KW = 0,25).

Hereafter (H1) and (H2) will be assumed to be true. X will be the random
variable parent of X; and Fy its c.d.f. (assumed to be continuous.)

3. LOSS FREQUENCY

The realization (n,, ..., ng) of the K-sample (¥, ..., Ng) from N is given in

1 1
the following Table 2. Let n = — Z ng and 67 = — Z (n— 1)
K% K%
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Different distributions fitting the loss frequency are examined.

— Poisson distribution & (4) (A > 0)

with P, (N =n) = e % 1"/n! (neN), E(N) = V(N) = A, A = i is the maxi-
mum likelihood estimator (M.L.E.) of 4. A confidence interval at a level of at
least (1 —a) for A is [4;, 4,] with

X 1 . 1
A= — x? (@/2) and A, = — x? (1~a/2).
2K 2K

Zan 2(2nk+1
3

k

In these expressions x2 (x/2) and x2(1 —a/2) are the a/2 and (1—a/2) fractiles
of the chi-square distribution.

— Negative binomial NZ (r,p) (r > 0,p€]0,1[)

with P, ,(N =n) = __F(r+n) pr(=p)(neN), E(N) = rd-p)
I'(ryn! p

and

r(1-p)
pz

moments requires that the condition 72 > 7 is fulfilled.

V(N) = > E(N); the estimation of (r, p) by the M.L.E. or by the

3
From the frequencies by year of hurricanes, we have 7 = — = [,1212]
33

and 62 = 1,0762. So a fit by a negative binomial distribution is impossible.

TABLE 2

YEARLY FREQUENCY OF HURRICANES EXCEEDING 30 MILLIONS §

Yearly frequency Observed freq. Theoretical freq. (0,— Kp):
i v Kp; Kp,

0 8 10,75 0,703

| 18 12,06 2,926

2 4 6,76 1,127

3 2 2,53 0,111

4 0

S t } 1 } 0,90 0,011

6 and over 0

Total 33 33 4,878 = y2,,
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The x2 goodness-of-fit test to a Poisson distribution with A= n,
pi= P;s(N =1i) and ¢ = 5 classes gives (see Table 2) a significance level &
fulfilling condition

P(xI_3> x3) SGS P(xio) > xky,
belonging to the interval [0,18; 0,30].
So the fit of N to a Poisson distribution .% () is accepted with for A:
M.L.E. 1 = 1,12121
Confidence interval at a level at least 0,98
[0,73736; 1,63005]

Remark:

1. The M.L.E. of 1 obtained from grouped data (5 classes) is i = 1,09866,
so to state precisely the chi-square test gives a significance level
& = P(x?>4,866) = 0,18.

2. The fit of a Poisson distribution to that kind of event frequency can be
checked with the distribution (see Table 3) of the frequency by year of all the
north atlantic hurricanes which approached the United States from 1899 to
1986 (meteorogical data, US Department of commerce):

iA=1,7045, &2 =1,8218, &e[0,72; 0,84].
TABLE 3

YEARLY FREQUENCY OF ALL NORTH ATLANTIC HURRICANES

Yearly frequency Observed freq. Theoretical freq. (i~ Kp)*
i v; Kp; Kp;

0 16 16,00 0,000

1 28 27,28 0,019

2 23 23,25 0,003

3 14 13,21 0,047

4 3 5,63 1,229

5 2

6 2 } 4 2,63 0,714

7 and over 0

Total 88 88 2,012 = x2,

4. LOSS AMOUNT

Loss amounts are assumed to be i.i.d. random variables. Let
K

n=Y m(= 37, a realization (x,, ..., x,) of a n-sample (X,, ..., X,) of X
k=1

is obtained; all losses are over 30.
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The aim of the following lines is to estimate the probability
P(X>=xp) = 1—Fy(xy) that a loss amount exceeds x, and to derive a
confidence interval at a levet 1—a (= 0,98).

1. Non parametric estimation

Let X(;) < ... < X{, be the ordered sample corresponding to (X, ..., X,) and
(F¥(x))xer+ the empirical c.d.f.
Considering X o) = 30, X(,.;) = +00, we have, for k =0, ..., n,

k.
F,,*(x) = — if X(k)<x<X(k+l).
n

n
The statistic 1 — F*(x;) = — Z 1%, + (X)) is an unbiased consistent esti-
n i=1

mator of 1 — Fy(x).
Furthermore if D, (1 —a) is the (1 — ) fractile {D,(0,98) = 0,244 for n = 37]

of the Kolmogorov-Smirnov statistic D, = Sup |F*(x)—Fy(x)| associated
xe R

to the sample, if we let, for xe R*,

I(x) = max[1—-F*(x)—D,(1—a), 0]
S,(x) =min [1-F*(x)+D,(1—-a), 1]

the band ([/,(x), S,(x)]).er+ is a level (1 —a) confidence band for 1— Fy(x,)
meaning that

P, (x) S 1=Fy(x)<S,(x)VxeR*] = 1—a.

The table with the values of 1—F*(x), I,(x) and S,(x) for k =0, ..., n and
X) < X € X4y Is presented in Appendix 1.
Joining with segments the points

. n—k+1
(x(k,,mm (——-— + D,(l—-), 1 ) )
n k=0,...,n+1

for the superior envelope and

k
- D,(1-a),0

n
X(k)» max
k=0,...,n+1

n

for the inferior envelope, a confidence band (B,), r+ containing the first one
([£5(x), S,(x)]xer+ and graphically easier to draw is derived. Graph | shows
the plot of 1—F*(x) and B, for 30 < x < 8000.
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o
N
ES
(2]
o]

(x 1000)
GRrapH 1. Plot of 1-F*(x) and B,.

2, Parametric family of distributions

A graphical approach and the value of significance levels of goodness-of-fit
tests based on the empirical c.d.f. (D’AGOSTINO and STEPHENS, 1986) are used
to test the fit of observations to a family & = {F(x; 0): 0 € ®} of parametric
distributions (# varying in on open subset @ of RY).

For the graphical procedure (Q— QO plot) following results are applied: for
r=1,...,n

r rin—r+1)
E[FX(X(r))] = 5 V[FX(X(r))] = PR VRN =0(1/n).
n+1 (n+1D"(n+2)

For n 2 30 (a generally accepted level) a realization of Fy (X)) is very likely

close to

n.

b

) r
. So it is possible to write Fy(x()) ~ —— forr =1, ..
n+1 n
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By an adequate transformation, depending of the examined family, the
procedure is equivalent to estimate whether n points are roughly on a straight
line.

Let & be the M.L.E. of 8 in the hypothesis Fy € ., the goodness-of-fit test is
based on Anderson-Darling statistic

= j*“’ [F¥ (x)= F(x; O)F
o FOx;0)[1-F(x; 0)]

dF(x, )

n

1 - N N
~n— =) @r—1){Log F(Xy); ) + Log[1—F(X(-,1); O
n or=1

This statistic gives one of the globally most powerful tests (D’AGOSTINO and
STEPHENS, 1986). Moreover it is an adequate statistic of the here studied

problem because of the weight (factor . ) given to the tail of the

1—F(x; 0)
distribution.

In order to compare with other tests, Kolmogorov-Smirnov statistic will be
computed:

D, = Sup |[F*(x)—F(x, )] = max (D}, D) with
xeR*

. n N n —1
D, = max l:i-— F(X(,);H):l and D, = max [F(X(,);ﬁ) S :|

Let T, be one of these two test statistics and f",,,x its value for the realization
x={xy,..., xp of (X,,..., X,). The distribution of T, under the null hy-
pothesis H,: Fye % depends generally only on n and the examined family.
Thus a significance level &(x) = P™[T, > T,,‘x] may be computed from the
table of this distribution.

Remark : It is not advisable to compare the fit of two families of distributions
to the observations by a simple comparison of their 7, .. Indeed the same
deviation has not the same likelihood to be reached under H,. For example
con51der1ng D,, for n =37 and D, =0,165: P*(D,>D,,) =024 if

= {Fy} has only one distribution (fully specified), P (D, > D,, o = 0,08 if
f is the exponential distributions family, P# (D, > D,, o = 0,15 if ¥ is the
log-normal distributions family.

The histogram of the observations suggest to choose a dissymmetrical
distribution. Successively exponential, Pareto and log-normal distributions will
be tried: for these distributions there are statistical tables which give the
goodness-of-fit significance levels & (x).
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2a. Exponential distribution ¢(f; 30)

With § > 0, this distribution has the following density and c.d.f.

Spx) = peF=30 1430, + oo (X)
Fgao(x) = 1—e #5739 (x >30) so —Log[l—Fj 5(x)] = f(x—30).

Let (Y,,..., Y,) be a n-sample of {¢(f, 30) : §> 0} and (y,, ..., y,) its realiza-
tion.

r=1,...,n are roughly on a

* the n points (y(,)—30, —Log ( 1 -
n+1

straight line going through (0,0) with a positive slope (the slope of an
adjusted line on these points gives if necessary a graphical estimation of f).

" M.LE. of fis B - _;_n—_ , MLL.E. of 1—Fp 3 (x,) is
> (730
=1
1= Fp30(x0) = e~ Fx=30) for xo = 30.

* a level (1 —a) confidence interval with symmetric risks is

for f: [ X3 (%)2) 4 x34(1 —06/2)}

B i

n 2n
for 1 —Fﬂ':;o(xO) N

T )
(exp{ B3, (1 —ap2) (xO_m)}; exp{ B33 (/) (xO_w)})
2n 2n ’

2
as -—ﬁ is x3, distributed (d.f. 2n).

The graphical procedure applied to the 37-sample (x;,...,x,) of X in
graph 2 rejects in a first approach a fit to an exponential distribution : the tail
of this distribution is too light to take into account the observed amounts of
loss.

N 1
With f = —— = 0,00157, the significance levels of the goodness-of-fit tests
638,2
corroborate the lack of fit of the exponential distribution to the data:
A} = 598054 &(x) <0,0025
D, = 0,2599 é(x) < 0.005.

B S]
I
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2b. Pareto distribution P (y; 30)
With y > 0 this distribution has the following density and c.d.f.

y 307
8.30(x) = ——— T0, + 0 (%),
x

30\7 X
G,3x) =1- (—) s0 —Log[l1—G, 3(x)] =y Log% (x = 30).
X

Let (Y¥,,..., Y,) be a n-sample of {P(y;30):y>0} and (Y1s--, ) its
realization.
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* the n points (Log-y-('), —Log (1- r=1,...,n are roughly on a
30

n+l
straight line going through (0,0) with a positive slope (the slope of an
adjusted line on these points gives if necessary a graphical estimation of y).

* MILE. of yis § = ——— M.L.E. of 1—G,, 3(xy) is

— T~ {30
1- Gy, 30(X0) = (

* a level (1— o) confidence interval with symmetric risks is

for » - [ x3,(2/2) Axgn(l—fx/2)}
ory: |7y 7 —

>

2n 2n

L, 1=af2) 3, (&/2)

30 v 2n 30 7 2n
for 1 =G, 30(x¢): | | — | —
Xo X0

2ny . L
as —Ay is x3, distributed.
Y

Graph 3 shows that the n points

X(,.) r
Log , —Log |1l —
30 n+1

r = 1,...,n are not roughly on a straight line. Pareto distribution has a too
heavy tail for the observed amounts of loss.
With § = 0,465141 the test statistics can be computed as follows

/22
D,

1,56365 with a significance level &(x) = 0,025
0,14586 with a significance level &(x) = 0,16 .

Comparing the two significance levels demonstrates the interest of A?
relatively to D ,. The fit to a Pareto distribution is rejected by A? (tail of the
distribution) though such a fit seems to be acceptable with D, , taking into
account the small number of observations.

The fit to a Pareto distribution being rejected, the lower and upper limits of
the confidence interval are not computed.
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X, r
GRaPH 3. Plot of the points (Log—() , —Log (l - ))r= I,...,n.

30 n+l1

2c. Log-normal distribution Log N (u, o; 30)

With peR and ¢ >0, a random variable Y is log-normally distributed if
Log (Y —30) is normally distributed N (u, o). Its density is

1 1
h, . = - —[L =30)~ 1] $ V130, 4 o () -
40,30 (X) \/ﬂa(x—30) exp{ 202[ og (x )= u] } 130, + o[ (X)

Let & be the c.d.f. of N(0, 1), the c.d.f. of the log-normal distribution can be
written (x > 30)

Log (x—30)—pu

Log (x—30)—
H,‘,o,:;o(x) = ¢[ —g(__)__./f.

g

} therefore &7 '[H, , 3(x)] =
o
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Let (Y;, ..., Y,) be a n-sample of {Log N(u, 5,30): pe R, 6 > 0}

* The n points | Log (y(,,—30), ¢!

r=1,...,n are roughly on a

n+1

straight line with a positive slope.

l n
* M.LE. of (4, 0)is 4 = — ). Log (¥,—30)

n i=1
1 n
G = \/— Y. [Log (¥,=30) — i)’
n i=i

) e —
M.L.E. of I—Hy,a,JO(XO) 18 l—Hﬂ,,,vm(xo) =1-¢ [

Log (xo—30) — 4
g

* the way to derive a confidence interval for [—H, , 30(xo) is explained
later.

Graph 4 shows a very good fit of the log-normal distribution to the 37
observations. It is corroborated by the values of the test statistics computed
with 2 = 5.19853 and & = 1.74297:

A? = 0.26265 with a significance level & (x) = 0.70
D, = 0.07939 with a significance level &(x) > 0.15.

—_— . .
The values of 1 — H,, , 39 (x) for x, varying from 100 to 8000 are presented in
Appendix 2 (column 1) and plotted in Graph 5.

Log (xo—30) —/1]

[

2d. Confidence interval for 1 — @ [

As the size of the sample (n = 37) is too small to use the confidence interval
derived from the asymptotic normality of (4, d) and the J-method, the
non-central Student distribution and its table (RESNIKOFF and LIEBER-
MAN, 1957) are to be used.

1
Let ¥, = Log (X;~30) fori=1,...,n, Y= —) Y, and
n i

1 —
S% = Y. (Y=Y (Y, ..., ¥,) is a n-sample of N(u, a).
n—17%5
yn e Jn
So *—[Log (x,—30)— Y] is distributed as N | =— {Log (xy— 30)— u}, 1
g o

(n—1)5%

a

and is x2_, distributed. These two random variables being inde-
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[Log (xo—30)—7Y] .
\/'; OS 158 Ly-1, /i [Log (xg—30)—ljio
Y

non-central Student distribution with (n— 1) degrees of freedom and centrality

parameter \/; [Log (xo—30)— u}/o.

In a more general way the y-fractile ¢, 5(y) of a Student distribution 1, s wWith
v d.f. and centrality parameter J is, for fixed v and y, a strictly increasing
continuous function of § noted C,,with P[t, ;< C,,(8)] = y V4.

Let C, ) (r) be its reciprocical function: for fixed te R, § = C, ) (1) is the
only solution of the equation, d being the unknown: Plt, s <t] =9y. From
that it follows

pendent, the distribution of




STATISTICAL ANALYSIS OF NATURAL EVENTS IN THE UNITED STATES 269

[L - (%[Log(m—m)—?]),

n—1,1-af2
\/; Y

1 —
— Cilian (ﬁlLOg(xo—M)—Y])J
Jn Sy

Log (xp—30)—u

is a level (1 —a) confidence interval for ——————— with symmetric risks.
o

Log (x¢—30)—pu

g

For 1—-¢ |: :l the lower and upper limits of the confidence

interval are

l—¢{—1 C;—ln,a/z (%[Log (xo—30)— 7]) } and

Jn v

1—«1>{—l Calii-ap (%[LOg(Xo*O)—_Y])}-

Jn v

From the fractiles of the Resnikoff-Lieberman table, it is possible to compute
this interval for n = 37 and 1—-a = 0,98 (by linear interpolation and with a
limited accuracy) only for x; = 1500. So it seems to be preferable to use the
following approximation of fractile ¢, 5(y) (VAN EEDEN, 1961):

() s t,o, () Hh(G)  with

h(d) =4+

' é
(1+2¢%+gd) + ——————[3(4¢*+12¢*+1) +
4(n-1) 96 (n— 1)

+ 6(g°+49)5—4(qg>—1)5*—3¢45%]

and with ¢, _, (y) and ¢ being the p-fractiles of the (central) Student distribution
and of the normal distribution N (0, 1).

Let ¢, = ﬁ [Log (xo—30)— y], the approximation (1) provides C,',_'l,y(to)
S)’

as solution of the equation (J being the unknown): t,_,(y»)—t+h(5) = 0.
This equation can be numerically solved using the Newton-Raphson algorithm

l:a starting value could be d; = 1;—1,-,(y), obtained by neglecting the terms

1

and : in (l)i| .
(n—1y

n—1
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Appendix 2 shows in columns 2 and 3 the lower and upper limits of the level
0,98 confidence interval for |—H, , 39(xg). These limits are plotted in
Graph 5.

e —-
~——

[0 Y S TR reem DTN Z.T T e
' L 2 L l 1 1. I8 L L - | . l 1 1. L l
0 2 4 6 8

x0 (x 1000)

GRAPH 5. Plot of 1= H, , 19(xq) (curve 1), lower limit (curve 2) and upper limit (curve 3) of the
confidence interval for 1 — H, , 3p(x,). The log-normal case.

5. FREQUENCY OF LOSSES WITH AN AMOUNT = X,

Let, for fixed xo = 30, N(xo) the r.v. of the yearly frequency of losses exceeding
Xg. Using the same notations as before and considering that the r.v. N has a
Poisson .7 (1) distribution, under (H1) and (H,), the following results are
obtained.
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Theorem:

a) N(x,) is Poisson distributed with parameter A(xq) = A[l — Fy(xo)].

b) If the distribution o/f_/\\’ bel9ngs to the Afamily F ={F(x;0):0€e 0}, the
M.L.E. of A(xp) is A(xg) = A[1—=F(x,; 6)].

c) If[ A.) and [1(x,), S (xg)] are confidence intervals for A and 1— Fy(x,) at

a level of at least (1—a/2), [4,7(xo), A, S(xp)] is a confidence interval for
A(xy) at a level of at least (1 —a).

Proof':

a) Direct calculation.
b) Because of the independence hypothesis and invariance of the M.L.E.
©) PLAi1(x0) < A(x0) < 2, S(x0)] >
PIL S A< Ay 10x) S 1= F(x) < S(x9))
and the result with the Bonferroni inequality P(ANB)= | —P(A°)— P(B°)
for any two events 4 and B. Tt is worthwhile to note that a direct use of the

2
o
independence frequency-amount would give a level > (1—o/2) = 1—o + —

very close to (} — o)
These results applied to the frequency and amounts of hurricanes give in the
same way as for 1—Fy(x,) but at a level 1 —a = 0.96:

* In the non parametric case (Appendix 1)

— an estimation of A(xo): A[1 — F*(x0)] (Column 4)
— a confidence band ([Z,—I,, (x), is S, (X))« em for A(xy) such as

PIAL(x) < A(x)< A4S, (x)Vxe R 2 1 —«a.
The values :"x,-l,,(x) and :1_, S,(x) are shown in Columns 5 and 6.
* In the log normal case (Appendix 2)
-

— the M.L.E. A(xg) of A(xy) (Column 4)

— the upper and lower limits of a confidence interval for A(xy) (Columns 5
and 6).

Graph 6 shows a plot of these values,

In conclusion Table 4 shows for the values of x, for which obsgxitions are
available, in order to judge of the goodness-of-fit: the M.L.E. A(x,) derived
from the model, the empirical mean (7) and variance (67) of the yearly
frequency of losses exceeding x,, the empirical distribution of the frequencies
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15 r, ..................... . ..................... ..................... o

0 (x 1000)

——
GRraPH 6. Plot of 1(xp) (curve 4), lower limit (curve 5) and upper limit (curve 6) of the confidence
interval for 4(xy). The log-normal case.

(columns obs.), to compare with the theoretical distribution derived from the
Poisson log-normal model (column theor.).
Empirically the fit of the model seems very satisfactory.

CONCLUDING REMARKS

These results do not seem to be exclusive for hurricanes in the United States.
So they could be used to modelize the frequency and amount distributions of
natural events of any kind in the United States (for examples tornadoes) and
even world wide.




TABLE 4
COMPARISON OF THE EMPIRICAL AND THEORETICAL FREQUENCIES OF N (xq)

X 100 200 300 400 500 150 1000 1500 2000 2500
N\
A(xg) 0,793 0,577 0,459 0,382 0,327 0,240 0,188 0,129 0,096 0,075
A 0,758 0,606 0,515 0,454 0,34 0,303 0,212 0,121 0,091 0,061
al 0,729 0,602 0,492 0,369 0,299 0,272 0,228 0,167 0,143 0,057
Groups abs. | theor. fobs. | theor. | obs. theor. obs. theor. obs. theor. obs. theor. obs. theor. obs. theor. obs. theor. obs. theor.
0 15 |1547 |18 [18,53 {19 20,85 20 22,52 21 23,80 24 2596 27 27,34 30 2901 3 29,98 3 30,62
1 13 1,72 |11 [10,69 |12 9,57 " 8,60 il 1,18 8 6,23 5 5,14 2 3,4 1 2,88 2 2,30
2 3 (444 |3 308 |1 2,20 2 1,64 1 1,27 1 ] 1 1 0

2 2,58 2 2,88 ! 1.42 1 091 0,52 [ 3.66 313025 399 2{ 40,14 1302 0,08 1 2,38
3andover |2 {137 |1 | 070 |1 0,38 0 0,24 0 0,15 0 0 0 0 0
z 33 |33 33 (33 33 33 33 33 33 13 KX} 33 33 33 kX 33 33 33 33 33

SALVLS A.LINN FHL NI SINFAT TVINLVYN 40 SISATVNV TVDLLSILVI1S

€LT
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APPENDIX |

Values of: 1= F¥(x) : Col. 1

I,(x) : Col. 2

S, (x) : Col. 3

Al —F}X(x)] : Col. 4

A [ (x) : Col. 5

S, (x) : Col. 6

k Xy < X € Xgeay 0] 03] &) @ &) ©

0 30,0 36,2 1,000 0,756 1.000 1,121 0,557 1,630
I 36,2 397 0,973 0,729 1,000 1,091 0,538 1,630
2 39,7 41,2 0,946 0,702 1,000 1,061 0,518 1,630
3 41,2 47,1 0,919 0,675 1,000 1,030 0,498 1,630
4 47,1 52,8 0,892 0,648 1,000 1,000 0,478 1,630
5 52,8 53,7 0,865 0,621 1,000 0,970 0,458 1,630
6 53,7 57,3 0,838 0,594 1,000 0,940 0,438 1,630
7 57,3 58,7 0,811 0,567 1,000 0,909 0,418 1,630
8 58,7 64,8 0,784 0,540 1,000 0,879 0,398 1,630
9 64,8 70,1 0,757 0,513 1,000 0,848 0,378 1,630
10 70,1 839 0,730 0,486 0,974 0818 0,358 1,587
11 83,9 87,8 0,703 0,459 0,947 0,788 0,338 1,543
12 87,8 106,2 0,676 0,432 0,920 0,758 0,318 1,499
13 106,2 118,4 0,649 0,405 0,893 0,727 0,298 1,455
14 118,4 1372 0,622 0,378 0,866 0,697 0,278 1,411
15 137,2 167.8 0,595 0,351 0,839 0,667 0,259 1,367
16 167,8 192,0 0,568 0,324 0.812 0,636 0,239 1,323
17 192,0 203.8 0,541 0,297 0,785 0,606 0,219 1,279
18 203,8 216,7 0,514 0,270 0,758 0,576 0,199 1,235
19 216,7 260.1 0,486 0,242 0,730 0,545 0,179 1,191
20 260,1 3179 0,459 0,215 0,703 0,515 0,159 1,147
21 317,9 351,6 0.432 0,188 0,676 0,485 0,139 1,103
22 351,6 431,5 0,405 0,161 0,649 0,454 0,119 1,056
23 431,5 4399 0,378 0,134 0,622 0,424 0,099 1,015
24 4399 503,7 0,351 0,107 0,595 0,394 0.079 0,970
25 503,7 5299 0,324 0,080 0,568 0,364 0,059 0,926
26 529,9 582,0 0,297 0,053 0,541 0,333 0,039 0,882
27 582,0 8149 0,270 0,026 0,514 0,303 0.019 0,838
28 814,9 8222 0,243 0,000 0,487 0,273 0,000 0,794
29 8222 893,1 0,216 0,000 0,460 0,242 0.000 0,750
30 893,1 12434 0,189 0,000 0,433 0,212 0,000 0,706
31 1243,4 1263,5 0,162 0,000 0,406 0,182 0,000 0,662
32 1263,5 1313,0 0,135 0,000 0,379 0,152 0,000 0,618
33 1313,0 1602,1 0,108 0,000 0,352 0,121 0,000 0,574
34 1602,1 24654 0,081 0,000 0,325 0,091 0,000 0,530
35 24654 27539 0,054 0,000 0,298 0,061 0,000 0,486
36 27539 62999 0,027 0,000 0,271 0,030 0,000 0,442

37 6299,9 + o 0,000 0,000 0,244 0,000 0,000 0,398
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APPENDIX 2

LOG NORMAL CASE

— Estimation of 1— Fy(xy): Col. 1
— Lower and upper limits of the confidence interval for 1 — Fy (x,): Col. 2 and 3
— Estimation of A(X;): Col. 4
— Lower and upper limits of the confidence interval for 4 (Xy): Col. 5 and 6.

275

X O @ ©) @ ® 6
100 0,707 0,55 0,83 0,793 0,41 1,35
150 0,593 0,44 0,73 0,665 0,32 1,19
200 0,514 0,36 0,66 0,577 0,27 1,08
250 0,455 0,31 0,61 0,511 0,23 0,99
300 0,409 0,27 0,565 0,459 0,20 0,92
350 0,372 0,24 0,53 0,417 0,175 0,86
400 0,341 0,21 0,50 0,382 0,16 0,81
450 0,315 0,19 0,47 0,353 0,14 0,77
500 0,292 0,17 0,45 0,327 0,13 0,73
600 0,255 0,14 041 0,286 0,105 0,67
700 0,226 0,12 0,38 0,254 0,09 0,62
800 0,203 0,105 0,355 0,228 0,08 0,58
900 0,184 0,09 0,33 0,206 0,07 0,54
1000 0,168 0,08 0,31 0,188 0,06 0,51
1250 0,137 0,06 0,28 0,153 0,045 0,45
1500 0,115 0,045 0,25 0,129 0,035 0,41
1750 0,098 0,04 0,23 0,110 0,03 0,375
2000 0,085 0,03 0,21 0,096 0,02 0,34
2500 0,067 0,02 0,18 0,075 0,015 0,295
3000 0,054 0,015 0,16 0,061 0,01 0,26
3500 0,045 0,01 0,14 0,051 0,01 0,23
4000 0,038 0,01 0,13 0,043 0,005 0,21
4500 0,033 0,01 0,12 0,037 0,005 0,195
5000 0,029 0,005 0,11 0,032 0,0 0,18
6000 0,022 0,005 0,095 0,025 0,0 0,155
7000 0,018 0,0 0,085 0,020 0,0 0,14
8000 0,015 0,0 0,075 0,017 0,0 0,12
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