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ABSTRACT 

This paper provides an introduction to asset pricing theory and its applications 
in non-life insurance. The first part of the paper presents a basic review of asset 
pricing models, including discrete and continuous time capital asset pricing 
models (the CAPM and ICAPM), arbitrage pricing theory (APT), and option 
pricing theory (OPT). The second part discusses applications in non-life 
insurance. Among the insurance models reviewed are the insurance CAPM, 
discrete time discounted cash flow models, option pricing models, and more 
general continuous time models. The paper concludes that the integration of 
actuarial and financial theory can provide major advances in insurance pricing 
and financial management. 
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INTRODUCTION 

This paper examines insurance pricing using the techniques of financial 
economics. Financial economics focuses on topics such as investment decision 
making, the pricing of assets, and corporate financial management. These 
topics are important in insurance because insurance companies must choose 
financial and investment strategies and make decisions about projects (poli- 
cies). Financial theory views insurance policies as financial instruments that are 
traded in markets and whose prices reflect the forces of supply and demand. 
Models of insurance pricing based on financial concepts are called financial 
pricing models. 

Traditional actuarial models tend to reflect a supply-side orientation and 
often assume implicitly that prices are set more or less unilaterally by the 
insurance company, sometimes to satisfy an exogenously imposed ruin con- 
straint. More modern actuarial models (e.g., BORCH (1974) and BUHL- 
MANN (1980, 1984)) recognize the role of supply and demand in determining 
price, usually by modeling a market in which buyers and sellers of insurance 
are risk-averse utility maximizers. 

ASTIN BULLETIN, Vol. 20, No. 2 



126 J. DAVID CUMMINS 

The pr imary difference between actuarial supply-demand models and insur- 
ance financial pricing models is that the latter place more emphasis on the 
behavior of  owners of  insurance companies and the role of  financial markets in 
determining investor behavior. Usually, the assumption is that owners are 
diversified investors who hold insurance company shares as part  of  broad- 
based portfolios. The ability to diversify through financial markets  means that 
they will be less concerned with risk that can be eliminated through portfolio 
diversification and more concerned with the risk that cannot  be eliminated. 
Diversifiable risk is risk specific to individual securities and is often called 
non-systematic risk. Non-diversifiable risk, known as systematic risk, is risk 
that is common  to all securities. 

The most  basic asset pricing models such as the capital asset pricing model 
(CAPM) imply that investors receive a reward or risk premium (risk loading in 
actuarial terminology) for bearing systematic risk but do not receive a reward 
for bearing unsystematic risk because the latter can be "cos t less ly"  eliminated 
through diversification. Because investors are diversified, basic financial theory 
implies that the rates of  return on widely-held insurance companies do not 
reflect unsystematic risk so that it would be incorrect to model insurer behavior 
using utility theory, which typically does not distinguish among  types of  risk. 
More recent theory has begun to moderate  the rather stark conclusions of  the 
CAPM,  recognizing the importance of risk of  ruin and the implications of  
incomplete diversification (e.g., GREENWALD and STIGLITZ (1990)). However,  
the fundamental  insights of  asset pricing theory carry through: even imperfect 
diversification is a powerful economic reality in markets  for capital as well as 
markets  for insurance. 

To summarize, actuarial models tend to focus on supply and demand in 
insurance markets  and typically do not give much attention to the behavior of  
company  owners beyond the assumption that they are risk averse. ~ Financial 
models tend to emphasize supply and demand in the capital markets and 
typically neglect the product  market  beyond the implicit assumption that 
insurance buyers are willing to pay more than the actuarial values for 
insurance. 2 There is an obvious opportuni ty  for merging the product-market  
insights of  actuarial models with the capital-market  insights of  financial models 
to gain a more fundamental  understanding of  markets  for insurance. 

Financial models, like actuarial models, are abstractions of  reality based on 
assumptions about  the phenomena under investigation. The assumptions used 
in a given field often seem strange and unrealistic to researchers from other 
disciplines. It  is important  not to get so caught up in an analysis of  the 

These are obviously broad generalizations designed to draw general distinctions between 
actuarial and financial models. It would not be difficult to find exceptions to these generaliza- 
tions in both the actuarial and the financial literature. 
For individuals, this is attributed to risk aversion, while for firms with widely traded shares it is 
attributed to tax advantages, market signalling, and other factors. Since widely held firms do not 
have utility functions under basic asset pricing models (e.g., the CAPM), such models predict 
that they do not buy insurance according to the same rules as individuals. See MAYERS and 
SMITH (1982). 
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assumptions underlying an abstract model that one misses the insights the 
model provides. Models can succeed on several different levels. The ultimate 
test of a model is its ability to predict. Models developed at a high degree of  
abstraction often prove to be extremely useful in explaining and predicting 
behaviour. An example from insurance economics are models of  market failure 
due to information asymmetries and adverse selection (e.g., ROTHSCHILD and 
STIGLITZ (1976)). Another is the theory of modern option pricing, which is 
discussed in this paper. Even models that do not have high predictive power in 
real-world applications can be very useful if they provide insights into the 
understanding of  complex phenomena. Thus, it is best to focus on the 
objectives of  financial models--understanding and predicting economic phe- 
n o m e n a - r a t h e r  than primarily on the assumptions. 

The objective of this paper is to provide an introduction to the principal 
results of  asset pricing theory and its applications in insurance. Part I of  the 
paper provides a discussion of  asset pricing models. The mathematical devel- 
opment of  each model is sketched and strengths and weaknesses are discussed. 
The purpose is to provide the foundations needed to understand the mathe- 
matics and intuition of  the insurance applications. The reader should view the 
financial material presented here as no more than the basics. The literature in 
finance is vast and highly sophisticated. Readers interested in pursuing the 
topic in more detail should consult such excellent references as BREALEY and 
MYERS (1988) and LEVY and SARNAT (1984) for applied treatments and 
INGERSOLL (1987) and DUFFLE (1988) for a more rigorous mathematical 
approach. 

Part II presents the financial models that have been proposed for the pricing 
of property-liability insurance. These range from early models based on the 
capital asset pricing model to more recent developments such as arbitrage 
pricing theory and option pricing models. Since the literature applying finance 
to insurance is growing rapidly, the review of the literature presented in this 
article should not be viewed as exhaustive. However, care has been taken to 
discuss principal results representative of  the foundations of  the field. 

I. ASSET PRICING MODELS 

1. RISK 

Investment opportunities are created when firms, governments, and individu- 
als, issue financial instruments to raise capital for production and consumption 
activities. Capital is provided by investors who purchase these financial 
instruments. Asset pricing theory studies the interaction between the supply of  
and demand for assets in a market context to determine asset prices and rates 
of return. A common feature of  asset pricing models is that assets with higher 
risk must deliver higher expected returns in order to attract investors. 

Thus, an essential feature of  an asset pricing theory is its definition of  risk 
and the formulaic relatonship between expected return and the theory's risk 
measure. Risk can be defined as " a  property of  a set of  random outcomes 
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which is disliked by risk averters (INGERSOLL, 1987, p. 114)", where a risk 
averter is usually defined as a person with a concave utility function. Rigorous 
analyses of  this seemingly vague definition have been provided in the econom- 
ics literature. Two of  the most  important  papers are ROTHSCHILD and 
STIGLITZ (1970, 1971). One definition of  risk that they study is the following: 
R a n d o m  variable Y is more  r i s ky  than random variable 3( i f  X and Y have the 
same  m e a n  but  every  r i sk  aver ter  pre fe r s  X to Y. They show that this definition 
and two others, i.e., (1) Y = X + "  noise",  and (2) the distribution of Y has 
heavier tails than the distribution of  X, essentially amount  to a single definition 
of  greater riskiness, while more conventional definitions such as variance 
comparisons can have significantly different implications. 3 

A detailed exploration of  risk definitions would be beyond the scope of  this 
paper. They are mentioned here to alert the reader that any theory of  asset 
pricing incorporates,  among other things, assumptions about  the nature of  
investor preferences and the stochastic processes defining asset returns. Inves- 
tors typically are assumed to be risk averse, but many  theories impose stricter 
preference assumptions such as confining investors to particular classes of  
utility functions. Restrictions also are placed on the classes of  s t ochas t i c  
processes that are admissible as descriptions of  asset returns and investment 
opportunities. These preference and process restrictions underlie the risk-return 
relationships arising from the theories. 

2. MARKOWITZ (MEAN-VARIANCE) DIVERSIFICATION 

Much of  capital market  theory is based on the assumption that investors hold 
diversified portfolios. The first comprehensive theory of  diversification was 
developed by HARRY MARKOWITZ (1952) and (1959). MARKOWITZ diversifica- 
tion forms the foundation for the capital asset pricing model (CAPM). Since 
MARKOWITZ diversification considers only the means and variance of  asset 
returns, it is often called mean-variance diversification or mean-variance 
portfolio theory. Investors seek to form portfolios with high expected returns 
but are averse to risk, where risk is defined in terms of  variances and 
covariances of  returns. 

Investors are assumed to make decisions on the basis of  their beliefs about  
the means and variances of  asset returns. Returns are usually defined as holding 
per iod  returns.  E.g., for a stock: 4 

(1) Rit = (Dit -.I- S i t -  Si. t _ i)/Si, t_ i 

where Rit = the holding period return on stock i in period t, 
Dit = the dividend on stock i in period t, 
Sit = the price of  stock i at the end of  period t. 

3 This is a very cursory overview of these risk definitions and results. A rigorous treatment can be 
found in the cited RS articles. 

4 Similar formulas apply for other assets such as bonds. 
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The  expected re turn  on the s tock i is deno ted  E; = E(R, ) .  The  covar i ance  o f  
re turns  between securi t ies i and  j is def ined as C o v ( R i ,  R j ) =  C o . It is 
convenien t  to deno te  the var iance  o f  re turn  as V i = a~ = Cir. F o r  por t fo l ios ,  
the co r r e spond ing  no ta t ion  is Ep = E(Re) ,  for  the expected re turn,  and  
Vt, = a~,  for  the var iance.  

The  a s sumpt ions  under ly ing  MARKOWITZ divers i f ica t ion  are the fo l lowing :  
(1) Inves tors  are risk averse expected ut i l i ty maximizers ,  with ut i l i ty  funct ions  
sat isfying U ' ( W )  > 0 and  U " ( W )  < 0, where  W = weal th  and pr imes  indi-  
cate  der ivat ives .  (2) Por t fo l io  decis ion m a k i n g  is based on means  and  var iances  
o f  por t fo l io  returns,  with dU/dEi > 0 and  dU/a~ < 0. These  a s sumpt ions  imply  
that  investors  prefer  efficient por t fo l ios ,  def ined as por t fo l ios  with the highest  
re turn  for a given level o f  risk (ap) or  a l te rna t ive ly  as the lowest  risk for a given 
level o f  re turn  (Ep). Efficient por t fo l ios  are  said to dominate inefficient ones.  
E.g., por t fo l io  A domina t e s  por t fo l io  B if  EpA > Eps and  apA < aes ,  where  
PA and  PB refer to por t fo l ios  A and B, respectively.  

Mean -va r i ance  d ivers i f ica t ion  theory  requires  a s t rong  a s sumpt ion  a b o u t  
ei ther  the form o f  the inves tors '  ut i l i ty funct ions  or  the d i s t r ibu t ion  o f  securi ty  
returns.  One a s sumpt ion  tha t  has  been used to jus t i fy  mean-va r i ance  decis ion 
mak ing  is tha t  investors  have q u a d r a t i c  ut i l i ty funct ions ,  i.e., 
U ( W )  = W - b W 2 / 2 .  Since the first der ivat ive  o f  this funct ion  eventua l ly  
becomes  negat ive,  the add i t i ona l  a s sumpt ion  is required tha t  ou t comes  are  
conf ined  to the range o f  increas ing util i ty.  Ent i re ly  a p a r t  f rom this po ten t i a l ly  
t roub le some  as sumpt ion ,  quad ra t i c  ut i l i ty has  been discredi ted  because  it 
implies increas ing abso lu te  risk avers ion,  which mos t  economis t s  cons ider  
unreal is t ic .  5 

Because o f  the l imi ta t ions  o f  quad ra t i c  uti l i ty funct ions,  mean-va r i ance  
divers i f ica t ion is usual ly  jus t i f ied th rough  the a s sumpt ion  tha t  asset  re turn  
d i s t r ibu t ions  are mul t iva r ia te  normal .  6 A l t h o u g h  the l ognorma l  p rov ides  a 
bet ter  empir ica l  model  o f  securi ty  re turns  than  the normal ,  the no rma l i t y  
a s sumpt ion  is of ten adequa t e  as an a p p r o x i m a t i o n .  F o r  this reason,  and  
because  o f  its intui t ive appea l ,  the mean-va r i ance  model  has been used 
extensively in prac t ica l  appl ica t ions .  

To achieve MARKOWITZ (mean-var iance)  d ivers i f ica t ion,  the inves tor  solves 
the fo l lowing op t imiza t i on  p r o b l e m :  

5 The Pratt-Arrow coefficient of absolute risk aversion is defined as A (W) = -U"(W)/U'(W).  
For the quadratic, A(W) = b/(l-bW), which is increasing in W. Intuitively, absolute risk 
aversion is interpreted as the tendency of the decision maker to accept a gamble of a given size. 
Increasing A (W) implies that the decision maker would be less likely to take an actuarially 
favorable gamble of a given size as wealth increases. Thus, a millionaire would be less likely to 
take a favorable $100 gamble than a pauper (assuming equal values of b). A related concept is 
that of relative risk aversion, R(A) = W* A (W). Intuitively, relative risk aversion indicates the 
decision maker's aversion to a gamble involving a specified proportion of his wealth. Decreasing 
absolute and constant relative risk aversion usually are considered reasonable assumptions. 

6 The normal is not the only distribution for which investor preferences can be defined solely in 
terms of means and variances. A wide class of distributions called elliptical distributions has this 
property. The lognormal distribution is not a member of this class. See OWEN and RAatNO- 
vVrCH (1983). 



1 3 0  J. DAVID CUMMINS 

Minimize Over x~, i = 1,2 . . . . .  N:  

(2) ae = xi xj  Cii 
j = l  

Subject to : 

(3a) 
N 

X i =  ! 
i=1 

N 

(3b) E¢ = 2 x iEi  
i=l 

where x; = the proportion of the portfolio invested in security i. Optimization 
is conducted by differentiating the Lagrangian, 

This yields the first-order conditions with respect to the xi and 2~. 
Although the portfolio weights (xi) are constrained to add to 1, we have not 

stipulated that they be non-negative. If  xi < 0, security i has been sold short. If 
short sales are allowed, the optimization problem is simple, involving the 
solution of n + 2  linear equations in n + 2  unknowns. If  the x~ must be 
non-negative, the problem involves quadratic programming, which is more 
difficult but easily handled on a computer. 

Solving the optimization problem for different levels of Ee generates the 
minimum variance portfolio for each level of  expected return. This group of 
portfolios is called the minimum variance set. Plotting the minimum variance set 
in (Ee, ae) space yields a mean-variance transformation curve. This curve is a 
hyperbola (see Fig. 1). The transformation curve and the shaded area to its 
right represent the feasible set of portfolios. 

The solid line segment of the hyperbola in Figure 1 is called the efficient 
frontier. The frontier begins at the global minimum variance portfolio C and 
extends upward and to the right. Portfolios on the efficient frontier dominate 
all other feasible portfolios (including those on dotted segment of the hyper- 
bola) because they provide the highest expected return for each level of risk. 
Consequently, mean-variance diversifiers prefer portfolios that lie on the 
frontier. 

To this point, all assets have been assumed to be risky. Suppose that a 
riskless asset exists, e.g., a treasury bill. 7 Without loss of generality, the riskless 
asset is considered the (N+ 1) st. Such an asset would have rate of return Rf ,  
standard deviation of zero, and would be uncorrelated with all risky assets. 

7 The concept of a riskless asset in finance refers to an asset that will generate with certainty a 
known rate of return over a given period without risk of loss to the underlying capital. Riskless 
assets typically do not protect the investor against fluctuations in the price level (inflation). 



ASSET PRICING MODELS AND I N S U R A N C E  R A T E M A K I N G  

Mean Return 

C ~ ,,! 

131 

Standard Deviation 

FIGURE 1. The efficient frontier. 

Mean Return 

El 

Rf i ~ B  
"ill| • 

n n 
"I. I 

"I~ I 

I~I~l ~ 

Standard Deviation 

FIGURE 2. Two-fund separation. 
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The presence of the riskless asset leads to an imporant result called two-fund 
separation, which means that investment choices are reduced to the allocation 
of assets between two specific investment funds (portfolios).8 To establish 
two-fund separation, consider the point Rf  in Figure 2, representing the 
risk-return coordinates of the riskless security. Consider a portfolio (P) that is 
a linear combination of the riskless asset and any efficient portfolio of risky 
assets. Such a portfolio would have the following return: 

N N 

N 

Rp = 

N + l  

where ~ X i = 1 =~ XN+I = 1 -- ~ Xi 
i=l i= l  

Equation (5) can be rewritten as follows: 

(6) Re = (1-c t )Rf+otRs  
N N N 

Xi Ri = 2 wiRi" where ~ = 2 xi and RB = 2 
i = l  i= l  i= l  

i= l  

In (6), ~ represents the proportion of the portfolio invested in a specific 
efficient portfolio B, formed from the N risky assets, with rate of return Rn. 

The mean and standard deviation of the portfolio P are : 

(7a) Ee = (1-ct)Rf+otEt~ 

(7b) t r e =  ores 

Combining equations (7a) and (7b), we obtain: 

tTp 
(8) Ee = Rf  + - -  ( E B -  Rf) 

t7 B 

Thus, portfolio P can be represented in risk-return space by a straight line 
connecting the risk-return point of the riskless asset with the point representing 
the efficient risky portfolio. Such a line is represented by L2 in Figure 2, 
consisting of linear combinations of the riskless asset and efficient portfolio B. 
Points between B and Rf  represent long positions in the riskless asset (lending). 
Points to the right of B are achieved by taking short positions in the riskless 
asset (borrowing), i.e., l - c t  < 0. 

In choosing a risky portfolio to combine with the riskless asset, the investor 
will avoid dominated portfolios and choose the combination giving the highest 
return for each risk level. This is accomplished by choosing the efficient risky 

s Genera l  separa t ion  theorems  as well as condi t ions  for separa t ion  when no riskless asset exists are  
discussed in INGERSOLL (1987). 
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portfolio representing the tangency between the efficient frontier and the 
straight line with intercept Ry. This is the line represented by RfML I in 
Figure 2. Points along this line dominate other investment choices. Thus, 
investors will hold portfolios that are mixtures of  the riskless asset and risky 
portfolio M, and investment choices are said to exhibit two-fund separation (the 
riskless asset is fund 1 and M is fund 2). 

The position each investor chooses along the line RfMLi depends on his or 
her preferences for risk. Conservative investors will lend at the riskless rate, i.e., 
they will choose portfolios along line segment RfM. More adventuresome 
investors will borrow at the riskless rate in order to buy more of  the risky 
portfolio. They will hold portfolios along line segment ML~. The importance 
of  the two-fund separation property is that it reduces the investment decision 
to two separate steps: (1) Find the portfolio M and the line RfMLi, and 
(2) select a point along the line depending upon one's risk preferences.9 

To summarize, if investors are mean-variance decision makers,  they will be 
interested in holding only mean-variance efficient portfolios. With no riskless 
asset, this implies choosing a portfolio along the efficient frontier. I f  a riskless 
asset exists and if investors can borrow and lend at the riskless rate, the 
efficient set becomes a straight line through (Ry, 0) and tangent to the efficient 
frontier. Combined with some additional assumptions, these results have 
implications for the equilibrium expected rates of  return on assets. This pricing 
relationship is explored in the following section. 

3. THE CAPITAL ASSET PRICING MODEL (CAPM) 

The capital asset pricing model (CAPM) was the first major  asset pricing 
model, developed independently by WILLIAM SHARPE, JOHN LINTNER, and JAN 
MOSSIN during the 1960s. The CAPM has been extremely influential and has 
been subjected to exhaustive theoretical and empirical analysis, primarily by 
American researchers. It has been used extensively in financial decision making 
by institutional investors, corporate financial analysts, and others. It also has 
been controversial, with much of  the controversy centering around the model 's  
underlying assumptions and predictive ability. ~0 

Since the 1960s, financial economics has continued to advance at a rapid 
rate. Numerous  variants of  the CAPM as well as more sophisticated asset 
pricing models have been developed. Noteworthy among  the latter are the 
intertemporal capital asset pricing model ( ICAPM) (MERTON 1973b)), option 
pricing theory (BLACK and SCHOLES (1973)), arbitrage pricing theory 

9 The selection of a point along RfML~ is usually illustrated as the tangency of the investor's 
indifference curve with this line. 

to Considering both the quantity and quality of the research that has been done in the asset pricing 
field, it is not advisable for those new to the area to become bogged down in debates about the 
assumptions of the CAPM, even though the assumptions may seem to be tempting targets. The 
best approach is to read one of the excellent reviews of the CAPM literature (e.g., in Levv and 
SARNAT (1984) or COPELAND and WESTON (1988)) and then to move on to the more recent 
literature, 
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(Ross (1976, 1977)), and the consumption capital asset pricing model (BREE-  

DON (1979)). 
Although the CAPM clearly has limitations, it continues to be the most 

widely-used model in practical applications. As long as one is aware of  the 
limitations and regards the CAPM as a useful source of information rather 
than absolute truth, it can serve as a valuable decision making tool. In 
addition, since the CAPM fundamentally changed the way people think about 
asset pricing, it is necessary to understand it in order to fully appreciate its 
S u c c e s s o r s .  

The CAPM assumptions and the Capital Market Line (CML) 

The CAPM takes mean-variance analysis one step further by seeking to 
determine the equilibrium asset pricing relationships that would hold in a 
world characterized by perfect capital markets and populated by MARKOWlTZ 
diversifiers. Formally, the CAPM rests on the following assumptions: I1 

1. Investors are risk averse and select mean-variance (MARKOWITZ) diversified 
portfolios. 

2. A riskless asset exists, and investors can borrow and lend unlimited amouts 
at the risk free rate. 

3. Expectations regarding security means, variances, and covariances are 
homogeneous, i.e., investors agree about the parameters of the joint 
distribution of  security returns. 

4. Markets are frictionless, i.e., there are no transactions costs, taxes, or 
restrictions on short sales. Securities are assumed to be infinitely divisi- 
ble. 

5. All investors have the same one-period time horizon. 
6. There is a " large number"  of investors, none of  whom can individually 

affect asset prices, and a large number of securities. 

With the assumptions in hand, it is possible to draw some additional 
inferences from Figure 2. Specifically, since investors are assumed to be in 
agreement about the expected returns and the variance-covariance matrix of 
risky assets (homogeneous beliefs), all investors will hold portfolio M. Thus, 
portfolio M is the market portfolio, consisting of all risky assets. To see this, 
assume that asset j  is not part of  M. Since all investors hold M, this means that 
no one buys asset j. Thus, the price of  asset j must adjust until it is attractive to 
investors. It then becomes part of  the market portfolio. 

The line RfML I is known as the capital market line (CML). Portfolios along 
the C ML are perfectly positively correlated. Since portfolio M is optimally 
diversified (efficient), it is said to contain no diversifiable (unsystematic) risk. 

~t Other assumptions could be added. E.g., the intitial CAPM was developed with U.S. markets in 
mind. For international application, one might add the assumption that transactions take place 
in a common currency or that exchange rate fluctuations can be costlcssly and perfectly hedged. 
The CAPM has been shown to be quite robust with respect to the other assumptions and it 
might be to this assumption as well, as long as the degree of  violation was not too severe. 
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The proportion of the ith security in the market portfolio is x i = Vi/E Vi, 
where V i is the total market value of security i. Because of the existence of the 
riskless asset and homogeneous beliefs about return distributions, separation 
occurs with the market portfolio (M) as the risky fund, and all investors' 
portfolios lie along the CML. 

Derivation of  the C A P M  

The CAPM is derived by optimizing the following Lagrangian, which is a slight 
reformulation of equation (4) : 

N N 

+ 1 . =  
With the introduction of the riskless asset, investors now allocate their 
portfolios among N +  1 assets, the riskless asset and N risky assets. However, 
the sum of the portfolio proportions is still equal to 1: E x i + ( l - E  xi) = 1. 

The Lagrangian is optimized with respect to the xi and 2. The first-order 
conditions with respect to the x~ are: 

N 

xjC0 
OL J=l 

(10) - 2 [ E , -  Rf] = 0 
~Xi O'p 

Multiply each term in (10) by x+ and sum over all risky assets (i) to obtain: 

(I l) ap = ~ F! Xi fi -~- l - ~ x i Rf- = ~ (fp- Rf) 
L i=1 i=1 

In (11), we have added and subtracted Rf.  Since all investors hold the market 
portfolio, portfolio P is actually M. Therefore, it is apparent that 1/2 can be 
defined as the market  price o f  risk: 

I Em-Rf 
(12) - - -  

). o" m 

where Era, O'm = the expected return and standard deviation of return on the 
market portfolio, M. 

The CML (linear combinations of portfolio M with Rf) has the maximum 
possible slope of all feasible linear combinations of  efficient portfolios and the 
riskless asset, i.e., the largest possible increment in expected return is received 
for each increment in risk. 

To obtain the expected return on asset i, solve equation (10) for Ei, using 
(12) to eliminate 2: 
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N 

xjC~ 

(t3) Ei= Rf+ ( E m - R f )  j=' 
O" m 0 m 

Vim 
= Rf+ (Era- Rf) = Rf+ fli (Era - Rf) 2 

~m 

where Cim = Coy (Ri, R,,) and fli = Coy (Ri, Rm)/a~, = the beta coefficient or 
beta of asset i. The beta, the covariability of  asset i's return with the market 
portfolio, normalized by the variance of the market portfolio, is also recogniz- 
able as the regression coefficient of  Ri on Rm. 

Expression (13) is the relationship known as the capital asset pricing model. 
Under the assumptions of  the CAPM, it is an equilibrium relationship between 
risk and return that must hold for all traded assets. 

The CAPM is plotted in Figure 3. The CAPM relationship is also known as 
the security market line (SML), which is related to but distinct from the CML. 
The C ML includes only efficient portfolios. Inefficient portfolios and individ- 
ual securities do not lie on the CML. However, in equilibrium individual 
securities and all portfolios lie on the SML. 

Rm 

O 

Rf 

0 

Expected Return (%) 

I I I I I I 
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 

Beta 

FIGURE 3, The capital asset pricing model. 
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Under the assumptions of  the CAPM, there are several significant implica- 
tions for investor behavior and corporate  financial management .  Among them 
are the following: 

1. There is no market  reward for diversifiable risk, i.e., the equilibrium return 
on a security reflects only the risk-free rate and its covariance with the 
market  portfolio. 

2. Firms should not be risk averse. Thus, under the CAPM,  modeling firm 
decisions using utility functions will lead to incorrect results. Firms should 
not be concerned about  diversifiable risk because investors can eliminate 
this type of risk by holding diversified portfolios. Rather,  firms should 
maximize value. This is accomplished by choosing projects with positive net 
present value, where expected cash flows from the project are discounted at 
the rate appropriate  for the project 's systematic risk, i.e., risk adjusted 
discount rates defined by the CAPM. 12 Projects whose risk-return points lie 
above the SML will increase firm value, projects with risk-return coordi- 
nates on the SML deliver an expected return exactly appropriate  for their 
risk, and projects below the SML will decrease firm value. 

Evaluation of  the C A P M  

The assumptions underlying the CAPM are very strong, and nearly every one 
of  them is violated in the real world. This of  itself does not invalidate the 
CAPM. All economic and financial models are necessarily abstractions of  
reality. The question is whether the violations of  the assumptions significantly 
affect the ability of  the model to predict behavior in financial markets.  

There are two primary ways to gauge the impact of  assumptions:  
(I)  Develop versions of  the model where the key assumptions are relaxed, and 
(2) test the model against actual market  data. For the most  part,  the CAPM 
has been shown to be resilient to the relaxation of  assumptions. For example, a 
version of the CAPM (Black's zero beta CAPM, see LEVY and SARNAT (1984)) 
has been developed which does not require the existence of  a riskless asset. The 
CAPM has been extended to incorporate nonmarketable  assets (e.g., human 
capital) and non-normal return distributions. Relaxation of the homogeneity 
and tax assumptions also have been studied. The extensions complicate the 
analysis but do not change the conclusions. 

Empirical tests of  the CAPM have been more problematic. A careful reading 
of the literature suggests that the pure theoretical version of the CAPM does 
not agree well with reality. ROLL (1977) has argued that the CAPM may be 
untestable because of  the impossibility of  observing the true " m a r k e t  port-  
fol io"  consisting of all assets (not just common stocks). 

~2 A risk adjusted discount rate is the discount rate that equates a project's expected future cash 
flows with its present market value. Riskless cash flows are discounted at the risk free rate. In.a 
CAPM environment, cash flows with positive beta coefficients would be discounted at a rate 
higher than the risk free rate, i.e., positive-beta cash flows are worth less than riskless cash 
flows. 
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In spite of  the apparent  departures of  the theoretical CAPM from observed 
security price behavior, the CAPM is widely used by financial professionals in 
the United States. Investment managers use the CAPM in portfolio selection, 
and corporate  financial officers use it in capital budgeting (project selection). 
Typically, it is not used to the exclusion of  other methods but as a valuable 
supplement to more traditional techniques. 

Empirical considerations 

Empirical applications of  the CAPM focus on the so-called characteristic line, 
obtained for a particular security by regressing its holding-period returns on 
the returns for the " m a r k e t ' "  over some historical period. The New York 
Stock Exchange (NYSE) composite index, the Standard & Poor 's  500 Stock 
Index, or some other broad-based index is used to represent the market.  A 
five-year estimation period is common,  using monthly or weekly returns in 
most cases. 

The estimation equation for the characteristic line is: 

(15) Ri, = o ~ i + l ~ i R m , + ~ i ,  

where ~f,fl~ = coefficients to be estimated, 
R~,, Rm, = holding period returns on security i and the market  index 

during period t, and 
~it = a random error term. 

Ordinary least squares estimation may be used, but more sophisticated 
methods are employed by some investment firms. 13 

The characteristic line can be used to partition risk into its systematic and 
unsystematic components.  Systematic risk is risk common to all stocks, while 
unsystematic risk is idiosyncratic risk affecting a particular stock. Systematic 
and unsystematic are often used synonymously with undiversifiable and 
diversifiable risk. The risk partition is carried out by taking the variance of 
equation (15): 

0./2 2 2 2 = fli 0 .m+0. i~ 

2 
I = pi2m + __0.i~ 

Where 0./2 = the variance of  return of  security i, 
2 = the variance of  the random error term of  security i, and 0. ie 

P~m = the correlation coefficient between security i and the market  
portfolio. 

t3 These methods are designed to correct for the tendency of beta coefficients to regress toward the 
mean, i.e., the tendency for stocks with unusually high (low) betas in one period to have lower 
(higher) betas in the following period. 
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The estimated correlation coefficient between the returns of  security i and the 
market  partitions risk into the systematic part  2 (P~m) and the unsystematic part  
(I-p,2.m). The unsystematic part  serves as an index of  diversifiability, i.e., the 
proport ion of  a stock's variance that can be diversified away. The average 
correlation coefficient with the market  portfolio for NYSE stocks (pro,) is in the 
neighborhood of  0.5, meaning that 75 percent of  total risk is potentially 
diversifiable. This information is clearly valuable to a portfolio manager,  even 
one with reservations about  the CAPM.  

4. THE INTERTEMPORAL CAPM 

As the limitations of  the original CAPM became apparent,  researchers 
developed alternative pricing models based on less stringent assumptions. One 
of  the first models of  this type was MERTON'S (1973b) intertemporal,  contin- 
uous time CAPM (ICAPM).  This model generalizes the CAPM in the 
following ways: (1) Instead of a single discrete-time planning horizon, the 
ICAPM postulates continuous time, intertemporal optimization by investors, 
who maximize the utility of  lifetime consumption (and bequests). (2) In place 
of  normal distributions, the ICAPM assumes that security returns can be 
described as geometric Brownian motion,  so that prices are lognormal.  (3) The 
most general form of  the ICAPM incorporates an instantaneously riskless 
interest rate which can change over time, i.e., the investor knows with certainty 
the rate of  interest r(t) that can be earned over the next instant but future 
values of  r(t) are not known with certainty. This replaces the constant Rf of  
the CAPM. 14 

Although the full development of  the ICAPM would be beyond the scope of  
this article, it is useful to summarize some of  its essential features. In particular, 
consider the stochastic differential equation for the instantaneous return on the 
ith asset : 

dSi 
(16) - otidt+aidzi 

Si 

where Si(t) = the price of  asset i, 
cti(t) = the instantaneous expected rate of  return on security i, 
a i ( t )  = the instantaneous standard deviation of  return on security i, 
zi(l ) = standard Brownian motion (Wiener) process. 15 

~4 Lower case letters are used in this paper to represent parameters in continuous time models, 
while upper case letters are used for discrete time models. 

15 The intitial definition of a variable or parameter in the continuous time models indicates whether 
it is a constant or a function of time. Otherwise, time functionality will not be expressed 
explicitly. This follows the convention in the financial literature. 
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The equation implies that the instantaneous rate of  return on an asset increases 
by a deterministic trend term (~;dt)  plus a random term that can be modeled as 
Brownian motion. Increments of  Brownian motion, z (t + s) - z (s), are normally 
distributed with mean 0 and variance t (see KARLIN and TAYLOR (1981)). The 
differential dz ( t )  is defined as: 

(17) dz ( t )  = lira u x / ~  
t ~ 0  

where u = a standard normal deviate. Equation (16) implies that asset prices 
are lognormally distributed, an assumption with substantial empirical sup- 
port. 

Sufficient statistics for the investment opportuni ty set at a given time point 
are: {~i, ai ,  Pi./}, where Ptj = the instantaneous correlation coefficient between 
dzi and dzj.  The Po are constants. The instantaneous standard deviations, tri, 
and covariances, a0, form the variance-covariance matrix f2 of  risky security 
returns. The coefficients cq and tr~ are functions of  underlying state variables: 

(18a) doti = aidl  + bidqi 

(18b) dai = f i d t  +g idx i  

where dqi( t )  and dx i ( t )  are standard Brownian motion processes, and ai, b i , f i ,  
and g~ are constants. This implies that the evolution of  the market  can be 
described by a set of  Brownian motion processes, dzi, dqi, dx~, 

In the simplest case, the ct~, r, and £2 are constant. This leads to a continuous 
time version of  equation (13) and two-fund separation. A more general case, 
involving three-fund separation, is obtained by assuming that a single state 
variable, the interest rate r( t ) ,  describes the evolution of  the investment 
opportuni ty  set. Thus, ~ = ~ ( r )  and at = ai(r). Furthermore,  assume there 
exists an asset that is perfectly negatively correlated with r, e.g., a long-term 
bond. This asset is denoted asset n. Then it can be shown that the equilibrium 
rate of  return on asset i (i = 1 . . . .  , n -  i) satisfies : 16 

a i [Pin, -- Pin P nm] 
(.19) O~i--r = (am--r )  + 

--p2.m) 
¢7 i Lo in - P im P nm] 

+ (o~ , - r )  
--p2.m) 

where ~m(t) and ~ , ( t )  are the instantaneous expected returns on assets m and n 
and the Pjk are the instantaneous correlation coefficients of  the returns on 
assets j and k. 

Thus, in equilibrium, investors are compensated for the covariability of  
assets with the market  portfolio and for covariability between risky assets and 
the interest rate. Three-fund separation is present, with the three funds being 

t6 For the derivation, see MERTON (1973b). 
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the market portfolio (M), a portfolio that is negatively correlated with the 
interest rate (n), and the default-risk-free asset. The coefficients of the risk 
premia, ( ~ , , - r )  and ( ~ , - r ) ,  in (19) are the coefficients in the multiple 
regression of asset i's returns on those of portfolios M and n . .  

Both the one and two-factor versions of the ICAPM represent significant 
generalizations of the original CAPM. The two-factor version may be useful 
for pricing assets such as insurance policies that are sensitive to interest rate 
risk. 

5. ARBITRAGE PRICING THEORY (APT) 

The concept of arbitrage is very important on financial theory and practice. 
STEPHEN ROSS (1976, 1977) has developed a formal theory of asset pricing 
based on arbitrage arguments. Before considering Ross' theory, a brief general 
explanation of arbitrage is provided. 

Consider a competitive, frictionless, and riskless capital market. Asset 
trading takes place at time 0, and the assets provide cash flows, vi, at time 1. 
Assume that there exists a price function, p(v), mapping units of time 1 cash 
flow into units of dollars at time zero. The following would constitute an 
arbitrage opportunity : 

N 
(20a) Portfolio : 2 xip (vi) 0 

i~l 
N 

(20b) Time 1 Cash Flow." ~ xi vi > 0 
i= I 

where x~ = the proportion of the portfolio invested in asset i (at time 0). 
Equation (20a) describes an arbitrage portfolio, i.e., a portfolio requiring zero 

net investment. Such a portfolio could be formed in any number of ways, such 
as borrowing and then lending the proceeds or selling one security short and 
buying another, etc. Equation (20b) indicates that the net cash flow from the 
arbitrage portfolio is positive. Thus, the portfolio constitutes a "money  
machine";  a net investment of zero at time 0 yields a positive cash flow at 
time I. 

An arbitrage opportunity also would arise if a package of assets trades for a 
price different from the sum of the prices of the individual assets inculed in the 
package. E.g., consider a package consisting of Nt shares of asset 1 and N 2 
shares of asset 2. The following would be an arbitrage opportunity: 

(21) p[Nt v t + N2 v2] > Nip  (vz) + N2 p (v2) 

To exploit this opportunity, the investor would sell the package short and buy 
the individual assets. This would create a positive cash flow at time 0 and a 
cash flow of zero at time 1. Analogues to these examples also can be 
formulated in markets with risky securities. 
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Arbitrage is not a purely theoretical construct. In fact, it forms the basis for 
program trading and other sophisticated financial practices in the U.S. capital 
markets. The basic idea is that money machines cannot exist for long in 
competitive markets. Prices will adjust as investors shift funds to take 
advantage of  arbitrage opportunities. 

Ross's arbitrage pricing theory (APT) uses arbitrage concepts to develop an 
asset pricing model based on much weaker assumptions than the CAPM. 
Rigorous statements of  the assumptions and derivation are provided in 
Ross (1976, 1977), INGERSOLL (1987), JARROW (1988), and other sources. 
Among the more important assumptions are the following: 

1. Capital markets are frictionless and competitive. 
2. Means and variances of  asset returns are finite. 
3. All economic agents hold the same beliefs regarding expected returns. 
4. There are no restrictions on short sales. 
5. All agents believe that returns are generated by the following linear factor 

model: 

K 

(22) R, = Ei + E fl'./55 + g ,  
j=l 

where fj  = the random return on factor j, 

gi = a random error term (residual) associated with asset i. 

The f j  are called factors and the flo are factor loadings. It is assumed that 
E( f j )  = 0; E ( g , )=  0; E(e,~j)= O, i ~ j ;  E ( g , f j ) =  0; and that E (e~ )=  
o93 < W 2, where W is a finite constant. Thus, the residuals are uncorrelated 
and bounded. 

It is essential to the development of  the model that there exist a finite 
number (K) of  factors that generate asset returns. The factors can be 
interpreted as variables describing the state of the economy. For  example, one 
factor might be related to real industrial production and another to unantici- 
pated inflation. One of  the factors might represent the return on the market 
portfolio, but the market portfolio plays no special role in the APT. 

For  ease of  exposition, it is assumed in the following that the linear factor 
model consists of  only one factor, denoted f.  Assume there are N assets in the 
market. Then, the derivation of  APT can be sketched as follows 
(Ross (1976)): 

1. Form a well-diversified arbitrage portfolio consisting of  all N assets, such 
that 

N 

(23) ~ x i = x ' e = 0  
i = 1  

where x = the vector of  portfolio weights, (xt . . . .  XN), and e = an N- 
dimensional vector of  I's. Each element x~ is assumed to be of order 1IN. 
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2. The return on the arbitrage portfolio will be: 

N N N 

(24) x , R , .  = + 
i= I i= I i= I 

By the law of  large numbers, the last term in (24) will be approximately zero, 
i.e., diversification eliminates (in some sense) non-systematic risk. ~7 Assume for 
the moment that diversification totally eliminates non-systematic risk. This 
assumption is relaxed later. 

3. Suppose that the arbitrage portfolio also is chosen to eliminate all 
systematic risk, so that: 

N 

(25) E x i f l i  = x '  B = 0 
i= l  

where B = the vector of  betas on the N assets in the portfolio. Short selling is 
typically required to generate this zero-beta portfolio. The return on such a 
portfolio is E xiRi = E x i E  i = x '  E ,  where E = the vector of  expected asset 
returns, ( E l , . . . ,  EN). 

4. Since all risk has been eliminated from the portfolio, to avoid arbitrage it 
also must be true that:  

N 

(26) E xiEi = x ' E  0 
i=1 

If this relationship did not hold, demand for assets by arbitrage traders would 
reduce returns until (26) were satisfied. 

Thus, any portfolio satisfying (23) and (25) must also satisfy (26). This is an 
algebraic statement that any vector orthogonal to e and B is also orthogonal to 
E. This implies that the expected return vector E can be written as a linear 
combination of e and B, i.e., there exist constants p and 2 such that: 

(27) E i = p "1- )tfli 

Equation (27) must hold in order to avoid arbitrage, i.e., it holds for any 
portfolio, not just the arbitrage portfolio (23). Thus, the coefficients in (27) can 
be determined by considering portfolios with different structures. For  example, 
to obtain the intercept p, consider a portfolio that satisfies x ' B  = 0 and 
Z~xi = i. Multiply both sides of  (27) by xi and sum over all i. It is clear that p 
represents the return on a zero-beta portfolio. If a riskless asset exists, p is its 
return. 

To determine 2, consider a portfolio with Z xi = 1 and x ' B  = 1. 

t7 This result does not require a distributional assumption about ei beyond the existence and 
boundedness of its variance. 
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Multiplying (27) by x~ and summing yields the following relationship: 

(28) Ep = p + ,,l 

Thus, 2 = E p - p .  But a portfolio with beta of I must have the same return as 
the return-generating factor f .  Thus, 2 = E ( f ) - p ,  and Ei = p + f l i [ E ( f ) - p ] ;  
so that the single factor arbitrage pricing model has the same form as the 
CAPM. 

Generalizing to K factors, we have Ross' arbitrage pricing model: 
K 

(29) Ei = p + ~ f l i j [E( f j ) -p]  = p+ B~A 
j=l 

where A ' =  [ E [ f O -  p . . . . .  E ( f r ) - - p ]  

B:  = (flil . . . . .  fliK) 

In actuality, the APT relationship (29) is not exact and is more appropriately 
written as: Ei ,~ p+B~A.  The arbitrage pricing theorem is based on the fol- 
lowing limiting result (INGERSOLL (1987, p. 172) or JARROW (1988, p. 120)): 

N 
1 

(30) lim -- ~ ( E i - p - B ; A )  2 = 0 
N~oo N i = l  

The theorem assumes the existence of a K factor linear return generating model 
with bounded residual risk and no arbitrage opportunities. The linear pricing 
model prices " m o s t "  of the assets correctly, i.e., the model applies on the 
average and not uniformly. 

The APT is less restrictive in its assumptions than the CAPM. Its major 
hypotheses are that asset returns are generated by the linear factor model and 
that assets are priced to eliminate arbitrage opportunities. Thus, it is not 
necessary to assume that markets are in equilibrium. The primary assumptions 
are that markets are competitive and frictionless and that investors hold 
diversified portfolios, prefer more to less (a very weak preference relationship), 
and agree on expected returns and the return generating model. Investors do not 
necessarily agree on the probability distributions of retui'ns so normality and 
mean-variance decision making are not required. Furthermore, the arbitrage 
pricing relationship is multidimensional rather than unidimensional in risk. The 
primary drawback of the APT is the difficulty of estimating factor expected 
returns and response coefficients. However, there is a growing literature on 
estimation (e.g., ROLL and Ross (1980)). 

6. O P T I O N  P R I C I N G  T H E O R Y  

An important advance in financial modelling was the development of the 
BLACK-SCHOLES (1973) option pricing model (OPM). Options are derivative 
securities, giving their owners rights to buy and sell primary securities such as 
stocks and bonds. The applicability of the OPM extends far beyond the pricing 
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of  options. Many types of  derivative assets, broadly classified as contingent 
claims, can be priced using the principles of  the OPM. Among these are 
corporate  liabilities and insurance policies. 

The original version of the OPM was developed as a continuous time model 
using stochastic calculus. Subsequently, researchers developed an option pric- 
ing model based on a simple binomial process (see Cox  and RUBEN- 
STEIN (1985)). The continuous time OPM is the limiting version of the binomial 
model. In this paper, the continuous time version is used. However, readers 
should be aware of  the existence of  the binomial model because it is applicable 
in some situations where the BLACK-SCHOLES model cannot  be used. 

The primary types of  options are the so-called European and American calls 
and puts. European options can be exercised only at a fixed date in the future 
(the exercise date), while American options can be exercised at any time 
between the opt ion 's  inception date and exercise date. For  ease of  presentation, 
this discussion focuses on European options. 

A European call on common stock gives the holder the right to purchase the 
stock for a specified price (the exercise price) at a specified date, the exercise 
date. The value of  the call can be expressed as C(S, r) = C(S, T; K, a, r), 
where S = the present stock price, K = the exercise price, r = the instan- 
taneous risk free rate, a = the risk parameter,  and r = the time 
until the exercise date. The parameter  r = T - t ,  where T = the expiration 
date and t = the present time. The variables S and r are state variables that 
change over time, while K, T, r, and a are fixed parameters.  The call option is 
defined by the following boundary conditions: C(O,r;K,~r,r) = 0 and 
C(S, 0; K, a, r) = Max ( S - K ,  0). Thus, at expiration, the call value is equal to 
S - K  if the stock price exceeds the exercise price and 0 otherwise. 

It is interesting to examine the reasoning that leads to the condition 
C(O,r;K,a,r) = 0. An important  assumption underlying the theory of  
rational option pricing (e.g., MERTON (1973)) is that options are priced so that 
they are neither dominant  nor dominated securities. Security A dominates 
security B if A's return is at least as large as B's in all states of  the world and 
larger than B's in at least one state of  the world. This implies that an American 
call is worth at least as much as an otherwise identical European call since the 
American call has less restrictive exercise privileges. Likewise, if calls A and B 
are identical in every way except in exercise price, then K A < KB implies 
C(S,r;KA,a,  r) >_ C(S, 3; KB,a, r);  and, if calls A and B are identical 
except for time to maturity, TA > TB implies C(S, T A - t ; K , a , r  ) >_ 
C(S, TB--t; K,a,r). 

These results permit one to derive the condition C(0, r ;  K, or, r) = 0. Because 
a stock is in effect a perpetual Amerian call with an exercise price of  0, stock A 
is worth at least as much as a (American or European) call on A with a 
non-zero exercise price and a finite time to maturity. Thus, if the value of  the 
stock is 0, the value of the option must be zero. Is 

~8 Negative values for the option are ruled out by the terms of thc option contract. 
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The value of  the call depends upon the underlying stock price. BLACK and 
SCHOLES modeled the stock price as a diffusion process: 

dSi 
(31) - o ~ i d t + a i d z  i 

Si 

where ~i = the instantaneous expected rate of  return on security i, 

ai = the instantaneous standard deviation of  return on security i, 

zi(t)  = standard Brownian motion (Wiener) process for security i, and 

Si( t )  = the price of  security i. 

In contrast to the ICAPM, the BLACK-SCHOLES model treats ~i and a i as 
constants. Suppressing the parameters and the subscript i, the value of  a 
general option on a stock with price S can be written as F(S, t). The option 
pricing derivation begins with the formation of  a portfolio (often called the 
hedge portfolio) consisting of  the stock and the option : 

(32) P = F+ nS 

where n = the number of  units of  the stock included in the portfolio (n not 
necessarily an integer). 

To study the dynamics of  the portfolio, it would be useful to obtain the 
derivative of  (32). However, this cannot be done using conventional calculus 
because Brownian motion is not differentiable. What is needed is a method for 
differentiating functions of Brownian motion. Such a method is provided by a 
branch of  mathematics known as stochastic calculus. In particular, a result 
known as Ito's lemma has found extensive application in finance. 

A heuristic derivation of Ito's lemma which leads into the derivation of  the 
option pricing formula is provided here (a more formal derivation is provided 
in KARLIN and TAYLOR (1981)). First expand F ( S , t )  using the Taylor 
expansion : 

1 I 
(33) d F =  F s d S + F t d t  + - - F s s ( d S )  2 + FstdSdt  + - -Fu(d t )2+ ... 

2 2 

where subscripts indicate partial derivatives. The key to the analysis is the 
order relationships: [dzi] 2 ~ dt and (dt) k ~ 0, k > 1. Using these relationships 
and substituting (31) into (33) yields: 

(34) d F =  ( F s c t S + F , + - ~ - t r 2 S 2 F s s ) d t + F s t r S d z  

Expression (34) is called the Ito transformation formula. 
Now take the derivative of  (32): dP = d F + n d S  and substitute for dF from 

(34) and dS from (31) to obtain:  
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E ' 1 (35) dP = ( n + F s ) c t S + F  t + - t r2S2Fss  d t + ( n + F s )  trSdz 
2 

This stochastic differential equation can be reduced to a non-stochastic 
differential equation by choosing the number of  shares n in the portfolio to 
equal - F  s. This choice eliminates the risk term from (35), creating a riskless 
hedge. 19 Since the resulting portfolio has no risk, it must earn only the risk-free 
rate in order to avoid arbitrage. So dP = r [ F + n S ] d t  = r [ F - F s S ] d t ,  where 
r = the instantaneous risk-free rate (assumed constant) and the relationship 
n = - F  s has been used again. Thus, (35) becomes" 

1 
(36) 0 = r F - r F s S +  F~ - --~r2 SZ Fss 

2 

The time to expiration of the option, r = T - t  has been substituted for t in 
(36) accounting for the change in the sign of the time derivative term. 

Equation (36) is the differential equation for BLACK-SCHOLES option pricing. 
It is solved for F, subject to appropriate boundary conditions, to obtain the 
option pricing formula. 

In deriving (36) nothing has been assumed about the nature of  the option 
being priced. In fact, (36) is quite a general result and applies to various types 
of options. Specific cases are generated by the appropriate formulation of  
boundary conditions. For a European call option, the boundary condition 
F(S ,  0) = Max ( S - K ,  0) yields the BLACK-SCHOLES call option formula: 

(37) F(S,  r) = S N ( d l ) -  Ke -r~ N(d2) 

( ' )  in (S/K)  + r + - - ~ 2  r 
2 

where d~ = 

d 2 = d l - a x f i  

Equation (37) is obtained by forming a hedge portfolio that eliminates all 
risk. This can be done because both the stock and the option are determined by 
the same stochastic process, equation (31). The concept of  hedging is extremely 
important and has been widely used in financial markets in the U.S. It should 
be noted that the formation of a riskless hedge in developing the option price 
formula does not mean that the option is riskless. In fact, the option is more 
risky than the underlying common stock. 

Equation (37) is remarkable in a number of respects. One of  its most 
important properties is that the option can be priced on the basis of  only a few 
parameters" r, a, r, and K. 20 The option price does not depend on the rate of  
return on the stock (0~i), the beta of  the stock, or the market risk premium. 

~9 The risk term is the term involving dz. 
2o The intial stock price S(O) is also required. 
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Thus, it avoids many of  the estimation problems that have plagued applica- 
tions of  the CAPM. 

An important alternative method for deriving options formulae has been 
developed by Cox and Ross (1976). This is called the risk-neutral valuation 
methodology. The risk-neutral approach is based on the following argument: 
Since the hedge portfolio has no risk, it should have the same value in an 
economy where investors are risk averse as in an economy where investors are 
risk-neutral. Thus, valuation of the option can take place in the environment 
where the calculations are easiest, i.e., in the risk-neutral environment. This led 
Co'x and Ross to propose the following valuation formula, which gives the 
BLACK-SCHOLES result : 

(38) C(S, r) = E[CT] e -'¢ = E[Max (0, ST-- K)] e- '3  

where t = the present time, T = the option expiration date, r = T - t ,  
C(S, r) = the option price at time t, and ST = the random variable, stock 
price at time T. 

Since the stock has been assumed to follow geometric Brownian motion, the 
expected value in (38) can be evaluated with respect to a lognormal distribu- 
tion. Because of the risk neutrality argument, the appropriate Iognormal is one 
with location parameter = (r-a2/2)r and risk parameter = a2r .  Simplifying 
the following integral produces the BLACK-SCHOLES formula: 

(39) C(S, r) = e -r~ ( S  T -  K) x 
K 

I I [ In(S.i/S)-(r-a212)r~ 2 
x e- ~ ~, ~ I dSv 

STa X/~ 2 ~ 

where C(S, r) = C(S, r;  K, a, r). This method does not imply that either the 
option or the stock is riskless; it merely suggests that if a perfect hedge is 
possible, the option price can be calculated as if the mean rate of  increase in the 
stock price is the risk free rate. 

The BLACK-SCHOLES formula and its progeny have been widely used in U.S. 
financial markets. It forms the foundation for much of the options trading on 
the Chicago Board Options Exchange (CBOE), the world's second largest 
securities exchange. 

II. INSURANCE PRICING MODELS 

7. F I N A N C I A L  M O D E L S  

Since insurance companies are corporations and insurance policies can be 
interpreted as a specific type of  financial instrument or contingent claim, it 
seems natural to apply financial models to insurance pricing. Financial theory 
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views the insurance firm as a levered corporation with debt and equity 
capital. 2t The insurer raises debt capital by issuing insurance contracts. 

Insurance contracts are roughly analogous to the bonds issued by non- 
financial corporations. Bonds tend to have fixed coupon payments and a fixed 
maturity date. Insurance policies are more risky than conventional bonds 
because both the payment time and amount  are stochastic. In addition, the 
payout period for most policies does not have a fixed time limit. Thus, 
insurance pricing poses some difficult problems that are not present when 
dealing with conventional financial instruments. 

Financial theory views the insurance underwriting and pricing decision as 
corporate capital budgeting. In capital budgeting (also called capital project 
appraisal), firms accept or reject projects based on decision criteria such as the 
net present value (NPV) or internal rate of  return (IRR) rules (see BREALEY 
and MYERS (1988) or COPELAND and WESTON (1988)). These decision rules 
focus on the amount  and timing of  the anticipated cash flows from the 
candidate projects. The rate of  return targets are based on market risk-return 
relationships such as the CAPM or APT. Thus, policy prices reflect equilibrium 
relationships between risk and return or, minimally, avoid the creation of  
arbitrage opportunities. 

Much of  the impetus for the development of  insurance financial models has 
been provided by rate regulation in the United States. During the late 1960s 
and early 1970s, regulators in several states (e.g., New Jersey and Texas) began 
to require that rates in regulated lines, particularly private passenger automo- 
bile insurance, reflect the investment income that insurers earn on policyholder 
funds between the premium payment and loss payment dates. Accounting 
models were developed to measure the investment income attributable to a 
given policy block, and such models are still used in many jurisdictions. 22 Later 
regulatory attention has focused on financial models, providing a market value 
rather than a book value measure of the fair rate of  return to equity capital. 
The first use of financial models in regulation occurred in Massachusetts in 
1976. 

The value of  insurance financial models extends beyond the regulatory 
arena. The models are designed to estimate the insurance prices that would 
pertain in a competitive market. Charging a price at least as high as the 
competitive price (reservation price) increases the market value of the com- 
pany. Charging a lower price would reduce the company+s market value. Thus, 
financial models and financial prices are among the key items of  information 
that insurers should have at their disposal when making financial decisions 
about tariff schedules, reinsurance contract terms, etc. This information should 
serve as a complement to and not a substitute for actuarial information. An 
objective of research in this area is to develop a unified theory of  insurance 
pricing that combines elements of  actuarial and financial theory. 

21 A levered (or leveraged) corporation is one that finances its operations in part through debt 
capital, i.e., borrowed funds. The concept of  leverage is discussed in more detail below. 

22 For a discussion of  accounting models see CUMMINS and CHANG (1983). 
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This section discusses the principal financial models that have been proposed 
for pricing insurance contracts. The earliest models, based on the CAPM, 
provide important  insights but are too simple to be used in most realistic 
situations. More promising are discrete and continuous time discounted cash 
flow (DCF)  models. Both CAPM and D C F  models have been used in 
insurance price regulation in the United States. The most recent work on 
insurance pricing has focused on option pricing, arbitrage pricing theory, and 
more advanced models. 

8. A SIMPLE CAPM FOR INSURANCE PRICING 

The insurance CAPM was developed in COOPER (1974), BIGER and 
KAHANE (1978), KAHANE (1979), FAIRLEY (1979), and HILL (1979). This 
model gives prices that would obtain in a world characterized by perfect capital 
markets  and competitive insurance markets. The derivation begins with a 
simple model of  the insurance firm: 

(40) Y = 1+17 u = R A A + R u P  

where Y = net income, 

I = investment income (net of  expenses), 

l l l v= underwriting profit (premium income less expenses and losses), 

A = assets, 

P = premiums, 

RA = rate of  investment return on assets, and 

Ru = rate of  return on underwriting (as proport ion of  premiums). 

Equation (40) can be expressed as a return on equity as follows: 

Y A P 
(41) R w  - - R A - -  + R u - -  

W W W 

where W = equity (policyholders' surplus), and Rw = the rate of  return on 
equity. Recognizing that assets are the sum of  liabilities and surplus, one 
obtains : 

(' / (42) R w =  RA ~ + 1 + RU--w = RA(ks+ l )+sRu  

where s = P/W = the premiums-to-surplus ratio, and 

k = L/P = the liabilities-to-premiums ratio (funds generating factor). 

Equation (42) indicates that the rate of  return on equity for an insurer is 
generated by leveraging the rates of  investment return and underwriting 
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return. 23 The leverage factor  for investment income is (ks+ 1), a function o f  the 
premiums-to-surplus  ratio and the funds generat ing factor. The latter approx-  
imates the average time between the policy issue and claims payment  dates. The 
underwrit ing return is leveraged by the premiums-to-surplus  ratio. 

Equat ion  (42) can be written in an interesting way as follows: 

(43) R w  = R A + S ( R A k  + Ru) 

The insurer has the opt ion o f  not  writing insurance (choosing s = 0). In this 
case, it will be an investment company ,  investing its equity at rate R A . If  s > 0, 
(43) shows that writing insurance at a negative underwri t ing profit  will increase 
return on equity as long as - R  u < kRA.  

Equat ion  (42) is essentially an account ing  model and has little economic  
content.  The model is given economic  content  by assuming that the insurer 's 
equity and assets are priced according to an equilibrium pricing model,  in this 
case the C A P M .  According to the C A P M ,  the equilibrium rate or  return on 
any asset is given by equat ion (13), where the risk premium for any cash flow 
stream i is measured by its beta coefficient:  fli = C o v  (Ri, R,,) /Var (Rm). 

Since the covariance is a linear operator ,  the insurer 's equity beta can be 
obtained f rom equat ion (42) as:  

(44) flw = flA (ks + 1) + Sflu 

where fiE,flA, and flu = the betas o f  the insurer 's equity, assets and under- 
writing return, respectively. 

The equilibrium rate o f  return on the insurer 's equity is: 

(45) E w  = R f + f l w ( E m - R f )  = R f + L / 3 A ( k s + l ) + s f l u ] ( E m - R f )  

where Ew = E(Rw) .  The equilibrium underwri t ing profit is obtained by 
equat ing (45) and the expected value o f  (42) and solving for E u = E(Ru) .  (The 
C A P M  relationship is also substituted for E(RA)  in (42)). The result is: 

(46) E U = - k R f  + flu (Era - Rf) 

Equat ion (46) is often called the insurance C A P M .  
The first term o f  (46), - k R f ,  represents an interest credit for the use o f  

policyholder funds. The second componen t  o f  Eu is the insurer 's reward for 
risk-bearing: the underwri t ing beta multiplied by the market  risk premium. I f  
underwrit ing profits are positively correlated with the market ,  the insurer will 
earn a positive risk loading as compensa t ion  for bearing systematic risk. There 

23 Leverage refers to the capital structure of the firm, i.e., its mix ofdebt and equity. A firm with a 
large amount of debt relative to equity is said to be highly leveraged. Leverage can be used to 
increase return on equity (ROE) because debt charges are fixed, i.e., they do not vary with the 
fortunes of the firm. If the firm uses the funds raised by borrowing to buy productive assets that 
earn more than the debt charges, the effect of the earnings in excess of the debt charges is 
multiplied or leveraged (e.g., by the debt to equity ratio) in its effect on ROE. Leverage also 
increases the firm's financial risk. In the U.K., leverage is sometimes called gearing. Of course, 
insurance leverage is a generalization of the usual concept because the underwriting profit or loss 
is not known in advance. 



152 J. DAVID CUMMINS 

is no reward for unsystematic risk because this type of  risk can be eliminated 
by investors through diversification. Thus, the risk of  ruin is not priced and 
policies are treated as free of  default risk. 

The insurance CAPM yields important insights into the operation of  
insurance markets by introducing the concept of  an equilibrium price for 
insurance and distinguishing between different types of risk. However, it is too 
simplistic for use in real-world applications. 

Several limitations of  the insurance CAPM have motivated researchers to 
seek more realistic insurance pricing models. One serious problem is the use of  
the funds generating or k factor to represent the payout tail. Discounted cash 
flow methods should be used to value cash flows that occur at different periods 
of  time, but the k factor represents only a crude approximation of  the DCF 
approach. A second problem is the assumption of  no bankruptcy. It has long 
been recognized in actuarial science that ruin probabilities are important in 
insurance markets. Thus, insurance is more appropriately priced using a model 
that recognizes default risk. A third problem is the failure of the model to 
account for interest rate risk. As a practical matter, the use of underwriting 
betas can lead to inaccuracies because estimation errors can be quite significant 
(see CUMMINS and HARRINGTON (1985)). Most of  the models discussed below 
represent an attempt to deal with one or more of  these problems. 

9. AN EQUILIBRIUM MODEL WITH AN INSURANCE SECTOR 

The insurance CAPM prices insurance like any other financial asset; insurance 
risk plays no special role in this model. However, insurance risk may have 
characteristics which warrant separate treatment. Among other things, insur- 
ance deals with pure risk (involving a loss or no loss) rather than the 
speculative risk dealt with by most other financial assets. 

A market equilibrium model including an insurance sector has been devel- 
oped by ANDREW TURNER (1987). (A similar model is presented in ANG and 
LAI (1987)). Turner  postulates an economy consisting of  insurance companies, 
households, and non-insurance (productive) corporations. Households are 
endowed with initial wealth at time zero and maximize utility over a one-period 
planning horizon. Household decision variables include: (I) time zero con- 
sumption, (2) shares of stock in insurance companies and non-insurance 
companies, (3) real assets such as housing, and (4) insurance policies covering 
the real assets. 

Real assets are assumed to be subject to two types of pure risk: individual 
risk, defined as loss events uncorrelated across real assets, and social risk, loss 
events that are correlated across exposure units. An individual loss might be a 
fire affecting only one house, while a social loss might arise from an 
earthquake affecting all houses in a region. 

The assumptions of  the TURNER model are similar to those of  the CAPM, 
e.g., homogeneous beliefs about asset returns and variances, competitive 
markets, etc. He obtains the following equilibrium underwriting profit for- 
mula : 
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(47) 

where Ruz 
v,. 

Vu 

Lz 
LN 
Xz 

"~N 

The betas 

(48) 

Euz = - Ri-  q3L,. ,, + flLz v~- llLz ~ -  llXz x) (E,. - R j) 

= underwriting return on insurance covering real asset Z, 

= value of aggregate market portfolio of traded financial assets, 

= value of aggregate market portfolio of real assets, 

= value of aggregate social losses to real assets of type z, 

= value of  aggregate social losses to all real assets, 

= value of  aggregate individual losses to real assets of type z, 
and 

-- value of  aggregate individual losses to all real assets. 

are all defined analogously to the following: 

( Lk Vmll/var(Rm) 
,8L~vo = Cov p ,  Vmo 

where F, ,  = value of market portfolio of  financial assets at time t, and 

P = the premium. 

The betas in this model are loss rather than profit betas. Thus, their signs are 
opposite to the sign of  the underwriting profit beta, flu, discussed above. 

The TURNER model includes a risk loading for the covariability of  the social 
losses of  asset k with the market portfolio of traded assets, the aggregate of all 
real assets, and aggregate social losses. In addition, there is a risk loading for 
the covariability of  the individual losses of  asset k with aggregate individual 
losses. The first three terms are likely to give rise to significant risk loadings, 
whereas the individual loss beta should be near zero. 

The TURNER model defines systematic risk more broadly than the CAPM to 
include covariability among losses. For example, if aggregate automobile and 
workers' compensation losses were correlated, the TURNER model would 
provide a risk loading even if these losses were uncorrelated with the market 
portfolio of  traded securities. This is an important generalization of  the 
CAPM, which could be extended to an intertemporal, continuous time 
setting. 

10. DISCRETE TIME DISCOUNTED CASH FLOW (DCF) MODELS 

The financial models that have been most widely used in practice in the United 
States are discrete time discounted cash flow models. These models are based 
on concepts of  corporate capital budgeting (see BREALEY and MYERS (1988) or 
COPELAND and WESTON (1988)). The two most prominent models, the 
MYERS-COHN model and the National Council on Compensation Insurance 
(NCCI) model, are analyzed in CUMMINS (1990). The following discussion 
f o c u s e s  on  MYERS-COHN. 
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The MYERS-COHN model is an application of MYERS' adjusted present value 
(APV) method (see BREALEY and MYERS (1988, pp. 443-446)). The steps in 
applying the APV method to analyze a project are the following: (l) Estimate 
the amount and timing of the cash flows expected to result from the project, 
(2) estimate the risk-adjusted discount rate for each flow, (3) compute the 
present value of the cash flows using the risk-adjusted discount rates, and (4) if 
the present value is greater than zero, accept the project. 

Discounting each flow at its own risk-adjusted discount rate is consistent 
with the principle of value-additivity. The policy is priced as if the various 
flows could be unbundled and sold separately, avoiding the creation of 
arbitrage opportunities. 

In insurance DCF analysis, it is important to adopt a perspective in order to 
avoid double counting. Flows can be measured either from the perspective of 
the insurer or from the perspective of the policyholder. Flows from one are the 
mirror image of flows from the other. The MYERS-COHN model adopts the 
policyholder perspective. The relevant cash flows are premiums, losses, 
expenses, and taxes. It would be double counting to consider profits as a flow 
when using the policyholder perspective. The flows from the company perspec- 
tive are: surplus commitment, underwriting profits (net of taxes), and invest- 
ment income, also net of taxes. 

In addition to losses and expenses, the policyhoders pay the taxes arising out 
of the insuance transaction. The reasoning is as follows : When writing a policy 
the company commits equity capital to the insurance business. The owners of 
the company always have the alternative of not writing insurance and investing 
their capital directly in financial assets (stocks and bonds). They will not enter 
into the insurance transaction if by doing so they subject income on their 
capital to another layer of taxation. Thus, the policholders must pay the tax to 
provide a fair after-tax return. 

The objective of the MYERS-COHN model is to determine the fair premium 
for insurance. The premium is defined as fair if the insurance company is 

T A B L E  1 

CASIt FLOWS IN TWO-PERIOD MYERS-COHN MODEL 

F low Time  : 0 I D i s c o u n t  R a t e  

P r e m i u m  P 0 r.,- 

Loss  0 L r L 

U n d e r w r i t i n g  
Prof i t s  tax  0 r ( P -  L) rf ,  rt. 

I n v e s t m e n t  
ba l ance  (1B) P ( I  + 8 )  0 

IB T a x  0 rrfP(I +8) rf 

K e y  : P = p r e m i u m s ,  L = expec ted  losses, rf = risk-free ra te  o f  interest ,  r L = r i sk -ad jus ted  d i s c o u n t  
ra te  fo r  losses, r = c o r p o r a t e  i ncome  tax ra te ,  8 = s u r p l u s - t o - p r e m i u m s  ra t io .  
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exactly indifferent between selling the policy and not selling it. The insurer will 
be indifferent if the market value of the insurer's equity is not changed by 
writing the policy. Although this argument may seem to at odds with the profit 
motive, it is consistent with profit maximization in a competitive market. 
Under competition, each product sells for the price that will exactly pay for the 
factors of  production. Thus, the premium should be sufficient to pay for the 
factors of production (including capital) but no more than that amount. 

In order to simplify the discussion, a two-period model is considered, with 
flows at time 0 and 1. The model generalizes directly to multiple periods. Also 
for simplicity, expense flows are ignored. The MYERS-COHN cash flows are 
summarized in Table 1. 

Premium flows occur at time 0 and loss flows at time 1. These flows are 
discounted at different rates (of course, the premium flow is not discounted at 
all in this simplified example because it occurs at time 0). Premium flows are 
considered virtually riskless and hence are discounted at the risk-free rate. Loss 
flows are obviously risky and are discounted at an appropriate risk-adjusted 
discount rate (RADR) (discussed below). 

The underwriting profits tax is assumed to be paid at time 1. Since this is 
based on the difference between premiums and losses, the tax flow must be 
broken into two par ts- - the  loss part and the premium par t - -each of  which is 
discounted at the appropriate rate. 

The other tax flow is the investment balance tax. Writing the policy creates 
an investment balance because the premium is paid in advance of  the loss 
payment date and because the company commits surplus (equity capital) to the 
policy. The surplus and premium are invested and a tax must be paid on the 
investment income at time 1. It is assumed that the funds are invested at the 
risk-free rate, in which case the tax is discounted at that rate. MYERS has 
shown that the tax on risky investment income also should be discounted at the 
risk free rate (DERRIG (1985)). 

Discounting each flow and simplifying the resulting expression leads to the 
following formula: 

(49) P _ __E(L) + v6PRf (___I___I 
1 + R  L 1 - r  I I+Rf] 

where E(L), P = expected losses and premium, respectively, 

Rc = risk adjusted discount rate for losses, 

= the corporate income tax rate, and 

= the rate of surplus commitment (surplus-to-premiums ratio). 

The risk adjusted discount rate for losses, RL is equal to Rf+2, where 2 is 
the risk premium. A positive risk premium in the loss discount rate leads to a 
lower premium, while a negative risk premium is associated with higher 
premiums. 
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Consider, for example, the CAPM risk adjusted discount rate: 

(50) RL = R:+PL(Em-R:) 
where flL = C o v  [Ll/E(Lo),  Rm]/Var (R,,), and 

L, = losses at time t. 

The MYERS-COHN model is usually applied using a risk-adjusted discount 
rate based on the CAPM. However, it is not inherently a CAPM model, and 
any theoretically defensible risk adjusted discount rate could be used. To be 
theoretically defensible, the rate must be based on an economic model that 
takes into account rational behavior in a market  context. For  example, a rate 
could be obtained from the TURNER model or the APT instead of  the CAPM. 
CUMMINS (1988b) has developed a discount rate that is appropriate  for an 
insurer with non-zero default probability. The more stringent rules for selecting 
the discount rate imposed by financial modeling represent a significant 
difference between the MYERS-COHN approach and traditional actuarial dis- 
counted cash flow models. 

A feature of  the model that is obscured in the single period formula is the 
concept of  the surplus flow. MYERS and COHN assume that surplus is 
committed to the policy when the policy is issued and gradually released as 
losses are paid. The surplus flow pattern has an important  impact on the 
premium because it affects the investment balance tax. 24 

An unanswered question in this model and, indeed, in financial modeling in 
general, is the appropriate  level of  surplus commitment .  Usually, the surplus- 
to-premium ratio is based on the company ' s  historical average or on the 
average for the insurance market  as a whole. Neither approach is satisfactory, 
particularly in a multiple-line company where lines have different risk charac- 
teristics. A solution to the surplus commitment  and allocation problem would 
represent an important  contribution to insurance financial theory. 

The MYERS-COHN model is consistent with financial theory and relatively 
easy to apply in practice. The model is deceptively simple and avoids many 
subtle but important  pitfalls in the definition and treatment of  cash flows. It 
can probably be said to represent the state-of-the art in practical insurance 
financial models. Weaknesses include the difficulty of  estimating the surplus- 
to-premiums ratio and the risk adjusted discount rate as well as the omission of  
default risk. None of  these problems is inherent in the MYERS-COHN model. 

I 1. OPTION PRICING MODELS 

Like options, insurance can be interpreted as a derivative financial asset 
(contingent claim) where payments depend upon changes in the value of  other 
assets. Payments under primary insurance policies are triggered by changes in 

24 Some regulatory jurisdictions use a surplus block rather than surplus flow approach. This usually 
means that all surplus is released at the end of the policy coverage period rather than being 
gradually released as losses are paid. The surplus block approach is unrealistic in its assumption 
that no surplus commitment is necessary during the loss runoff period. 
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value of the insured assets, while reinsurance payments depend upon the 
experience of the covered primary insurance policies. Both types of insurance 
are candidates for pricing using the option approach. 

Option models have an advantage over traditional actuarial models in their 
strict adherence to the rules of dominance and arbitrage. To avoid arbitrage 
opportunities, rational option prices are based on the rule that options will be 
neither dominant nor dominating securities. This simple but powerful idea has 
far-reaching implications for the financial pricing of insurance. 

An earlier section of this paper discussed the pricing of European call 
options. A European call was defined as a function C(S, ~) = C(S, z; K, a, r) 
of the underlying stock price (S) and time to expiration (r) such that 
C(S, 0) = Max ( S -  K, 0), where K is the option's exercise price and the other 
parameters are defined as before. A European put option is a function 
P(S, z) = P(S, ~; K, a, r) such that P(S, 0) = Max ( K - S ,  0). An important 
relationship involving puts and calls on the same asset is the put-call parity 
theorem : 

(51) C(S, ~) = S - [ K e - ' ¢ - P ( S ,  z)] 

The theorem states that the value of a call is equal to the value of the 
underlying stock less the present value of the exercise price plus the value of the 
put. 

Equation (51) provides a simple model of corporate financial structure that 
can be applied to insurance. Interpret S as the total market value of assets of 
the firm and K as the nominal value of liabilities at the exercise date (e.g., 
promised payments to policyholders). Then the market value of the equity 
holders' interest in the firm is equal to the value of the call. At the maturity of 
the option, the equity holders have the option of paying the value of the 
liabilities and keeping the net amount S -  K. They will do this only if S > K at 
the expiration date. If not, the equity holders will default and the policyholders 
become the owners of the firm, receiving assets insufficient to satisfy the 
outstanding liabilities. 

The option to walk away from the firm if S < K is a valuable right conferred 
upon the stockholders by the limited liability rule. 25 The value of this right is 
the value of the put, since P(S ,O)=  M a x ( K - S ,  0). Thus, the net market 
value of the policyholders claims prior to expiration is the bracketed expression 
in (51): the riskless present value of the liabilities less the value of the put. 

This model has some surprising implications. Because the partial derivatives 
of the call and the put with respect to the risk parameter (a 2) are positive and 
equal (see JARROW and RUDD (1983) or INGERSOLL (1987)), increases in firm 

25 It would be interesting to modify the basic option model of  the firm to take into account some 
additional characteristics of the insurance market. For example, regulators may take control of 
the firm if S -  K reaches some minimal (positive) value. In a multiple period model, stockholders 
presumably would consider the potential loss of future profits due to bankruptcy when selecting 
the firm's risk level, etc. Although such issues have been explored in the actuarial literature, it 
would be useful to reexamine them in the light of  the insights provided by financial theory. 
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risk add to the market value of  equity and correspondingly reduce the value of  
debt. Thus, stockholders have an incentive to increase risk because doing so 
increases their expected share of firm assets. 

The options model can be used to obtain the market value of  insurance 
policies subject to default risk. To do this, it is more realistic to have a version 
of  the options model in which both assets and liabilities are stochastic. Models 
of  this type are presented in CUMMINS (1988a) and DOHERTY and 
GARVEN (1986). Both assets and liabilities are assumed to follow diffusion 
processes : 

dA 
(52a) - aA d t+  a Adz A 

A 

dL 
(52b) - ~Ldt + O'LdZ L 

L 

where A (t) = assets, 

L ( t )  = liabilities, 

dzA(t) ,  d Z L ( t ) =  possibly dependent Brownian motion processes for 
assets and liabilities, 

etA, CtL = instantaneous expected returns on assets and liabilities, 

trA, at. = instantaneous standard deviations of  return of  assets and 
liabilities. 

Insurance company debt is assumed to have a fixed maturity date r. Its value is 
defined by B(A, L, r). 

B can be differentiated using Ito's lemma to yield: 26 

(53) dB = B A d A + B L d L  + BAAtr ~ -t- -- BLLtTi2+BALO'AO'LPAL-I-Bt dt 
2 

where PaL = the instantaneous correlation coefficient of  dzA and dZL. 

Substituting (52a) and (52b) into (53), making the changes of  variables 
X = A / L  and b = B/L,  and eliminating the risk term either by a hedging 
argument or by assuming that B is priced according to the ICAPM (see 
CUMMINS (1988a)), equation (53) is reduced to: 

(54) r ,b  = rrbx  X + _1 (0.2A W O.~_ 20.AtT LPAL) bxx X2 + b t 
2 

where r r = the real rate of  interest, i.e., the difference between the nominal 
riskless rate of interest (r) and the anticipated inflation rate (see 
below). 

26 Subscripts on the function B represent partial differentiation, while subscripts on the parameters, 
~r and p, indicate whether the parameter pertains to the asset or the liability process. 
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Equation (54) is the BLACK-SCHOLES equation, where the optioned variable 
is the asset to liability ratio (X). 

Defining b(X, r) as the value of the debt (insurance liabilities), we have the 
boundary condition b(x, 0) -- Min (1, x). Solving equation (54) subject to this 
boundary condition and exploiting the fact that BLACK-SCHOLES options are 
homogeneous of degree l in the asset and exercise prices, yields the debt 
value : 

(55) B(A, L, r) = A N ( - d l ) +  L e  -rr~ N(d2) 

where d l =  [In (x)+(rr+a2/2)zl/(tr x/z), 

d2 = dl--0" X//~, and 

~2 = aZA +a~_  2(T A~LpAt . 

The value of  the debt is the fair value of the insurance, where the policy 
obligation is to pay the market value of  L at time r. Equation (52b) implies 
that L is Iognormal, which is a reasonable assumption for insurance liabili- 
ties. 

Differentiating (55) reveals that the value of  liabilities is inversely related to 
risk and directly related to the asset to liability ratio. Thus, policies of  safer 
companies will command higher prices in a competitive market. 

As another application of option theory to insurance, consider setting 
retention limits and caps in excess of loss reinsurance. Excess of loss reinsur- 
ance is structured much like a call option. E.g., the ceding company's  share in 
an excess of  loss contract with no upper boundary is: Max ( Y - M ,  0), where Y 
is the loss amount  and M is the retention. Thus, the ceding company 
buys a call on the loss amount  with exercise price M. If the policy 
has an upper limit (U), this can be considered a call written by the ceding 
company in favor of  the reinsurer. The net value of  the reinsurance is: 
Max ( Y - M ,  0) - M a x  ( Y -  U, 0). 

Pricing a reinsurance call illustrates some important features of option 
pricing theory. To use the conventional option model to value reinsurance, it is 
necessary to assume that the evolution of  reinsurance liabilities is smooth so 
that a diffusion process can be used. Z7 Another assumption is that trading 
takes place continuously. These assumptions might be approximated by 
stop-loss reinsurance or policies covering multiple exposure units. 

If  Y is the loss under the policy, the value of  reinsurance can be written as 
C(Y, z; M, cr, r), where as before C(Y, 0; M, a,r)  = Max (0, Y - M ) .  The 
hedge portfolio is P = (1 - w) Y+ wC, where w = the portfolio weight assigned 
to the option. Another useful portfolio is the replicating portfolio, which is the 
combination of  riskless bonds and stock that duplicates the option. This is 

27 Another possibility would be to use a jump diffusion model. A model where jumps follow a 
Poisson process has been developed by MERTON (1976). 
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easily obtained from the hedge portfolio: C = P / w - [ ( l - w ) / w ]  Y, where P 
indicates holdings of riskless bonds. The weight w can be shown to be 
Cr(Y ,  r) = N(d~), the partial derivative of the option value with respect to Y, 
where d I is defined above in the discussion of equation (55). The weight w is 
called the hedge ratio or option delta. 

In the reinsurance case, the replicating portfolio would involve selling 
insurance (since the coefficient of Y < 0) and buying bonds. This could be 
viewed as a substitute for buying reinsurance. The difficulty with the interpre- 
tation is that it assumes that the portfolio weights can be continuously 
readjusted. This involves frequent trading in insurance policies, which could be 
difficult to accomplish. 

Fortunately, discrete time hedging models are available that avoid the 
continuous trading assumption (see BRENNAN (1979)). A discrete time model 
has been applied to an insurance problem by DOHERTY and GARVEN (1986). 
More research is needed on the feasibility of hedging insurance portfolios and 
the practical importance of the continuous trading assumption in insurance. It 
is quite possible that adjustment of the hedge at infrequent intervals would 
bring about a reasonable approximation of the hedging result. 

12. CONTINUOUS TIME DISCOUNTED CASH FLOW MODELS 

Certainty model 

Continuous time models for insurance pricing have been developed by KRAUS 
and Ross (1982) and CUMMINS (1988a). To introduce this topic, consider the 
KRAUS-ROSS continuous-time dynamic model under conditions of certainty. 

To simplify the discussion, assume that the value of losses is determined by a 
draw from a random process at time 0. Loss payments occur at instantaneous 
rate 0, while loss inflation is at exponential rate re, and discounting is at the 
riskless rate r. The differential equation for the rate of change in outstanding 
losses at time t, in the absence of inflation, is the following: 

(56) dC, 

dt 
- - O C ,  

where Ct = the amount of unpaid claims at time t in real terms (i.e., not 
allowing for inflation). Solving this expression for C~ yields the following 
result: Ct = Co e -Or. Thus, the assumption is that the claims runoff follows an 
exponential decay process. 

Considering inflation, the rate of claims outflow at any given time is: 
L t = OCt ent. The premium is the present value of losses, obtained as 
follows : 28 

2~ It is assumed that r+O > x. 
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i 
oo 

(57) P = L,  e - "  d t  

o 

: O C  0 e - ( r + O - n )  t dt  - OCo 

o r + O - ~  

An important relationship affecting the premium is the F i s h e r  h y p o t h e s i s ,  i.e. : 
1 + r = (1 + rr) (1 ÷ i ) ,  where r r = the real rate of  interest and i = the anticipated 
inflation rate. This relationship states that nominal interest rates will compen- 
sate the investor for anticipated inflation and for the time value of  money in an 
economy with no inflation (rr) .  If insurance inflation (n) is the same as 
economy-wide inflation (i), then discounting takes place at the real rate since 
anticipated inflation in claims is offset by the anticipated inflation premium in 
the discount rate. In equation (57), rc could be > or < i. 

In (57), 0 is the parameter of  an exponential distribution. This implies that 
1/0 is the average time to payout, assuming no inflation. While the exponential 
provides some modeling insights, it is probably too simple a model to apply to 
actual claims runoff patterns. The author has found that the gamma distribu- 
tion provides a reasonable fit to claims runoff data for automobile insurance in 
the United States. 

The model also can be used to estimate reserves, as follows: 

I cO OCo - (O+r- t t ) t  (58)  C T = O C  0 e - ( O + r - n ) t  dt  - - -  e 

r O + r - n  

where C r  = the market value of reserves at time t. 

Kraus-Ross uncertainty model 

KRAUS and ROSS also introduce a continuous time model under uncertainty. 
This model is based on Ross' arbitrage pricing theory (APT). The KRAUS-ROSS 
model allows for market-related uncertainty in both frequency and claims 
inflation. 

The following differential equation governs the claims process: 

d C  
(59) - ~ ( t ) - O C ( t )  

dt  

where ~( t )  = accident frequency at time t. The frequency process affects the 
evolution of  outstanding claims for a period of length T (the policy period). 
After that point, no new claims can be filed. During the entire period (0 to c~) 
claims are settled at instantaneous rate 0 but adjusted for inflation according to 
the price index q ( t ) .  

The parameters ~( t )  and q ( t )  are governed by the k economic factors of  
arbitrage pricing theory. In continuous time, these factors are modelled as 
diffusion processes : 

(60) d x  i = m i x i d t W a i x i d z i ,  i = 1, 2 . . . .  , k 
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The parameters are log-linear functions of the factors, e.g. : 29 
k 

(61) log (q) = E qi log (xi) + log (q0) 

where q0 is the price level of the average claim at policy inception, and qi, 
i = l, 2 , . . . ,  k are coefficients (constants). 

Arbitrage pricing theory implies that the value of outstanding claims at any 
time t, V(x, C, t), where x is the vector consisting of the xi, is governed by the 
following differential equation: 

(62) 

= E 2iO'i COV , V a r  
i= 1 V x i ~ x i 

dt 

where '~i = the market 

rmi = the market 
the ith risk 

The premium formula is 
lemma (see INGERSOLL 
equation. The formula is: 

price of risk for factor i = (rmi-r)/o'i, and 

return on a portfolio that is perfectly correlated with 
factor. 

obtained by applying the multivariate version of Ito's 
(1987)) and then solving the resulting differential 

(63) P = ( O°t°q°L° ) II--e-P*T p~ 

k 

w h e r e  p = r-Tz + E ~i°'iqi 
i=1 

k 

p~ = r-ha + E 2iGi(qi+~i) 
i=l 

k 

k 

The premium given by (63) is similar to the premium for the certainty case 
except for the presence of the market risk Ioadings (2i terms) in the denomina- 
tor. These loadings are the company's reward for bearing systematic risk. The 
~i and qi are the °' beta coefficients" of the model. 

29 There is a directly analogous equation for a(t) .  
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For  the company to receive a positive reward for risk bearing, the risk 
loading term must be negative, i.e., losses must be negatively correlated with 
some of  the market factors such that the net loading is < 0. This reduces the 
denominator and leads to a higher discounted value of  losses. 

The model requires estimates of the market prices of  risk for the k risk 
factors as well as the beta coefficients for insurance. This would be difficult 
given the available data. Like most other financial pricing models for insur- 
ance, this model gives the price for an insurance policy that is free of  default 
risk. Nevertheless, the KRAUS-ROSS model represents an important  contribu- 
tion to the financial pricing literature. 

A model with default risk 

CUMMINS (1988a) has developed a continuous time, exponential runoff  model 
that prices default risk. This model can be used to value an insurance company 
or a policy cohort  (block of  policies). Assets and liabilities are hypothesized to 
follow geometric Brownian motion:  

(64a) dA = (~A A - OL) dt + .46.4 dz A 

(64b) dL  = (or L L -  OL) dt + Ltr L dzL 

where etA, ct L = asset and liability drift parameters, 

tr,4, at, = asset and liability risk (diffusion) parameters, 

.4, L = stock of  assets and liabilities, 

0 = the claims runoff  parameter, and 

d z a ( t ) ,  d z L ( t )  -- poss ib ly  correlated standard Brownian motion pro- 
cesses. 

The asset and liability processes are related as follows: 

(65) PAL = C o v  (dza ,  dzL) 

The model is more realistic than the standard options model since it does not 
have a fixed expiration date but rather allows the liabilities to run off  over an 
infinite time horizon. In effect, it models liabilities as a perpetuity subject to 
exponential decay. Thus, it is a better model for long tail lines than the 
standard options model. 

CUMMINS uses the model to obtain the market value of  default risk, D ( A ,  L).  
Using Ito's lemma to differentiate D and then using either a hedging argument 
or the ICAPM to eliminate the risk terms, one obtains the confluent hyper- 
geometric differential equation. The solution is: 

(61) D (x) - F ( 2 )  b a x - ~ e - b/x M (2, 2 + a, b / x )  
F ( 2 + a )  
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where a = 2(r,+ O)/Q, 

b = 20/Q, 

Q = a ] + a ~ - - 2 a A a L P A t ,  and 

M = Kummer's function (see ABRAMOWITZ and STEGUN (1970)). 

This perpetuity model has significant potential for pricing blocks of policies 
subject to default risk. It poses much easier estimation problems than the 
KRAUS-ROSS model since one need only estimate the variance and covariance 
parameters of assets and liabilities rather than betas and factor risk premia. 

CONCLUSIONS 

This paper discusses the principal asset pricing models that have been 
developed in financial economics and their applications in insurance. Insurance 
pricing models have been developed based on the capital asset pricing model, 
the intertemporal capital asset pricing model, arbitrage pricing theory, and 
option pricing theory. The distinguishing feature of these models is that they 
take into account the forces of supply and demand in the capital and insurance 
markets. The models assume either that insurance policies are priced in 
accordance with principles of market equilibrium or that they are priced so that 
arbitrage opportunities are avoided. These are important ideas, which need to 
be incorporated into the actuarial approach to pricing. 

Additional theoretical and empirical research is needed to develop more 
realistic insurance pricing models. For example, most of the models assume 
that interest rates are non-stochastic even though insurers face significant 
interest rate risk. The traditional risk-free rate is actually free only of default 
risk. 

With few exceptions, existing financial models do not price the risk of ruin. 
Estimation, especially for betas and market risk premia, is a major problem 
given the existing insurance data. Option models and perpetuity models such as 
CUMMINS' cohort model may offer solutions to some of these problems, since it 
is possible to incorporate stochastic interest rates and since these models rely 
on relatively few parameters. 

Financial pricing models for insurance can be expected to evolve along with 
financial economics in general. This suggests that multi-variate diffusion 
models, the consumption capital asset pricing model (BREEDON (1979)), 
martingale pricing models (DuFFlE 1988)), and lattice models (BOYLE (1988)) 
may provide promising avenues for future research. 

Research into financial pricing of insurance will be greatly facilitated by 
more interaction between financial and actuarial researchers. Finance theory 
currently is more advanced in using concepts of market equilibrium, hedging, 
and arbitrage, but actuarial theory offers more sophisticated and realistic 
models of the stochastic processes characterizing insurance transactions. Both 
areas of expertise must be brought to bear on the problem to arrive at 
meaningful solutions. 
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