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A B S T R A C T  

An IBNYR event ~s one that occurs randomly during some fixed exposure 
interval and incurs a random delay before it is reported. A previous paper 
developed a continuous-time model of  the IBNYR process m which both the 
Po~sson rate at which events occur and the parameters of the delay distribution 
are unknown random quantmes; a full-distributional Bayesian method was 
then developed to predict the number of unreported events Using a numerical 
example, the success of th~s approach was shown to depend upon whether or 
not the occurrence dates were avadable in addmon to the reporting dates. This 
paper considers the more usual practical s~tuatmn in which only &screhzed 
epoch reformation is available, this leads to a loss of predictive accuracy, 
which IS investigated by consldenng various levels of quantlzatlon for the same 
numerical example. 

K E Y W O R D S  

Incurred But Not Reported (IBNR) models; reporting delays; Bayesmn 
estimation and prediction; Bayesian approximations; &screte-tlme models. 

1. I N T R O D U C T I O N  

An Incurred But Not Yet Reported claim m insurance is an event whose 
occurrence during some fixed exposure interval is not known until some later 
date because of random reporting delays. These claims, plus the Incurred But 
Not Fully Reported claims, which have been reported but whose cost 
development is incomplete, form the Incurred But Not  Reported (IBNR) 
portfolio for a given pohcy exposure mterwd The accurate predlchon of the 
total number and the ultunate costs of such clamls is a critical and recurring 
problem m many insurance hnes 

In JEWELL (1989), hereinafter referred to as IBNYR-I,  the author developed 
a continuous-time model for pre&ctlng the number of unreported 1BNYR 
events, under the assumptions that the random (Polsson) rate of event 
occurrence as well as the parameters of  the delay distribution are unknown 
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Examination of  the hkehhood revealed not only a coupling between the 
unknown parameters  for the number of  occurrences and their associated 
random delays, but a strong dependence upon the type of epoch data available, 
for example, having only reporting dates but not occurrence dates led to 
predictions with wider variances than when both dates were available A 
Bayesian development was then used to obtain a full predictive distribution 
and, from it, the interesting point predictors; natural conjugate priors were 
used for simplicity, although extensions to empirical priors are immediate. 
Either way, the key computat ional  issue is the evaluation of the ratio of  two 
integrals, for which various good approximation techniques are available. So 
predictive means, variances, and tall probablhtles for IBNYR events are now 
easily obtained under continuous-time assumptions 

However,  m most firms, exact epoch data is difficult to obtain, is unrehable, 
or, possibly, is dismissed as being unimportant  For instance, most models in 
the IBNR literature use quant~zed reporting intervals that are one year long, 
the same length as the usual exposure period While this may give satisfactory 
results for the long-duration cost evohmon of  many casualty claims, reporting 
delays may be shorter than or comparable  to the exposure interval, so that 
gross &scretlzat~on can, as we shall see, lead to a slgmficant loss in predictive 
power. Exceptions might be claims for Industrial diseases (such as asbestosls) 
or for product liability, both of  which may take a long time to develop 

The model we develop below is parallel to that of  IBNYR-I ,  except that the 
reporting of  dates Js dlscretlzed into intervals equal to, or a submultlple of, the 
basic exposure interval We model the eqmvalents of  the first two cases of  
epoch data described in IBNYR-[  (reporting dates always observed, occurrence 
dates may or may not be reported), since we know that both classical and 
Bayesian predictions are already bad m the other continuous cases where only 
occurrence dates, or only counts-to-date are available To compare the effects 
of  changing from continuous to quantlzed data, we consider the same 
numerical example as in the first paper 

Impor tant  references on the IBNR problem were given in IBNYR-I ;  
supplemented by those below, they together give an overview of research in this 
area, most of  which emphasizes point estimates for discrete-time cost-evolution 
models. Our results wdl not parallel these other efforts until a planned third 
paper on the " I B N R  tr iangle" appears, in which the effect of  collateral 
discrettzed data from several exposure periods ms analyzed. As discussed in 
IBNYR-I ,  we believe that it is Important  to understand thoroughly the effect of  
various modelling assumptions upon event prediction before adding on the 
dynamics of  random cost evolution 

2 T H E  M O D E L  

As m IBNYR-I ,  we assume that, during an exposure mterval  (0, T], a random 
number of  events, ~, occurs according to a Poisson process with parameter  2T 
This lmphcs that, given ~ = n, the occurrence epoch~ (Y~, f fz,  . Y,,) of the 
events are, a prlort, independent and uniformly distributed over (0, T]. 
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Associated with each event indexed k is a r andom reporting delay, ~Vk, so that 
the actual observation or reporting epochs are fix =-~'k+~va (k = I, 2 . . . .  n) 
Each delay is assumed to be i.i.d with a c o m m o n  probablh ty  denslty, f ( w l  0), 
that  depends upon one or more  parameters,  0. It follows that, is gwen 0, each 
event pmr (£k, Yk) is l.l.d, with joint  density" 

1 
(2.1) p(x,  ylO) = f ( y - x l O )  (0 < x < T, x < y < oo) 

T 

over the semHnf imte  wedge-shaped region shown in Figure 1, and zero 
elsewhere. If  we observe the report ing dates o f  the I B N Y R  events over some 
observatwn interval (0, t ] ,  it Is clear that  only those pairs with Yk -< t will 
actually be reported,  so that  the total number  o f  reported events will be some 
number  R less than n 

As before, we assume that 2 and 0 are ou tcomes  o f  the unknown  random 
quan tmes  2 and 0, respectively, for convenience a prtort independent  with 
known prior densmes, p(2) and p(O). Suppose that epoch data ;'/~ is observed 
for each of  the R reported events. Given these priors and the total data, 
r/ = {R, U 9~}, the parameter esttmatton problem ns to determine p(2,  0l f / )  
and the event predlctton problem IS to determine p(ul r/) ,  where t5 = f i -  R is the 
unknown number  o f  unobserved I B N Y R  events still outs tanding 

To introduce the effects o f  dlscrete-tmae reporting, we imagine that the time 
axis is p a m t l o n e d  into equal reporting intervals, / t  = ( ( l -  l ) d , / d ]  
( / =  I, 2, . ), thus ,4 < T i s  the c o m m o n  length o f  the report ing intervals, and 
the precise values o f  any dates within that interval are lost. We assume that A is 
a submulnple  o f  T, so that I = T/A, the quanttzatton level, is a posmve  integer 
In practice, T is usually one year, and I = I, 2, 4, or  12. The observatmn 
interval (0, t] can now only be, say, t = JA, with J = 1,2, . . 

We now consider two cases o f  quantized epoch report ing that  correspond to 
the cont inuous  data types I and II analyzed m I B N Y R - I .  

2.1. Type lq Data. Quantized Occurrence and Reporting Dates 
In th~s case, the cont inuous- t ime epoch data  (x k,),~) for an observed event 
indexed k is mapped  into "/~ = (ia,.la), two positive integers mdmatmg the 
report ing intervals, vlz (i , j)  =- (xE 6 )  f'l (3'~ / j ) .  Obviously,  (1 < l < I)  and 
(d > i) always Figure I, which shows the joint  part i t ioning of  the allowed 
region for I = 4 and t = 4.0, gives a " t d m g "  that helps us to wsuahze the 
quant lza t ion Most  o f  the tiles are squares with sxdes A, but, if x and y are m 
the same interval, then (J,J) IS reported m a m a n g u l a r  region, since x < y 
always 

The probabl lmes  associated with each tile can be expressed most  easily with 
the md of  the funct ion:  

1 ~'~/ 
(2 2) q~/,(0) = - -  F(wl  0) dw (h = 1, 2, .) 

T v(/,- 1),~ 

(q~0(0) = 0), which ,s mono ton ic  over the integers and approaches  1 -I  for 
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I'IGURE 1 Reg tons  o f  d e f i n m o n  o f  qudnt lTed o c c u r e n c e  a n d  r e p o r t i n g  da tes ,  s h o w i n g  the 
d ~ s t n b u t m n  o f  74 o f  the 100 events  gene ra t ed  wHh 0 = 0 5 yea r  -~, for  1 = 4 a n d  J = 16 

every 0 as h + oo. Letting ~z,j(O)=.-'5 {~/k = (t,J)lO} (any k) be the mass 
assomated with tile O,J), we find from (2 I) that" 

(2 3) 2z,j(O) = cb;_,+,(O)-q~,_,(O) (1 <_ i <_ l ) ( j  >_ t). 

In other  words,  the mass o f  each cell a long the " d m g o n a l s "  with constant  
h = j - t + l  (h = 1, 2, .) is the same, which might be expected from first 
prmctples Thin is the discrete eqmvalent  o f  a hkehhood  that depends only on 
w = y - x  (w > 0), as in the Type I contmuous- t tme  data  models ,  m fact, tf 
( / ' - t )  = w and a ~ 0, (23)  approaches f (wlO)AZ/T,  so that events with about  
the same w carry the same reformation m the hmlt 

Suppose a total o f  R events were reported during the observat ton mterval 
(0, Jz:l]; this includes only events for whmh j < t/A Rather  than repor tmg the 
discrete dates (t,j) for each event k, we can lmagme that the epoch data 
represents a dmrtbutton of  the R events into % events for each tile (t,j), 
fo l lowmg a mult lnomial  law with probabthttes  equal to g,j(O), normalized by 
dwldmg by the sum of  probabthttes  over all cells in the observat ton interval. 
However ,  because o f  the structure o f  (2.3), the {%} can be accumulated over 
cells o f  equal mass on each dmgonal ,  reducing them to the suffictent stattstws 
for  Type Iq data" 

mm(/  J+  I -h}  

(2 4) Sh = 2 r, ,~h I (h = 1,2, J )  
i=1 

The comphca ted  upper  ltmlt restricts the length o f  the observable " d i a g o n a l "  
elements as h approaches  J and if J < I. 

Figure 1 shows how the 74 counts  for J =  16 and I =  4 m the numerical 
example are distributed over the cells. We find easily that s = [3, 8, 14, 7, 5, 6, 
4, 6, 5, 6, 5, 2, 2, 1, 0,  0_] r, but  note that, because o f  (2.4), if we decide to 
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increase J, then the last (underhned)  1 -  1 numbers  would have to be increased 
by any new counts  on their diagonals  I 

If  we express the probabl lmes  (2 3) m terms of  

(2 5) ~Ph (0) = q~h ( 0 ) -  q~, , (0) (h = I, 2 , . .  ), 

the multulomlal  condutonal data hkehhood, given R and 0, is 

(2.6) p ( U  ~/alR, 0) = [~oh(0)] '~ mm (I, J +  l - l )  q~(0) , 
• ~" h -  I 

where ,~ = [ s l , s 2 , . . , ~ j ] T  iS defined over the discrete simplex, 0 < s h < R, 

Xsh = R Note  how the total no rmahzmg  mass requires a weighted sum o f  all 
the {~ph(0)t to account  for the fewer tiles near h = J 

2.2. Type Ilq Data. Quantized Reporting Dates 

The situation is somewhat  simpler with only report ing epochs, "/~ = (j~), 
given for each event, which means that all event counts  and probabilities are 
merged Ill each " c o l u m n  " o f  ceils in Figure t. Thus,  the suffwient stattstw~Jor 
Type l lq  data are r = [rl ,  r 2 , . .  r j] T, where.  

mm (I,j) 

(2 7) r / =  2 % ( j  = 1 ,2 , .  J ) .  
t - - I  

This g ive s r  = [2, 1 , 8 , 6 ,  1t, 7, 5, 6, 6, 5, 5, 5, 2, 1 , 4 , 0 ]  T from Figure I (2 7) 
can also be thought  o f  as the result o f  a mul tmomm[ sorting o f  R events, this 
time with probablht ies  

mm (j ,  /)  

(2.8) ~j (0) = Z %(0)  = q~j ( 0 ) -  q,,_ ,(0) ( / = I, 2 . . . .  ),  
t - - I  

where the second term vanishes l f j  < I 
Thus,  for Type l lq epoch data,  (2 6) is replaced by.  

(2 9) p ( U  "-' ~1 R, 0) = [re, (0)1 ~, ~zl(0 ) , 
r 

with r defined over the discrete R-smaplex Here the norrnahzmg mass is 
simpler because each rcj(0) is already the sum of  mdwldual  tile probab, lmes  m 
each column.  

As J - - ,  0, (2.8) reduces to A times the usual pl 'obabdlty for cont inuous  
Type II data,  that is, [ F ( t l O ) - F ( ( t - T )  + 10)] A/T.  Of course, when I = I and 
J = T, the distraction between discrete Cases lq and llq vanishes, since 
~j = rj = I i j ,  and ~pl(O) = ~1(0) = ~zu(O ) 
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3. D A T A  L I K E L I H O O D S  A N D  MLE E S T I M A T E S  

In the next two sections, we assume that Type Ilq data is available, however, 
all formulae in which {r~} and {zt:(0)} are used can be changed to Type Iq 
simply by replacing them with {sh} and '~0h(0)}, respectively Our first step is to 
uncondmon (2.6) and (2.9) on R by noting that, given n and 0, n can be 
considered as being partitioned blnomlally into /~' and t7. At this point, it is 
useful to introduce the continuous cumulative probability function defined m 
IBNYR-I : 

/ / / ( t [ O ) =  TI I'<,-T)" F(u.!O) dw = E = E ln in( l ,J+ (3.1) 

wlth t = JA and T = IA, as before Thus, 171(JA I0) IS the mass associated wlth 
R, and each event is unreported wlth probabil i ty I - / I ( J A [ 0 )  The total data 
comhttonal hkelihood becomes the multmomml'  

/ (")H (3.2) p(</IO, n) = [~zj(O)l~,[l_H(j310)], R 
r n - R  I - i  

Let r = mln (T, t) = .J mln (I, J). Then, gwen 2, the total number of  evems 
generated (but not necessarily observed) in (0, r] follows the Poisson law wlth 
parameter 2r. Setting u -- n -  R in (3 2) and marglnahzmg over all values of u, 
we obtain the final data hkehhood in terms of  the under[ylng parameters 

J 
I 

(3 3) p ( < / 1 2 , 0 )  = H( t l ! )  I - I  [~j(o)]r'(~.r)R e )rll(J.J O) 

(The first term is uninformative, and may be dropped) (3.2) should be 
compared with (4 2) in IBNYR-I (where R was written r), It might, In fact, be 

~ 

arguest directly from it. The last term m (3 3) reflects the coupling bctween 2 
and 0 induced by the data. so that, even if they are a priori independent, they 
will become a postertort dcpcndent 

Assuming 0 represents a single delay ^parameter, the traditional point 
estimates of  the parameters, the MLEs (2, 0), are found from'  

(3.4) ( ) . r ) L ~ , ( 0 ) =  R- E d%(O0)[ r' - R I = 0 .  
dO ~j (O) 2:n~ (O) 

(All sums are over observed intervals only) The second equauon can be used 
to find 0 numerlcally, which IS then used in the first equatlon to glve 2 The 
M L predictor would then be ii = f i r - R .  

4, BAYI'S/AN FORMULAT/ON 

AS argued in IBNYR-I,  we beheve that a Bayesian formulation is the natural 
one for |BNYR problems, since in most applications there will always be 
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rather good prior opmmn and relevant experience data about the likely values 
of ~. (which will be hnked to the number of risk contracts in the portfolio), and 
about the parameter(s) of the delay distribution (which reflects claim filing 
delays, administrative flow, adJustment procedures, e tc ,  that are common to 
all claims m similar lines m each company) No actuary makes estimates in a 
complete vacuum. The Bayesmn approach also has the great advantage of 
giving a complete pedicttve dtstrthutton, which is essentml for setting aside 
portfoho fluctuation reserves. 

For consistency with IBNYR-i.  we again assume that ~t and 0 are, a priori. 
independent, with p(2) a 4,, ........ (a, h) density For the rest of  this section, we 
shall leave J ( 1 0 )  and p(O) m general  form, later specmhzmg to exponential 
delays and another Gamma prior for 0. As m IBNYR-I, these assumptions do 
not simpl,fy the joint posterior-to-data denstty, p(2, 01 :/), because of the 
coupling term, exp[-2rl l (JA 10)]. However, when predicting the number of 
unreported events, ti = f i -  R, we can follow the development m IBNYR-I and 
show that tL given (2, 0), is PoBson with parameter 2 [ T -  rH( t l  0)], because of 
a fortuitous cancellation of the coupling term Thus, the predtcttl,e denstty 
factors into a product of two shapmg/'actors" 

(4.1) p(ul ' / )  ~ h:(ul "/)ho(ul '" ), 

with 

(4 2) r(a+R+u) V T 1" T" 2R+" e~ )r p(2)d2 oc 
h~ (u I :" ) = u! u t Lo + TJ 

with a ~, .......... (a, b) prior, and 

(4  3 )  ho(ul : / )  = [n , (O ) ]  r, 1 - l l ( t l O )  p(O) dO 
- T 

for Type llq data, with a similar form for Type lq. Note that the first shaping 
factor depends only on R and p(2), while (4.3) depends only on r or s and p(O) 
As m IBNYR-I, we refer to the term involving u in (4.3) as the kernel, 
K(O). 

Computation of the predictive distribution is most easily accomplished using 
the recurslve form: 

(4.4) p ( u + l l ' / )  = ( a + R + u ) (  T ) ( h o ( u + l l : / ) ) ,  

p(ul ' / )  u+ 1 b+ T ho(ul :, ) 

calculated by starting w l t h p ( 0 l ' / )  = l, then normahzmgwhen fimshed With 

no data, the marginal (prepostenor) predlct,ve density is simply a /,,,,,,/ 
(a, T/(h+ T)) density As .n IBNYR-I. (4 4) also provides a Bayesian point 
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estmlator, the pre&cttve mode, h("/),  as the smallest mteger not less than the 
value tt* that satisfies" 

(4.5) u* + 1 = T 
b + T ho (u* I ' / )  

Note that only the ratios of  h o are needed m (4.4), whmh means that sunple 
approx~matmns to the integrals wdl gwe qmte accurate predmtwe densities 
(TIERNEY & KADANE, 1986), (KASs, TIERNEY & KADANE, 1988) We now 
consider how these integrals might be approxm~ated ff the delay d~stnbutmn 
were exponentml. 

5 EXPONENTIAL DELAY DISTRIBUTION 

Following the example m IBNYR-I, we set f(wiO) = 0 e x p ( - 0 w )  ( w >  0), 
and recall that 

(5.1) H(tlO) = ( 1 -  ~u(0r) e "), 
T 

where the properties of the useful function ~(v)  = [ 1 - e  
that paper 

Then, from (2 2), we find 

(5.2) ~j, = I -  I ( 1 - ~ (OA) e- ih- I) oa) 

and the Type lq probabdmes from (2 5) are 

(53) ~o,,(O)={l-'[1-q/(OA)] ( h =  1) } 
I I[OA ~ 2 ( 0 A ) e  (h 2)oJ] (h = 2 , 3 ,  ) 

']/v were gwen In 

(/7 = 1 , 2 , . . ) .  

The shghtly more comphcated Type llq data probab]lmes are found from (2 8) 
a s '  

(5 4) gj (0) = { 'I[]-~-I(OZI)£'(/I)O,] ( J =  l 9 .. 1) } ,  _, . 

1 l[OTq/(OA)~(OT)e (j / I)0,)] ( / =  I + 1 , 1 ÷ 2 , .  

Rewriting ho as in I BNYR-I.  

(5.5) h°(ul ' / )  = I L(O]'/)[K(O)]"p(O)dO, 

the epoch data hkehhood, L(0), Is then expressed for Type |q data as 

I 

(5 6) /.(01 ' ,  ) = I [  Dh(0)]'" .~ [t - ~(0A)]', [0A ~u2(0A)] R ', e ,1 ,,, 
h I 
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where umnformatlve constants have been dropped,  and M, is the moment :  

J 

(5.7) M s =  Z ( h - Z )  sh. 
h=2 

In other words, with exponential delays, (s~, R, Ms) becomes the reduced set of  
sufficient stausucs for Type Iq data. Remember  that, with each new value of  J, 
the I -  1 most recent values of  s have to be recomputed from (2.4), otherwise, 
there ~s nothing specml about  the choice of  J relative to 1. 

For  Type Ilq data, assuming J > I :  

J / 

(5.8) L ( 0 1 ~ )  = H [nJ (0)]~'°c H [l--~(OA) e-(J-')O~lr' 
j = ]  j=l 

x [0T gt (0A) ~U (0 T)] nj e -  Mr 0~f, 
where uninformative constants have been dropped, and 

J J 

(5 9) Rj= Z rj, Mr= E ( J - l - I ) r j "  
j = l +  I j = l +  I 

In this case, (r~, r 2 . . . .  r l ;  R j ;  M r )  become the sufficient statlst~cs I f J  < /, the 
product term i n  ( 5 . 8 )  has an upper limit of  J, the terms on the second hne are 
dropped s i n c e  R j  = M~ = 0, and the sufficient statistics revert to (r~, r2, . . r j ) .  

In contrast  to lq data, once all of  the values m r are computed for a given I. 
they can be used for any J 

6 N U M E R I C A L  E X A M P L E  A N D  D A T A  A N A L Y S I S  

To facihtate comparison with pre&ct~on using continuous data, we will use the 
same basic data and assumptions as m IBNYR-I ,  namely, that 2 has a 

~, ........ (2, 0.02) prior density and T = 1, so that the no-data (marginal) 

pre&ctlon density is .d,d~,,/(2, 1 02-1), with m e a n /  {~q} = 100 events, mode 
= 49, and fractlles n05 = 165, n25 = 47.0, n75 = 134.5, and n95 = 238 1 

The delay is assumed to be exponentially distributed, with a ~4 .......... (4,6) prior 
density on 00, so that the prior mean delay is # {0-~} = 2.0 years, with 
7 {0 -I} = 8.0 years 2 

For  the purposes of  simulation, we "s tacked the deck"  by using the same 
100 samples (xt,yt) as IBNYR-I ,  where the xk were drawn from a uniform 
distribution over (0,1), and the delays, w k = y k - x t ,  were drawn from an 
exponential density with true parameter 0 = 0 5 years-~ As shown m Table 1 
of  IBNYR-I ,  this gave continuous delay samples from 0 163 to 12.402 years, 
with a sample average delay of 2 35 years, somewhat  larger than the true mean 
Thus, our experiment assumes accurate but not too precise prior knowledge, so 
that the behawor below shows primarily the effects of  quantlzatlon and the two 
different data types Clearly, with vaguer pmor information, we would see a 
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for Types Ic and l lc  continuous data 
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further  degradat ion o f  the predictive power for the smaller values o f  t ( J ) .  
Figure 1 shows the individual cell counts  for this sample when zI = 0.25 years 
( / =  4), and t = 4.0 years (J = 16). The values for the stahstlcs s and r were 
given above in Section 2. 

As the effects o f  quant lzat lon are the mare interest o f  this paper, computa -  
tions were carried out for many  different values o f  I, with I = I, 2, 4, and 8 
finally chosen as representative, with complete pre&ct~ve densities computed  
for observat ion intervals t = 0 ( 0 5 )  10.0, except when 1 = 1, when only 
t = 0(1 0)10 0 is possible. Approx imat ions  for the shaping factor Integral h o 
were computed  using the G a m m o l d  method outhned xn I B N Y R - I ,  in which a 
numerical search for the mode, 0, o f  the c o m b i n a h o n  L(O] r / ) p ( O )  is made, 
and the ummoda l  curve then approximated  at the mode by a curve o f  the form 
g(O) = (AO) c e - ° °  Since, t~ a good  approximat ion ,  the kernel K(O) ~ e -~° in 
the ne ighborhood  o f  this mode,  the integral (4.3) can be computed  exactly, 
g~vlng a final recurswe relat~onshlp like that in (10.1) o f  I B N Y R - I  Initially, the 
mode  was chosen from the prior density as 0 = 0.5, f rom two to five iterations 
were then necessary to find the true value o f  the mode, which ranged from 0 46 
to 1.98 in the cases examined. For  smaller values o f  t and I, p (u I -~/) is heavy in 
the tails, so, to obtain stable means, the recurslon (10.1) was c a m e d  out  over 
the range [0,1000], and, m a few cases, [0,2000]. As the no-data  (t = 0) case is 
known analytically, a total o f  2×  ( 1 0 + 3  × 20) = 140 complete densities, 
p (ul ~/), were computed  for Figures 3-6 below This task took 5-10 seconds per 
density on a PC-AT.  The densities themselves look much like Figures 5 and 6 
m I B N Y R - I ,  and are not shown. But f rom these, the means, modes,  and 
fractiles shown in the figures below were computed  for the total count  
n = R + u  

Our  s tandard  o f  compar i son  will be the cont inuous  data  predictions, the 
results for which are reproduced from I B N Y R - I  m Figures 2a & 2b; for short,  
we shall refer to these as the Ic and Ilc results, respectively For  ease in 
compar ison,  we keep the same vertical scale in all plots against the observat ion 
interval, t ( J ) .  

Figures 3a & 3b show the Types lq and llq results for a fine quant lzat lon 
level, I = 8 At this level, it is practically maposslble to see the effects o f  
discrete reporting, as the only differences are a few percent m the upper  
fractiles m the interval 1.5 < t < 2 5 

When we coarsen the quant izat lon level to I = 4, as shown in Figures 4a & 
4b, there begins to be a noticeable increase m the Case Iq upper fractfles and 
the pre&ct~ve mean m the interval [I.0, 3 0], but still less than 4 %  in the worst 
case. However,  the degradat ion o f  Type llq predictions is noticeably worse, 
wzth increase m the fractfles, the mean, and the mode  m the region [0.5, 3.5], 
up to 11% m the worst cases It should be remembered that I = 4 means that 
the report ing interval IS one-eighth the mean delay, which IS already more 
frequent than many  implementat ions encountered in practice 

Then, with I = 2, Figures 5a & 5b both show the instability in the interval 
l1 0, 3 5] that  before was characteristic o f  only Type II data.  In fact, the 
Type  Iiq predictions in the unstable region are now so bad as to be unrehable 
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unless no other est imates  are available.  Even the region t > 4.0, which 
heretofore had given s~mdar results for both types o f  data because over 74 % of  
the counts  were reported,  now s h o w s  s o m e  "'bobbling around"  due to the 
changing aggregation o f  data. 

Finally,  we have the case I = 1 in which Cases lq and l lq coalesce .  To  
illustrate the extreme degradation m this case, we have chosen to plot the 
results In Figure 6 on the same vertical scale as previous graphs,  rather than 
changing the scale to show all the results For t = 2.0 (t = 1.5 cannot  be 
computed) ,  the miss ing predlctwe mean count  is 481 1, the m o d e  ~s 430, and 
the upper fractiles are 575 and 763, respectlvelyV Clearly, the use o f  a 
quant lzat lon interval that ~s one-half the mean delay ~s much too  coarse when 
1.0 _< t < 6 0 Admit ted ly ,  the region above  that ~s reasonable,  but that ~s 
prediction with at least 93 % of  the events  already reported! 

Figures 7a & 7b give a "cross - sec t iona l"  impress ion o f  the changing level o f  
quant izat ion,  m the case for t = 2 0, which is In the region o f  instability with 
4 6 %  o f  the events  reported. The vertical scale has now been doubled,  so that 
one may now clearly see how bad the cases I = 1 and 1 = 2 truly are. In my 
opinion,  one  should pick at least / = 4 m Case Iq and / = 8 m Case l lq  to get 
" g o o d "  predictions,  which means  that, given a mean delay o f  2.0 years, one 
must  have semi-annual  or quarterly data, respectively!  
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7. DISCUSSION AND SUMMARY 

We should perhaps emphasize once more that the results obtained with 
changing levels of  quantization (for a fixed observatxon interval) are due solely 
to changes In ,4 and data type upon the epoch data likelihood L ( O l f / ~  in 
(5.5). This is because the part  of  the prediction that depends upon 2 is 
unaffected by changing `4; R reflects all of the relevant information we can 
obtain about  the event rate for the purposes of  predtctmn: On the other hand, 
(3.3) shows that the computat ion of the joint estimates of 2 and 0 will be much 
more difficult 

The effect of  quantlzatlon upon the epoch data hkehhood can be visualized 
In Figures 8a & 8b, which show this function when t = 2.0 for 1 - -  
(continuous data), 4, 2 and 1, for the two different data types Although the 
mean and mode shift somewhat  as I decreases from ~ towards 2, the 
predominant  effect is an increased spread in the likelihood These likelihoods 
are multlphed by the prior density (dotted line), the results approximated by a 
Gammold ,  and then used with the kernel to find the shaping factors ho(u[f~),  
and, from the recurslon (4.4), the final predictive density. Note  that Type l lq 
data likelihoods, although converging faster with finer quantizatlon, do not 
shift the mode as much as Type lq;  since the true value of 0 is 0.5 (mode of 
pNor density), this means that Type IIq data will give less accurate predictions. 
The case I = 1 is, well, hopeless. 

Keeping in mind the summary observations that were already made in 
IBNYR-I  about  the continuous-data prediction problem, the main lessons to 
be drawn from this paper a re '  

(I)  The introduction of quantized reporting of epochs into the IBNYR model 
requires no new concepts and only a modest increase m algebra and 
computat ional  effort. 

(2) Case IIq data (no occurrence dates reported) continue to give poorer 
predictions than Case Iq (both occurrence and reporting epochs known) 
and the predictions degrade more quickly with coarser quantlzatlon. 

(3) The predlcUve accuracy of  these &screte-ume models, m comparison with 
the continuous case, declines dramatically as A increases from, say, 
one-sixteenth the mean delay to one-quarter  the mean delay. A tentative 
rule-of-thumb seems to be to choose ,4 to be at least one-eighth the mean 
delay wlth lq data and one-sixteenth the mean delay with Ilq data, if at all 
possible. 

(4) The case 1 = 1 (,4 is one-half  the mean delay), while coalescing the two data 
types and simplifying the sufficient statistics, is so poor  as to be unusable in 
the region of  interest. 

Admittedly, it is dangerous to extrapolate from one numerical example to 
practice For instance, one may be able to be much more precise a prtori about  
the parameters  of  the delay distribution; this narrower prior will, to some 
extent, counteract the imprecise data likelihoods obtained with coarse quantl- 
zatlon. And, as always, the final predictive spreads can be greatly reduced if we 
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can provide better prior information about the occurrence rate, perhaps by 
incorporating the underlying business volume Into the model 

With this understanding of  the potentml hazards of  quantized reporting, our 
next paper will consider the question of  whether or not cohort data from an 
IBNR traingle can sharpen our estimation o f  the unknown delay distribution 
and improve our predictions o f  the unreported events 

] would like to thank M. LIN for her substantial computational  and proofing 
assistance in developing these results Any comments  or crtticisms on this paper 
are welcome,  as are suggestions for making the basic model more realistic and 
useful. 
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