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ABSTRACT 

This paper presents applications of stochastic control theory in determining an 
insurer's optimal reinsurance and rating policy. Optimality is defined by means 
of variances of such variables as underwriting result of the insurer, solvency 
margins of the insurer and reinsurer and the premiums paid by policy- 
holders. 
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INTRODUCTION 

The problem of optimal reinsurance has been widely discussed in risk- 
theoretical literature. This problem has several answers depending on the 
optimality criteria used and assumptions on random variables involved. 
However, from the theoretical point of view a marked simplification is 
possible. It has been shown e.g. by BORCH (see GERBER 1979) p. 95) that for 
every pair of concave utility functions of the cedant and reinsurer the optimal 
reinsurance arrangement can be found among those where the reinsurer's share 
of the claims s a function of the total claims amount only; dependence on 
individual risks or claim sizes is not needed. In PESONEN (1984), Theorem 10.5, 
a method for constructing an optimal reinsurance form is also presented when 
the utility functions are known but arbitrary. Usually the problem of optimal 
reinsurance is treated as a static one; i.e. the problem is to divide the total 
claims amount of a fixed time period, e.g. one year, into cedant's and 
reinsurer's components in an optimal way. In this paper a longer perspective is 
taken by assuming that 

a) a reinsurance contract between two insurance companies (the cedant and 
• reinsurer) has been made for a fairly long period and both parties will look for 

an arrangement which would be optimal (under some criterion) over a longer 
term. 

This assumption justifies among other things the use of asymptotic methods. 
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Moreover, we assume that 
b) the reinsurer's annual share of  the total claims amount  is a function of  
present and past annual total claim amounts only (i.e. reinsurance does not 
depend on individual risks); 

and 

c) the reinsurer's share is a linear function. 

Assumption (b) is motivated by the above-mentioned theorem of  BORCH. 
The linearity assumption (c) allows us to use the methods of  linear stochastic 
control theory. It has been shown by PESONEN (1984), Theorem 10.13, that 
linear functions are optimal if the utility functions of  the cedant and the 
reinsurer are linear functions of  each other. 

It is obvious that the three parties involved, the policy-holders, the cedant 
and the reinsurer, have conflicting interests. Each of them desires to have as 
small a share as possible of  the total variation emerging from claims occur- 
rences. It is in the interest of  policy-holders that fluctuation in the premium 
rates be only moderate. The cedant and the reinsurer put value on smooth 
flows of  underwriting results and solvency margins. In this paper we attempt to 
find a balance between these different interests by stating the optimality criteria 
in terms of  the variances of  the main variables. Examples are minimization of  
the variance of  the total claims amount  retained, subject to a constraint on the 
variance of  the reinsurer's accumulated profit;  or minimization of  the variance 
of  the premiums collected by the cedant, subject to a constraint on the sum of 
the variances of  cedant's and reinsurer's accumulated profits. 

The basic model is introduced in Section 1. Section 2 studies a simple case 
where both cedant's and reinsurer's premiums are assumed to be constants. In 
that section we use a technique of  BOX-JENKINS (1976), Section 13.2; see also 
RANTALA (1984). In Section 3 a more general case is considered. It is then 
assumed that the premiums paid by policy-holders to the cedant company are 
also a controllable variable. This introduces an experience rating aspect into 
the model. The numerical solutions are relatively easy to find with the aid of  
the Kalman filter technique (see also RANTALA (1986)). 

The main purpose of  this paper is more to show a feasible way to attack the 
problems of  reinsurance than to give explicit results directly applicable in 
practice. Related works are among others those by BOHMAN (1986), (who also 
considers the reinsurance contract on a long-term basis), GERBER (1984) and 
LEMAIRE-QUAIRIERE (1986) (who consider reinsurance chains). 

1. The Basic Model 

Consider two insurance companies. The variables relating to company 
j ( i  = 1, 2) are labelled with the subscript j. Company 1 is called the cedant and 
company 2 the reinsurer. All variables are measured as proportions of  a joint 
basic volume measure V(t). This may be taken as e.g. the sum of  insurance 
sums, payroll, a suitable monetary index multiplied by the number of  policies, 
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or it may be some measure which is a basis for tariffication. Thus the variables 
may be termed rates (claims rate, premium rate etc.). Moreover, all variables 
refer to that part of the portfolio which is covered by the reinsurance 
agreement in question. 

We assume that V(t) progresses according to equation 

(1.1) V(t) = rg(t) rx(t ) V ( t -  1). 

In equation (1.1) the total growth of the volume V(t) is attributed to two 
factors: the growth in number of policies or risks units described by re(t) and 
the growth due to inflation described by rx(t ). 

Now the accumulated profit (rate) uj(t) of company j satisfies equation (see 
BEARD-PENTIK,~INEN-PESONEN (1984), Section 6.5) 

(1.2) uj(t) = rj(t) uj( t -  1) + pj ( t ) -  xj(t), 

where pj(t) is the rate of the premiums and xj(t) the rate of  the total claims 
amount retained by company j,  r/( t)= ro.(t)/rg(t)rx(t) and rij(t) is the 
interest coefficient of company j and rj(t) may be called the relative interest 
rate of companyj .  The nature of rj(t)'s is stochastic, but for simplicity they are 
in the following taken as time-independent non-random constants 
ry(j = 1, 2). 

Note that even if there is variation in ru(t ) and rx(t), coefficient rj(t) will be 
fairly stable if rij(t)/rx(t) and rg(t) are stable as can often be assumed. In 
general, values of rj:s around 1.0 are perhaps the most usual. 

In addition, xj(t)'s and pj(t)'s must satisfy the equations 

~ p(t) = pt (t)+ P2(t) 
(i.3) 

[ x(t) x l ( t )+x2( t ) ,  

where p(t) is the total premium rate paid by the policy-holders and x(t)  is the 
total claims rate. 

Another form of (1.2) and (1.3) which better brings out the control-theoretic 
aspects is 

J~ul(t) = r lu l ( t -  l ) + y l ( t )  
(1.4) l u2(t) = r2u2(t- I ) + p ( t ) - x ( t ) - y l ( t ) ,  

where yl(t)  = p~( t ) -x~( t )  is the cedant's underwriting result in the year t. 
The controllable variables in (I .4) are Yl (t) (both through Pl (t) and xl (t)) and p(t). 

We study first in Section 2 a simpler case where premium rates p(t) ,  Pt (t) 
and p:(t) are kept as constants and the problem is only do divide x(t)  into 
cedant's and reinsurer's shares. 

2. The case of constant premium rates 

Assume that Ex(t) is known and both the total premium rate p(t) and the 
reinsurer's premium rate p2(t) are constants. In order to prevent uj(t):s from 
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unlimited asymptotic behaviour it has to be assumed that rj < 1 (which has 
generally been the case in many countries due to rapid growth in business 
volume and high inflation). This assumption can be relaxed when premium 
control is also introduced in Section 3. Moreover, to simplify notation we 
consider only deviations from corresponding expectations and thus take 
Ex(t)  = 0. Hence the premium rates are in fact the corresponding safety 
loadings. Determination of their rational magnitude can be based on the 
variances of uj(t)'s but is omitted here (see however Example in Sec- 
tion 2.1). 

Thus the accumulated profits are governed by the equations 

(2.1) ~ul ( t )  = rlul(t--  l )+pl--Xl( t )  

L u2(t) = r2u2(t- I ) + p 2 - ( x ( t ) - x  t(t)).  

In the following we briefly sketch the method for finding the optimal linear 
reinsurance policy 

(2.2) xl(t  ) = aox( t )+a I x ( t - I )  + . . . ,  

when optimality is defined to mean 

(a) minimization of Oxt when Du2 is restricted to a given value (or vice 
versa) 

(b) minimization of D(AxO when Du2 is restricted to a given value (or vice 
versa), 

where D denotes standard deviation (i.e. D 2 is the variance operator) and zJ is 
the difference operator : zlx (t) = x (t) - x (t - 1). 

The former criterion aims at restricting the variation range (i.e. minimums 
and maximums) of the cedant's annual profit, whereas the latter stresses more 
its smooth flow from year to year. Variation in the reinsurer's accumulated 
profit can be controlled by the choice of the admissible value for Du 2. If the 
safety margin P2 in ceded premiums is an increasing function of Du2, criteria 
(a) and (b) also give the answers to the problem : minimize loading P2 for given 
Ox t or DAx I . 

In what follows the derivation of the optimal coefficients a0, al . . . .  in (2.2) is 
limited in case (a) to autoregressive claims rates x(t)  of at most order two 
(abbreviated as AR(2) processes and in case (b) for AR(I )  claims rates. An 
important special case of these, usually considered in traditional risk theory, is 
the white noise process of identically and independently distributed (abbre- 
viated i.i.d.) random variables. The motivation for considering AR claims 
processes is the empirical observation (see BEARD-PENTIKAINEN-PESONEN 
(1984), PENTIKAINZN-RANTALA (1982), RANTALA (1988)) that claims processes 
are at least in some cases subject to cyclical variations. Such variations can be 
generated by AR (2) processes by a suitable choice of parameters. AR (or more 
generally ARMA processes) are also used in KREMER (1982) to find credibility 
premiums. A natural way to introduce the AR component into the claims 
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process is to assume that the structure variation (see BEARD-PENTIK~iNEN- 
PESONEN (1984), Section 2.7) of the claims process is of autoregressive 
character and the process has also the usual Poisson " random noise". 
However, this decomposition is not used in this paper so as not to overcom- 
plicate the model-structure and the better to extract the relevant features of the 
control problems. 

In both cases (a) and (b) a modification of the method presented in Box- 
JENKINS (1976), Section 13.2 is used to find the optimal rules. Also the Kalman 
filter technique to be presented in Section 3 could be used in Section 2.1, but 
not in Section 2.2. 

2.1. Minimization of Dxl( t )  subject to a constraint on Du2(t) 

The problem is (a): i.e. to minimize Dxt when Du2(t) is given. As stated above 
we restrict our considerations to autoregressive processes of at most order two. 
Solutions for more general processes could be found by solving the general 
difference equations (AI.12)-(AI.13) in Appendix 1. Thus the claims rate 
process is assumed to obey the difference equation 

(2.1.1) x( t )  = ¢lX(t  - l ) + d 2 x ( t - 2 ) + e ( t ) ,  

where e(t) 's are uncorrelated random variables with mean zero and with 
variance a~ 2. To have finite variance for x( t )  coefficients tkl and ¢2 must satisfy 
the stationarity conditions 

~l"bO2 < i 
(2.1.2) 02--01  < 1 

- i < 0 2 < l .  

The formulas become more handy if the so-called backward shift operator B 
(e.g. B x ( t ) =  x ( t - l ) )  is taken into use. With this notation (2.l.l) can be 
rewritten as 

(2.1.3) q~(B) x ( t )  = e(t) ,  

where 

(2.1.4) ~ ( B )  = 1 - 0 1 B - ~ 2  B2. 

It is shown in Appendix l that for this claims process the solution to problem 
(a) is (see equations (AI.25)-(Al.26) in Appendix I) 

(2.1.5) Xl(t) = [ - ( 1 - r 2 B ) l t ( B )  ~ ( B ) +  l l x ( t )  

or equivalently 

(2.1.6) xl (t) = [ - ( l - r 2  B ) / t ( B ) + ~ - ' ( B ) ]  e(t) ,  

where -~ denotes the inverse operator and 

(2.1.7) p(B)  = A ( I - z 0 B ) - ' + ( W , +  W2B ) q~-' (B) 

and coefficients A, Wi, and WE are given by equations (AI.14), (AI.21)-(AI.24) 
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in Appendix 1 and z 0 is that solution of  (Al.16) for which [z0[  < 1. Note 
that the formulas do not depend on a 2. The relevant parameters are 01, 02, r2 
and the parameter v in (Al.14) defining the ratio Du2/Dxl. 

The reinsurance scheme (2.1.5) leads to the following equations for u~ and 
//2 : 

(2.1.8) (1 - r l  B) ul (t) = - [ - ( !  - rzB) lu(B)  ~ ( B ) +  1] x(t)'+pl 

and 

(2.1.9) @-I(B) u2(t ) = - # ( B )  x ( t )+p2/ ( I -ck l - (~2) (1-r2) .  

The variances connected with these equations are fairly easy to calculate 
from the A R M A  presentations containing e(t) 's, which result when x(t)  is 
replaced by q~-i (B)e(t)  in (2.1.8) and in (2.1.9). The details are omitted here 
(see e.g. BOX-JENKINS (1976) Section 3.4.2). 

EXAMPLE. Take the classical case of  risk theory that x( t ) : s  are i.i.d, random 
var iab les :0 /=  0 for j = I, 2. Then K = Dj = Wj = 0 ( j  = 1, 2) in equations 
(A1.24), and thus 

(2.1.10) p(B) = r f  I z 0 ( l - z 0 B )  - I ,  

where z 0 is that root of  r 2 z 2 - ( I  +r22+ v)z+r 2 = 0 whose modulus is less than 
one. Here v is the parameter fixing the ratio Du2/Dx~. The optimal reinsurance 
scheme is from (2.1.5) and (2.1.7) 

(2.1.11) xl(t  ) = ( I - z 0 B ) - l ( I - r ~ l z 0 ) x ( t )  

or equivalently 

(2.1.12) xl (t) = ZoXl ( t -  l ) + ( l - r ~ l z 0 ) x ( t ) ,  

i.e. x, (t) is calculated according to the classical exponential smoothing formula 
of  experience rating theory. The corresponding variance is 

(2.1.13) D2xl = D 2 x ' ( i - r 2 1 z o ) 2 / ( l - z ~ ) .  

The resulting solvency rate of  the cedant is, from (2.1.8), 

(2.I.14) ( 1 - r I B ) ( 1 - z o B ) u l ( t )  -- - ( I - r 2 - 1 z o ) x ( t ) + p l ( l - z o )  

with variance 

(2.1.15) DEul = (I + z 0 r l )  ( 1 - r 2 - 1  z0) 2 DE x 
(1 - z o r  0 ( l - r l  2) ( l - z ~ )  

The solvency rate of  the reinsurer is 

(2.i.16) u2(t) = ZoU2(t- 1)-r~-lZoX(t)+p2 • l - z °  
1 - r 2 

and hence u2(t ) is an A R ( I )  process with variance 
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(2.1.17) D2 u2 = D2x(r~- 2 z02 /(I -z02)). 

The following figure gives the optimal combinations of  Dul, Du 2, Dxl and the 
long-term safety loadings defined by 3.1 = 3 ( l - r l ) D u l ,  3.2= 3 ( l - r 2 ) D u 2  
and 2 = 21+22 as multiples of  Dx when r~ = r2 = 0.95. 

.I.5. 

3 .  

2 .  

I 

O ~  

0 

O.OS ~J OJ~ o.,? o25 0.3 0..~ o.# c1eJ o.5 0 .~ ~ O.o~ o.? a ~  oJ  O ~  ~l.g o.g~ 

FIGURE 2.1.1. Optimal combinations of the main variables as multiples of D~, in Example 1 when 
r I = r 2 = 0.95. 

Since an increase in z0 means that the ceded share of  the business increases it 
is quite natural that Dx~ and Du~ decrease and Du2 increases when z0 gets 
larger. Intuitively it is not so obvious that the sum of  the safety loadings has its 
minimum when the whole risk is carried by one insurer only; i.e. if the risk is 
shared by two companies the safety loading is higher than without risk sharing. 
The reason is that in the case with reinsurance the total safety loading must 
maintain two solvency margins, both of  which have with high probability to be 
positive: it is not sufficient that their sum is positive, as is in fact required in 
the case of no risk-sharing. 

2.2. Minimization o f  D(Axl  ( t ) ) subject to a constraint on Du2 ( t ) 

Now the problem is to minimize D(Axl  (t)) when Du2(t) is given. 
To simplify the formulas we restrict ourselves to AR(1)  claims rate 

processes; i.e. coefficient 02 is zero in (2.1.1). Thus 

(2.2.1) x( t )  = O x ( t -  l ) + e ( t ) ,  

where ] 01 < i and e(t) 's  are a series of  uncorrelated random variables with 
mean zero and with variance rr~. Moreover, let EUl(t) = Eu2(t) = O. 

As is shown in Appendix 2 (formulas A2.18-A2.21), the solution is 

(2.2.2) xt (t) = [ - ( I - r 2 B )  ( 1 -  OB)IJ(B)+ 1] x( t )  
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o r  

(2.2.3) x l ( t )  = [ - ( l - r 2 B ) p ( B ) + ( l - q ~ B ) - I ] e ( t ) ,  

(2.2.4) (1 - r  I B) u I(t) = - x t  (t),  

(2.2.5) u2(t) = - l t ( B ) e ( t ) ,  

where p(B)  is given by (A2.15) in Appendix 2. Thus processes ul (t), U2(t ) and 
x l ( t )  are ARMA processes, whose variances are easy to compute from the 
presentations containing e(t) 's (see BOX-JENKINS (1976), Section 3.4.2). 

As a limiting case when ¢ approaches I we obtain from (2.2.1) a random 
walk process. This process also follows as a special case of an ARIMA (0, l, l) 
process : 

(2.2.6) , J x ( t )  = (l-On)e(t) 

with e(t) 's uncorrelated and with 0 _< 0 _< I. 
Equation (2.2.6) has the interpretation that every year a shock e(t)  is added 

to the current " leve l"  of the claims rate to produce a value x( t ) .  However, 
only a proportion 1 - 0 of the shock is actually absorbed into the level to have 
lasting influence (see BOX-JENKINS (1976) Chapter 4). 

In practice perhaps not every new shock changes the level; possible changes 
occur only occasionally. Thus (2.2.6) may be regarded as a cautious "upper  
limit)" for actual claims processes. Such changes in the claims level are to be 
expected e.g. due to changed policy conditions or changes in claims settlement 
practice. When 0 ~ 0 we obtain a random walk process; i.e. every new shock is 
totally absorbed into the level, this being the most dangerous alternative. When 
0 is put to one we arrive at the traditional white noise claims process. 

WHITE NOISE CASE 0 = 1. As is shown in Appendix 2 (see equation (A2.27)), 
the optimal reinsurance scheme is now 

(2.2.7) ( 1 - k o B + k l B  2) x l(t) = ( l - r2-1ko+r~-2k Ox(t )  
def 

= box ( t ) ,  

where ko and kt are given by the procedure I-III in Appendix 2. The variance 
of xl (t) is 

(2.2.8) 

with bl = 0. 

D2 xl = (I +k l )  (bo2 + b~) + 2bobl ko D2 x . 

(l - k 0  [(1 +k02-k02] 
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The accumulated process u~ (t) is an ARMA process 

(2.2.9) (1 - k o B + k  I B 2) (1 - r  I B) U l (t) = - (1  -r2-1ko+r2-2kl) x ( t ) ,  

whose variance is readily calculable. Moreover, u2(t) is an A RMA (2 ,  l) 
process 

(2.2.10) ( l - k o B + k t B 2 )  u 2 ( t )  = - [ - r 2 - E k l + r 2 - 1 k o - r 2 - 1 k l B ] x ( t )  

def 

= ( C o + C l B ) X ( t ) ,  

whose variance is given by (2.2.8) when b's are replaced by c's. 
The following Figure 2.2.1 shows Dxl, Du, and Du 2 for different values of  

parameter v, when r I = r2 = 0.95. The curves should be compared to those of  
figure 2.2.1. An increase in Dx~ is reflected as an increase in Dun and as a 
decrease in Du2. When v ~ oo the total variation is shifted to Ul, the cedant 
then taking the whole risk. Naturally the minimum for Dxl and Dztxl is zero, 
which is achieved when v = 0. Then Du2 has its maximum. 

. 3  

. 2 , 5  

2 

1 .5  

! 

0 .5  

' 0 

D u l / O ,  

: , , ~ - _ ~ . _ _ ~  : , , , , , , , , , D u 2 / O ,  

] D X l / D ,  

J , i , i , , , , i i i i J , , i , , , i i , J i , J , , 

00,~,O~9,OO.t:~P.t:~.OO,t:~,OO,O~O.t O, ttO,I,gD,L-TDJ'O,lflD,1~D,n'o.tdDJQD,.ag,,=71J,'~0.'~0.~.;20.2~,~.'2'0,2~.3 

FIGURE 2.2.1. Dx~,  Du I and Du 2 as a funct ions o f  p a r a m e t e r  v, when r t = r 2 = 0.95, x ( t )  is a white 
noise process and D,dx t is minimized for given Du2. 

RANDOM WALK CASE 0 = 0. AS is shown in Appendix 2, u2(t) corresponding 
to the optimal scheme is now an AR (2) process with variance (see (A2.27)) 

(2.2.1 l) D2u2 = ( l+kl)(r2- tk l )2  ors 2 . 
(l - k , )  [(1 + k l ) 2 - k o  2] 
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.The optimal reinsurance scheme itself is 

(2.2.12) ( l - k 0 B + k  IB E ) x l ( t )  = [ ( l - r ~  - I k l ) + ( r 2 - 1 k l + k l - k o ) B ] x ( t ) .  

Thus x~ (t) is a non-stationary process with infinite variance since the "dr iv-  
ing" process x(t)  on the r.h.s, of  (2.2.12) is such. The variance of  dxl is 

(2.2.13) DE(dxt) = (l+kl)(W°2+w~)+2k°w°wt a~ 2 , 
(1 - k 0  [(1 + k~)2- ~021 

where w0 = ( l - - r~- Ik l )  and wl = r2 -1k l+k l -ko  • 
The corresponding u~ (t) process obeys equation 

(2.2.14) ( l - r l B ) ( l - k o B + k l B 2 ) u l ( t )  = [l-r2-J kl +(r~l k] +k t -ko)B]x( t )  

and is thus non-stationary, since x(t)  is such a process. 
Hence in the case of  a random walk claims process the procedure produces 

finite D ( d x l )  and Du 2 but with constant Pl (t) Du) will be infinite. A finite Du I 
can be achieved if pl (t) is allowed to be non-stationary. 

Although the cases considered in this section may be of  some practical 
interest, their applicability may be rather limited since the premium rate p (t) is 
unrealistically kept as a constant. In reality premiums are obviously also 
adjusted according to the observed claims experience. To obtain a more 
realistic model the variable premium rates should be incorporated into 
equations and the variation of the premium rate should also be regarded in 
optimality criteria. 

Another limitation to the model above is that the relative interest rates r~ 
have to satisfy I rj I < 1 in order not to have infinite variances for u/(t)'s. If 
premium rate control is also introduced this assumption is not necessary. 

3. The case where the premium rate may also vary 

The technique of  BOX-JENKINS used in the preceding section becomes rather 
messy when the number of  the control variables or the complexity of the claims 
process increases. In the following the well-known Kalman filter is used 
instead. However, we then obtain only numerical solutions, not analytic 
expressions like (2.1.5) and (2.2.2). In addition, loss function (3.7) is not 
suitable for such optimization as envisaged in Section 2.2, since the order of the 
difference of  p(t) which occurs in (3.7) is the same as the smallest difference 
parameter d for the claims process (3.2) at which dax( t )  is stationary. 

Since the premiums are usually charged at the beginning of the insurance 
period, the optimal premium rate control scheme cannot utilize the most recent 
x(t)  to determine p ( t ) ;  i.e. p(t) is a function x ( t - I ) ,  x ( t - 2 )  . . . .  In order to 
keep the formulas as simple as possible, we then assume that the same set of  
data is used to determine also the retained part xl (t) of the claims. In many 
cases it would also be more realistic to let the time delay be even longer. 
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RANTALA (1986) illustrates the incorporation of a time delay in a simple 
case. 

Take the model in the form (I.4); i.e. 

(3.1) ~ ul(t) = rlul(t--l)+yl(t)  

L u2(/) = r2u2(t- 1 )+p( t ) - y l ( t ) - x ( t ) .  
The control variables are the underwriting result yl (t) of the cedant and the 
total premiums p(t). It is clear that the optimality criterion must include each 
of ul (t) (or alternatively Yl (t)), u2(t) and p(t) if a solution is sought where 
none of these variables is identically constant: if the variation of only two 
variables is restricted the total variation produced by x(t) can be directed to 
the remaining third variable by letting the other variables be constant. 

We make the general assumption that the claims rate is an ARIMA (s, d, q) 
process 

(3.2) 
where 

¢,(B) ,~"x(t) = o ( n )  e( t ) ,  

f qb(B)= l - d t B - ~ 2 B  2 -  . . . - ~ s B  s 

(3.3) O(B) = I -Oi B-Oz B 2- . . .  O q B  q 

e(t) = a sequence of  uncorrelated random variables with 
mean zero and with variance a~ 2. 

If d > 0, then the x(t) process defined by (3.2) is non-stationary, but if the 
roots of equation 

(3.3) ~ (B)  = 0 

lie outside the unit circle the d-th difference Adx (t) of x (t) is stationary. Note 
that for d > 0 the variances of d iuJ(t) and A"p(t) for i < d and j = 1, 2 
cannot all be finite. A natural demand is that Duj(t) (j = 1, 2) and DAdp(t) 
should be finite, i.e. the accumulated profits have finite variances and the 
"stationarity order"  of the premium process is the same as that of the claims 
process. 

Next (3.1) and (3.2) are transformed to a state-space model. Equations (3.1) 
can be rewritten as 

( l - r IB)Aaul( t )  = Adyl(t) 
(3.4) 

(1 - r 2 B  ) ~(B),ddu2(t) = ~(B) [,dap(t) -Adyt ( / ) ] - O ( B )  e ( t ) .  

Let nl = d + l ,  n2 = m a x { s + d +  i, q + l }  and n = n~+n2. 
Introduce n state variables Z(i, t) (i = 1, 2 . . . . .  N) obeying equation 

Z ( t + I )  = AZ(t)+G ( AaY'(t) I - Me( t ) ,  (3.5) 
I P( t ) 
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where 

(3.6) 

J U K K A  R A N T A L A  

ri • / . 1 - 1  

n, 0 0 . . . 0  
1 

A = [ 

L 0, ,  

.2 

ill. I.~- 1 

fl,~ 0 0. . .  0 

I, = identity matrix of  order n, 
On = nxn matrix of  zeroes, 

n,- I  

I 0 . . . 0  '1 - 1 ,  O, . . . . .  
G = 1 

0 0 . . . 0  I 1, - ~ l  . . . . .  
I 

M ( 0 . . . 0  ', 1 - 0 , , .  . . . . .  2) 
- I 

nl 

t 0.2 ) 
-- ~n 2 

def 

a(B) = ( l - r l B ) A  d =  l - a j B - a 2  B2-  ... - a .  B",, 

def 

fl(B) = ( I - r z B ) A a  ~(B) = 1 - f l l B - f l 2 B  2 -  . . . - ~ 2 B  ~2 

with di = 0 for i > s and 0i = 0 for i > q and ' denoting transpose. 
The accumulated profits ul(t) and u2(t ) are given by Z ( I ,  t + l )  and 

Z(nt + 1, t+ 1). 
Let the loss function to be minimized be 

N 

(3.7) E{ Z(N)" QoZ(N) + j=IZ (Z(j)' Qi z ( j ) ) +  Y(j) '  Q2 Y(J) }, 

where Q0, Qi and Q2 are symmetric positive definite matrices, 
Y ( j )  = (Adyl (j) ,  drip(j))  ' and {! . . . . .  N} is the planning horizon (a suita- 
ble choice for which is the duration of  the reinsurance agreement). According 
to our assumption at the beginning of  this section Y(t) can depend on Z(t), 
Z ( t -  1) . . . .  but not on Z(t+ I). 
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The optimal linear control rule giving the minimum for this loss function is 
(see e.g. ,~,STROM (1970): Theorem 4.1 in Section 8.4): 

(3.8) Y ( t )  = - L ( t ) Z ( t ) ,  

where Y( t )  is the vector of the cedant's optimal profit and premium setting to 
be applied at time t. L ( t )  is a (2 x n) matrix of constants given by 

(3.9) L( t )  = [Q2+G'S( t+ I) G] -I G'S( t+  1) A, 

where S( t+  1) is obtained from 

(3.10) S( t )  = A ' S ( t +  1) A + Q t - A ' S ( t +  I) GL(t)  

with the initial condition 

(3.11) S ( N )  = Qo. 

Thus the optimal procedure is quite easy to reach from recurrence equations 
(3.8)-(3.11). However, it depends on the initial values of the state vector Z; i.e. 
on the immediate past of the accumulated profits uj(t). It can be shown that as 
the planning horizon N ~ oo, matrix S( t )  will converge to a unique steady- 
state positive definite value S. Denote the corresponding limit of L( t )  by L. 
Numerical calculation by computer of this steady-state solution is quite easy 
from equations (3.9) and (3.10) by successive iteration. (Note also that the 
results of Section 2 are in fact steady-state solutions.) The steady-state feedback 
rating and ceding formula is 

(3.12) Y(t)  = - L Z ( t ) .  

This equation is quite easy to translate into a more traditional form involving 
only past p(t) 's  and uj(t)'s or x(t)'s. An example is given later. 

The corresponding steady-state covariance matrix Cz of the state vector Z ( t )  
can be obtained by iteration from equation 

(3.13) Cz = (A - GL) Cz (A - GL)' + tr2~ M M '  . 

The corresponding variance of Y(t)  is 

(3.14) Var Y(t)  = Cr = L C z L ' .  

The steady-state variances of the accumulated profits and ztdy~ a n d  zldp can be 
found as the appropriate elements of matrices C z and C r. 

Note that when d > 0 the variance of the premiums (as that of x ( t ) )  is 
infinite but the variances of the accumulated profits and cedanrs profit Yl (t) 
are finite. Note also that the KALMAN filter technique can easily be extended to 
more than one reinsurer. 
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EXAMPLE 1. Take first the white noise x(t) process of traditional risk theory. 
This case was considered in the examples of Sections 2.1 and 2.2. Now the 
state-space equation (3.5) is simply 

(3.15) { (u ,  (t))u2(/) = (rl00r2)(u,(t-lu2(t_ 1) ) + ( )  1 0 ) ( y , ( t ) )  _ ( 0 ) X(1) 
- 1 1 p ( t )  1 i 

(0 0) 
and M M '= 

0 1  

Choose the matrices Q0, Qt and Q2 in loss function (3.7) as 

 3,6,  0=02Q ( w 0) o2:(w3 0) 
0 W 2 0 W 4 

By varying w~'s different optimum combinations can be produced. As an 
example we take r t = r 2 = 1.0, w~ = 0.1, w 2 = 0.025, w 3 = 0.0001 and w4 = 1. 
Since w3 is negligible this in fact means that the variance of premiums is 
minimized subject to wlD2u~+w2D2u2 = a given value. Furthermore, an 
increase in D2p is ten times "worse"  than in D2u~ and forty times "worse"  
than in D 2 u2 and an increase in D 2 ul four times " w o r s e "  than in D 2 u2. This 
choice of weights reflects the thinking that the reinsurer should carry most of 
the fluctuations and the policy-holder the least. 

With these parameters the steady-state optimal scheme turns out to be 

(3.17) 
yt(t) = - 0 . 8 2 6 " U l ( t - l ) + 0 . 1 7 3 " u 2 ( t - i )  

p(t) = - 0 . 1 3 2 " u l ( t - 1 ) - 0 . 1 3 2 " u 2 ( t - l )  

D2yl =0 .0322a~ 

D2ul = 0.122cr~ 2 
(3.18) 

D2p = 0.0705tr~ 2 

D 2u2 = 2.96tr~ 2 . 

Using equations (3.1) it can be shown that (3.17) is equivalent to 

( i - 2 . 6 5 2 B +  1.652B2)yl(t) = (0.173-0.173B) B(p( t ) -x( t ) )  
(3.19) (1-1.868B+O.868B2)p(t) = (0.264-0.264B) By~(t) + 

+ (0.132-0.132B) Bx(t). 

with corresponding variances 
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Figures 3.1 and 3.2 show the steady-state standard deviations o f  the main 
variables in the optimal schemes as a function o f  w~, where loss matrices (3.16) 
are used with w 3 = 0.0001, w4 = 1 and with two constant ratios wl/w 2 = 4 and 
w l / w 2  = I. 

2.d3 

2 . 0  

2 . 4  

2 , 2  

2 

I.t9 

1.4 

; . 2  
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0 . ~  

0, ,9 

0 . 4  , 
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, Du,/Dx 

Du2/ D~ 
3 Dyl / Dx 

O , , , , , , 1 , , , , , , , , , , , 

0 .01  0 . 0 2  0 , 0 3  0 . 0 4  O , O J  0.019 0 . 0 7  0 , 0 8  0 . 0 9  0 . I  0,11 0 . 1 2  0 .13  0.14' 0 .15  O.ld~l O.IT O.Id$ 0 . 1 9  0 . 2  W I 

FIGURE 3.1. Steady-state D u t ,  D y e ,  Du 2 and D p  o f  the optimal schemes as functions o f  w t when 
w 3 = 0.0001, w 4 = I, w [ / w  2 = 4 and rt = r~ = 1.0. 

t,T 

t . 5  
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1,3 ,2,,, o _  

0 . 9  

O,,5 .....:._..... 

O.Z 

0.0 

o.s DYl / Dx 
' o ~ 

- -  0 []  0 0 0 0 0.4 
0.3 ~ 
0 . 2  

0.1 i , J , , , , , J 
O,Ot 0.02 0,03 0.04 0,05 0,00 0.07 0,08 0.09 0.1 

= o o o ° ~. ~ o ~ = 

, i , , , , , , , 

O.rt O . t 2  0 . t 3  0 . 1 4  0 . t 5  0 . t t $  0 3 7  0.1,~ O . t 9  0 . 2  

FIGURE 3.2. As  Figure 3.1 but w , / w  2 = I. 

In both cases Dut, Du2 and Dyl are decreasing functions o f  w I , whereas Dp 
increases with wl. For Du t and Dyl this is natural since the increasing w[ 
means that an increase Dut is considered more serious and a smoother  f low o f  
um is achieved by a smoother  y~. The decrease in Du2 obviously  emerges from 
the constancy o f  the ratio w I/w2; i.e. when w t increases w 2 also increases. 
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EXAMPLE 2. Assume that s = q = 0 and d =  1; i.e. x(t) is a random walk 
process. As noted above, this case can be viewed as a cautious approximation 
which in a way constitutes an " u p p e r  l imit"  for actual claims processes. Now 
transformation (3.5) reads 

(3'20) /;((23:t+1)] 0 r2+l ~ Z ( 3 , , ) ] -  ,,dp(,)]- e(,) 
\Z(4 ,  t + t ) /  0 -r2 \Z(4 ,  t)] 0 

Choose Q0 = 04, Q i = 

00 i) 
0.0001 0 

0 0 0.0001 

and Q2 as in (3.16). 

Thus, instead of Dyt and Dp we now consider D(dyl) and D(Ap). Note  also 
that Dp has now to be infinite if DUl and Du2 are to be finite. Take 
r l =  r 2 =  1.0 and w I = 0.01, w 2 =  0.05, w 3 =  0.5 and w4= 1.0. The two 
elements on the diagonal of  Q~ other than wt and w2 cannot be taken as zero, 
since they must be positive in order to obtain a positive definite matrix. 
However,  they are so small that their effect on the results is insignificant. Then 
the steady-state solution is in the feedback form 

(3.21)J'Ayl(t) = - 0 . 4 3 3 u l ( t -  I)-0.352ul(t-2)+O.294u2(t- I )+0 .172u2( t -2 )  

Jp(t) = 0 .374Ul ( t -  l ) - 0 . 3 1 7 U l ( t - 2 ) - 0 . 5 2 1  u2(t- 1 ) - 0 . 4 0 3 u 2 ( t - 2 )  

with corresponding variances 

(3.22) 

f D2Ul = 6.02tr~ 2 
D2 (zJyl) 0.14a,  2 

D2u2 4.19a~ 

D2 (.dp) 0.43 a~ 

Figures 3.3-3.4 show the steady-state standard deviations Dut, D (Ayt), Du2 and 
D(Ap) of  the optimal schemes as a functions of  w 3 when w I = 0.01, w 4 = I, 
w 3/w 2= 1 0 o r  = 1. 

1 

4. Concluding remarks 

The results of  the paper  should not be seen as suggestions for explicit solutions 
to be used in reinsurance treaties. In practical situations there are many factors 
to be taken into account, which however cannot  easily be included in a 
mathematical  model. The main emphasis of  the paper  is on demonstrat ing an 
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FIGURE 3 .3 .  S t e a d y - s t a t e  Du=, D ( A y l )  , Du 2 a n d  D(dp)  o f  t h e  o p t i m a l  s c h e m e s  a s  f u n c t i o n s  o f  w s 
w h e n  w I = 0 . 0 1 ,  w 4 = I a n d  w3/w 2 = l 0  a n d  r= = r 2 = 1.0. 
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FIGURE 3.4. As figure 3.3 but w3/w 2 = I .  

approach which would be considered as a rational means of  tackling reinsur- 
ance problems. That is 

l) cedant's and reinsurer's share of  the claims are functions of  the total claims 
amount in the reinsured part of  the portfolio (i.e. they do not depend on 
individual risks) 

2) the agreement is made on a long-term basis 
3) an explicit definiton of  the goals and criteria of  both parties involved (such 

as acceptable variations in accumulated profits and in annual profits, 
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profitability in the long run, the rating procedure of the cedant etc.) 
(compare also BOHMAN (1986) and GERATHEWOHL-NIERHAUS (1986)). 

In this way one may succeed in giving more weight to the most relevant 
factors related to a reinsurance treaty than in a heuristic approach. 

This paper concentrates on point (3): how methods of stochastic control 
theory might be used in a search for the optimal reinsurance formulas (in 
Section 3 also for the rating formla), when the goals and criteria are expressed 
in terms of the variances of certain important variables. These rules could be 
applied if a sufficient consensus on the criteria and on the stochastic properties 
of the claims process is achieved. If there is considerable uncertainty about 
those properties then the formula candidates should be tested against various 
claims process alternatives. 

A P P E N D I X  1 
M I N I M I Z A T I O N  OF Dxt (t) S U B J E C T  TO A C O N S T R A I N T  ON 

Du2(t ) W I T H  C O N S T A N T  P R E M I U M  RATES 

It is assumed that the claims rate process x(t)  is a weakly stationary process 
given by equation 

(AI.I)  x(t)  = ~F(B)e(t) = e ( t )+~ule ( t - l )+~u2e( t -2 )+ . . . .  

where e(t) is the noise process of uncorrelated random variables with mean 
zero and with variance tr, 2, and ~j's are the weights of past e(t) 's such that 
,S~j 2 < ~ and B is the backward shift operator: Be(t) = e ( t -  I). However, 
the explicit solution is given only for the case where ~j's are generated by an 
AR(2) claims process. 

It is assumed that x(t),  x ( t - I )  . . . .  are used to determine xl (t). Thus the 
optimal scheme can be written as the output of a linear filter L(B):  

(AI.2) x l ( t )  = L(B)e ( t ) ,  

or equivalently 

(Al.3) xt( t)  -- L(B)  ~u- l (B)x ( t ) ,  

where - J denotes the inverse operator. If  Xl (t) should be a function of delayed 
x ( t ) ' s : x ( t - d ) ,  x ( t - l - d )  . . . .  with d < 0 then L(B) should be replaced by 
BdL(B)  and the formulas and equations to be presented below should be 
correspondingly modified (see RANTALA (1984), Appendices I and II). 

Let - / t  (B) be the linear filter corresponding to (AI.3) and transforming e (t) 
into u2(t); i.e. 

(A1.4) UE(t) = - ~ ( B )  e(t) = - ~ ( B )  ~ - i  (B) x(t) ,  

where we have temporarily assumed that p = Pl = P2 = 0. 
Thus ~(B) and L(B) are connected via equation 

(A1.5) L(B) = - (I - r 2 B)/t(B) + ~(B). 
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Obviously the minimum possible variance of  u2(/) is zero, which results with 
the reinsurance scheme L(B) = ~ ( B ) ;  i.e. the total business is taken over by 
the cedant. 

The optimization problem stated in the title can be solved by finding the 
unrestricted minimum of  

_ _ [  D2u2(t) ] (AI.6) D2xl(t) + v" - - -  w , 

where v is the Lagrange multiplier and wa 2 the value allowed for D 2 u2(t). 
The autocovariance-generating function for the autocovariances ?k 

(k = . . . ,  - 2 - 1 , 0 ,  2 . . . .  ) is defined by (see BOX-JENKInS (1976)), 

oo 

(A1.7) 7(B) = 7k B k , 
k= -oo 

where B now is a complex variable. 
I f  x(t)  = ~U(B)e(t), it is easy to see that the autocovariances of  x(t)  are 

generated by 

(AI.8) 7(B) = ~U(B) ~u(r), 

where F = B - I .  
Applying this technique to the minimization of (AI.6) we can equivalently 

require an unrestricted minimum of  the coefficient of  B ° =  1 in the expres- 

sion 

(AI.9) G(B) = L(B) L(F)+ v~(B)~(F) .  

Regarding (A1.5) we obtain 

(Al.10) G(B) = [ ( I - r 2 B ) ( l - r 2 F ) + v ] ~ ( B ) ! u ( F  ) -  

- ( l - r 2 B )  lt(B) ~ ( F ) - ( l - r z F ) l t ( F )  ~ ( B ) +  ~ ( B )  ~(F) .  

By differentiating G(B) with respect to each/ t i  (i = 0, l, 2 . . . .  ), we obtain 

0 
( A l . l l )  - -  G(B) = [ l+r22+v-rEB-r2F][Bil t (F)+Fi~(B)]  - 

- ~(F)  [Bi-r2Bi+l] - ~(B)  [Fi-r2 Fi+l] . 

After selecting the coefficients of  B ° = I, and equating them to zero, we obtain 
the following equations:  

(A 1.12) r 2/tl - b/t0 = r2 ~ i - 1 (i = 0) 

(Al.13) r 2 f l i + l - - b ] . l i + r 2 f l i _ l  = r 2 ~ / + l - - ~ i  ( i  >_ 1 ) ,  



1 7 2  JUKKA RANTALA 

where 

(AI.14) b = l + r ~ + v .  

REMARK. From (AI.12) and (AI.13) we obtain a relation for the characteristic 
function of u which- - i f  g0 is known--determines #: 

g(Z ) (r2 + r2 z 2 -  bz ) = gt (z ) ( r2 -  z ) -  r2 + r21~ O. 

The solution of  (AI.12)-(AI. 13) is the sum of  the solution of the corresponding 
homogeneous equation and any particular solution of the homogeneous 
equation. 

First the solution of the homegeneous difference equation 

(Al.15) r2fli+2-bfli+l+r2lli = 0 (i = 0, 1, 2 , . . . )  

is sought. The characteristic equation is 

(AI.16) r 2 z 2 - b z + r 2  = 0; 

i.e. 

(AI.17) r2z+r2 z - l  = b.  

Thus if z0 is a solution so is z0 -~ and the general solution of (A1.15) is 

(A1.18) lai = A z ~ + A ' z f f  i (i = 0, 1,2 . . . .  ). 

Now, if z0 has a modulus less than or equal to one, then z0 -~ has a modulus 
greater than or equal to one, and since u2(t ) in the optimal solution must have 
finite variance, A' must be zero. Because of the property (AI.17) it is easy to 
see that z must be real. Thus the general solution of (AI.15) is 
lit(B) = A ( i - z o B )  -I  

In deriving the particular solution of (AI.12)-(AI. 13) we confine ourselves to 
autoregressive processes of at most order two; i.e. we assume that the weights 
are given by 

(Al.19) ~U(B) = ( I - O ~ B - O 2 B 2 )  -I  

and 4~ and 02 are constants satisfying stationary conditions (2.1.2). 
It can be shown (see RANTALA (1984), Appendix II) and is easy to check that 

the solution of (A 1.12)-(A 1.13) is then 

(A1.20) bt(B) = A ( I - z o B ) - I + ( W i + W 2 B ) ( I - O i B - - c k 2 B 2 )  - I ,  

where the second term on the r.h.s, is a particular solution. Coefficients A, Wt 
and W2 are given by equations 
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WI = ~/~-- 1~2 (DI cos 0 +  D 2 sin 0) 

W2 = - 01 W i -  02(Di cos 2 0 + D  2 sin 20) 
/ 

t a n 0 = ~ / - 0 ~ - 4 0 2  ( 0 _ < 0 < n )  
01 

D I - C I E i + C 2 E 2  x /~02  
E? + E:~ 

(AI.21) D 2 -  C 2 E I - C I E 2  x/---02 

E, - r201__ ( 1 -  02) -  b x / -  02 
24z  

Ex = r2~/l +0~/402 "(i +02) 
C1 = r2 0 1 -  1 

(r2~ I - 1)0! +2r202  
C 2 = 

A = r2-1 z0" [Di (r x / Z  02 cos 8 -  b) + D 2 r x / ~  02 sin 8 -  r0t + 1] 
when the roots of  
(AI.22) z 2 -  0 t z + 0 2  = 0 

are complex, and 

W I = D n K n + D 2 K  2 

W2 = - K1K2(D1 + D1) 

C] KL 
D I = 

r I K 2 -  b K  I + r 2 

(A1.23) 

D2 
C2 K2 

r2 K 2 -  bK2 + r2 

K l (I - r 2 Kn) 
Ct - 

Kz - K l  

K2(l -r2K2) 
C2 - 

K 2 - K  n 

,4 = r2-1Zo'[Dl (rKa - b ) + D 2 ( r K z - b ) - r c k x  + 1] 
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when the roots KI and K2 of (AI.22) are real and distinct. 
When Kj = K2 = K the following equations are obtained 

Ct = 2 r 2 K -  I 

C2 = r2 K -  1 

C2 K 
D2 = 

r 2 K 2 - b K +  r 2 

(AI.24) Ci K + r2 D 2 ( !  - K 2) 
D I = 

r 2 K 2 - b K  + r2 

W l = ( D i + D 2 ) K  

W 2 = - D i K  2 

A = r2- I z0" [(Di + D2) ( r K -  b ) -  r01 + 1]. 

Now the optimal reinsurance scheme may be found by substituting (A1.20) 
into (AI.5). As can be seen from equations (2.1), (AI.2)-(AI.5), the resulting 
difference equations for xl ,  u~ and u2 are 

Xl(t) = [ - ( l - r 2 B  ) l I t (B)  ~ ( B ) +  I] x ( t )  (A1.25) 

or equivalently 

(A1.26) 

(A1.27) 

and 

(A1.28) 

Xl(/) = [-(l-r2B)g(B)+~-l(B)]e(t), 

( 1 - r  t B) ul (t) = - [ - ( 1  -r2B) g(B ) ~ ( B ) +  1] x(t)+pl 

- ~ ( B )  u2 ( t )  = - ~ ( B )  x ( t )  + P 2 / (  1 - 0~ - 02 )  ( 1 - r 2 ) .  

In (AI.27) and (AI.28) the effects of non-zero premium rates are taken into 
account. Processes xl (t), ut (t) and u2 (t) are ARMA processes whose variances 
are easy to compute from the presentations based on the noise process e ( t ) .  

APPENDIX 2 

MINIMIZATION OF D(,Jx¿ (l)) SUBJECT TO A CONSTRAINT ON 

Di . /2( / )  WITH CONSTANT PREMIUM RATES 

Assume again that the total claims rate x ( t )  is given by (AI.1). Moreover, in 
order to shorten the notations assume that p = pl = P2 = 0. 

By defining the change in the retained claims rate in the optimal linear 
scheme as 
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(A2.1) ,dxl(t)  = ( l - B )  x l ( t )  = L ( B )  e(t)  

we can proceed analogously to Appendix I. The resulting difference equations 
are 

(A2.2) 

(A2.3) 

(A2.4) 

where 

(A2.5) 

(i = O):r2f12--(r2+ l)2fll+cflo = r2~2- - (2r2+ l) ~ 1 + ( r 2 + 2 ) ,  

(i = 1) : r2 ] . t3 - ( r2+ 1 ) 2 # 2 + c # 1 - ( r 2 +  1)2~0 

= r 2 ~ 3 - ( 2 r 2 + l ) ~ 2 + ( r 2 + 2 ) ~  l - l  

(i >_ 2) : r2fli+2-(r2q- I)2fli+l + cf l i - (r2+ l)2fli_ I +r2fli_ 2 

= r2~i+2-(2r2+ l )~i+l  + ( r 2 + 2 ) ~ i -  ~ i - i ,  

C = 2 ( l + r 2 + r 2 2 ) + v .  

Thus we have to solve a difference equation of  order four. The homogeneous 
equation is solvable by the methods presented in BOX-JENKINS (1976), 
Section 13.2. 

The characteristic equation corresponding to difference equation (A2.4) is 

(A2.6) r2zd-(r2  + l )2z2-Fcg2-(r2 - l )2z+r2  = 0.  

Hence, if z is a solution so is z - i .  Let the roots be K I , KI -I  , K2 and K2 -1 with 
[Ki [ < 1 and [K21 < l. I f v  = 0 then the roots of  (g2.6) are l , r  2 an d r2  - I .  

Then the modulus of  only one root is less than I. To rule out this case we 
assume that v> 0. 

In subsequent applications we need only coefficients k0 = Ki +K2 and 
kl = KtK2.  They can be found by the following procedure (see Box- 
JENKINS (1976)) : 

(I) Compute M = ( l + r 2 ) 2 / r 2  and N=[( l+r2)E+( l+r22)+v] / r2  

for a series of  values of  v chosen to provide a suitable range for Du2 and 
Ddxl  . 

(II) Compute zl = 0 . 5 ( N - 2 )  + x / O . 2 5 ( N - 2 ) 2 + 2 N - M  2 

and z2 = 0 . 5 ( N - 2 )  - x / O . 2 5 ( N - 2 ) 2 + 2 N - M  2 . 

(III) Compute kl = 0.5zl - x/(0.5Zl) 2 -  1 

and k0 = x/kl (z2 + 2) . 

The general solution of the homogeneous equation is 

(A2.7) /t, = A i K i t + A ( K i - I + A ~ K i 2 + A ~ K 2  i (i = O, 1,2 . . . .  ) .  

In this solution A~' and A] must be zero because in the optimal solution the 
solvency rate cannot have infinite variance. Hence 
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( A 2 . 8 ) , i :  AzK~+A2K~,  [Kt[ < It21 < 1 ( i = 0 , 1 , 2  . . . .  ) .  

This  solution is the same, apar t  f rom coefficients A I and A2, for  every x ( t )  
process. The  exact solution contains features which are specific to individual 
x ( t )  processes; i.e. it depends on the part icular  solution o f  (A2.2)-(A2.4). 

For  the case ~U(B) = (1 -00B)  -I  with 100l < 1 a part icular  solution o f  
(A2.2)-(A2.4) is easy to find. In fact, a part icular  solution is given by 

(A2.9) /zi = D00 i (i = 1, 2 . . . .  ) ,  

where 

r2 (00_ 1)2 (00_ r2-i) 
(A2.10) D/00 = 

r2 004-- (r2 + 1)2 003 ÷ C002--(r2-l-1)2 00+r2 

Constants  A~ and A 2 can be determined from initial condit ions (A2.2) and 
(A2.3), giving 

Ki2( r2DK2 + K2 r 2 D )  

00 2 00 00 

(A2.1 1) 

Ai = 
r2 (KI - K2) 

Ki r 2 D ) K2 2 r2DKi + _ _  _ _ _  

0 2 00 00 
A 2 = 

rE (g2 - Ki) 

In d e r i v i n g / t ( B )  and L(B)  it is useful to observe that  

(A2.12) A i + A 2 = Dkl ]¢2 + k l/r2 00- Dko/O 

and 

(A2.13) 

The  final solution is 

A 1 K2 + A2 Ki = - kl D/O. 

(A2.14) ~l i = A, K I + A2 r~ + DO' 

or  equivalently 

(i = 0, 1, 2 . . . .  ) 

,Uo +/zl B D 
(A2. ! 5) .u (B) = + - -  

l - k o B + k ~ B 2  [ - O B  ' 

where (see (A2.12) and (A2.13)) 

(A2.16) ,u0 = A~+A2 

and 
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(A2.17) ,ul = -(A~ K2+A2K~). 

Thus the final formulas are: 

.r I (t) = [ - ( I  - r 2 B  ) (1 - O B ) ~ ( B ) +  1] x ( t )  (A2.18) 

or 

(A2.19) 

(A2.20) 

(A2.21) 

(A2.27) 

where 

x , ( t )  = [ - ( i - r 2 B ) , u ( B ) + ( l - ~ B ) - ' ] e ( t  ) ,  

(1 - r  t B) ul (t) = - x  I ( t ) ,  

u2(t)  = - f l ( n ) ~ ( t ) .  

The necessary coefficients can be found from equations (A2.5), procedure I-III, 
(A2.10), (A2.1 I)-(A2.13) and (A2.15)-(A2.17). 

The corresponding variances can most easily be calculated from the presen- 
tations containing ~(t)'s. Note that the effect of the constant premium rates p, 
Pt and P2 is not shown in equations (A2.18)-(A2.21), since we assumed the rates 
to be identically zero. 

Next, the random walk claims process is considered. For this purpose we 
take a slightly more general process by assuming that 

(A2.22) zlx(t) = (1 -OB)  a(t) 

with e(t) 's uncorrelated; i.e. x ( t )  is an ARIMA (0, I, 1) process. 
When looking for the solution we can proceed analogously with the 

considerations earlier in this Appendix. Now the following difference equations 
are obtained : 

(A2.23) r2ltx-(r2+l)2u~+CUo = l + ( r 2 + l ) 0  ( i =  0) 

(A2.24) r 2 ~ 3 - ( r 2 +  l ) 2 f l 2 + c / t t -  (r22+ l)Z~0 = - 0  (i= I) 

(A2.25) r2lti+2-(r2+ 1)2lti+~+c,tti-(r2 + l)21.ti_l+r2/.ti_2 = 0 (i > 2) 

The solution of this difference equation is exactly the same as that of the 
homogeneous equation above; i.e. 

(A2.26) u i = A , K i + A 2 K ~ ,  ] K t l  < I, IK2I < ! ( i = 0 , 1 , 2  . . . .  > 

and K~ and K2 are the solutions of equation (A2.6). Constants A~ and A2 can 
be computed from intial conditions (A2.23) and (A2.24). 

For all 0 #(B) is of the form 

~0+g~ B 
~ ( n )  = 

I - k o B + k t  B 2 ' 

la 0 = Aj+ A 2 = r2-2[r2-r20-O]kl+r2-1Oko 
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and  

~ t  = - ( A t  K 2  + A2 Kl)  = - r 2 -  i kl 0 .  

W h i t e  no i se  case  0 = 1 gives/ . t  o = - r 2- 2 k i + r2- i k0 and / . t l  = - r2- t k i a n d  the  

r a n d o m  w a l k  case  0 = 0 gives  ,u = r2- tk t  a n d  a l  = 0. 
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