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A B S T R A C T  

We present some relatively simple structural ideas about how probabilistic 
modeling, and in particular, the modern theory of  point processes and 
martingales, can be used in the estimation of claims reserves. 

1. INTRODUCTION 

The claims reserving problem, or the run off  problem, has been studied rather 
extensively. The monograph by TAYLOR (1986) covers most of the develop- 
ments so far, and, interestingly enough, creates a taxonomy to the models 
introduced. The booklet of VAN EEGHEN (1981) has a somewhat similar aim. 
Because of these recent surveys we do not intend to describe " t h e  state of the 
a r t "  in this area but confine ourselves to a few remarks. 

There has been a clear tendency away from deterministic "account ing 
methods"  into more descriptive probabilistic models. Early works in this 
direction were BOHLMANN et al. (1980), HACHEMEISTER (1980), LINNEMANN 
(1980) and REID (1981). Of more recent contributions we would like to 
mention particularly PENTIKAINEN and RANTALA (1986), and three papers 
dealing with unreported (IBNR) claims: NORBERG (1986), ROBBIN (1986) and 
JEWELL (1987). 

Most authors today tend to agree that there are important benefits from 
using structurally descriptive probabilistic models in insurance. However, there 
appears to be a new problem : With the increased realism of  such models, many 
papers introduce, very early on, a long list of special assumptions and a 
correspondingly complicated notation. A reader may then not be able to see 
what ideas are really important and characteristic to the entire claims reserving 
problem, and what are less so, only serving to make the calculations more 
explicit. It would be more pleasant if the modeling could be started virtually 
without any assumptions, and then only adding assumptions as it becomes 
clear that advancing otherwise is difficult. We think that the modern theory of  
stochastic processes comes here to aid, and try to illustrate this in the 
following. We are mainly using " the  martingale approach to point processes", 
as discussed e.g. in BRfZMAUD (1981) and KARR (1986). However, apart from 
some calculations towards the end, no previous knowledge of this theory is 
really needed to understand the paper. 
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The emphasis of  this paper is in the conceptual analysis of  Section 2 and the 
structural results of  Section 3. Section 4 provides an illustration of how the 
actual stochastic calculus, in a simple form, can be applied to obtain more 
explicit results. 

We want to stress that this paper contains very little that could be called 
"new resul ts" :  it is more important  to us here how we arrive at them. 

2. CLAIMS, INFORMATION AND SETTLEMENT 
AS MARKED POINT PROCESSES 

Considering a fixed accident year, say the unit interval (0, l], let the exact 
occurrence times of the accidents be Ti* _< T~ _< ... An accident which occurs 
at time T/* is reported to the company after a random delay D i so that its 
reporting time is R~' = T i * + D i .  We denote the ordered reporting times (order 
statistics) by TI < T2 < .. . ,  assuming for simplicity that they are all different. 

We follow the convention that the accidents are indexed according to the 
order in which they are reported to the company,  i.e., the accident reported at 
Ti is called " the  i th accident".  Because of the random delay in reporting this 
indexing is often different from the one that refers to the occurrence times. 

In practice the number  of  accidents in a given year of  occurrence is of  course 
finite. We denote this (random) number by N. As a convention, we let the 
sequence (T~) be infinite but define T,v+l = TN+2 = ... = oo. 

Let us then assume that every time a new accident is reported to the 
company,  this will be followed by a sequence of "handl ing  t imes".  These 
handlings could be times at which claim payments are paid, but also times at 
which the file concerning the accident is updated because of  some arriving new 
information. Supposing that the i a' accident has altogether Ni handling times 
following its reporting, we denote them by 

(2.1) Ti = Tio < Til < Ti2 < . . .  < Ti, N,. 

Again, we let Ti, N,+ t = Ti, u,+2 = ... = oo. 
Next we need to specify the event that takes place at To.. If  a payment  is 

made then, we denote the amount  paid by X 0. I f  nothing is paid at T 0 we 
simply let X 0 = 0. Similarly, it is convenient to have a notation for the 
information which is used for updating the accident file. Let I~0 be the 
information which becomes available when the accident is reported, and let I o 
be the new information which arrives at handling time T 0. If there is no such 
information, we set I o = 0, signalling " n o  new informat ion" .  In particular we 
set X 0 =  0 and I 0.= 0 whenever T O.= oo. 

Our analysis will not depend on what explicit form the variables I 0 are 
thought to have. They could well be strings of  letters and numbers, reflecting, 
for example, how the accident is classified by the company at time T O. Iio will 
often determine what was the delay in reporting the i rk accident. If  further 
payments  are made after the case was thought in the company to be closed, it is 
probably convenient to consider the arrival of  the first such claim as a new 
reporting time, also initiating a new sequence of  handlings. 
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The above definitions give rise to a number of stochastic processes which are 
of  interest in the claims reserving problem. The first definitions will be accident 
specific, after which we obtain the corresponding collective processes by simple 
summation. 

We start by assigning the payments X~j to the handling times T U. In this way 
we arrive, for each i, at a sequence (To., Xo)j~o, where T~ = Ti0 < Ta < ... 
(with strict inequalities if the variables are finite) and X o > O. Thus 
(To., Xu)j~ o can be viewed as a marked point process (MPP) on the real line, 
with non-negative real " m a r k s "  X O. We call it the payment process. Equiva- 
lently, of course, we can consider the cumulative payment process ( X i ( t ) )  
defined by 

(2.2) Xi (t) = 2 XU" 
{j:Tq~ t} 

Clearly, Xi ( t )  represents the total amount  of  payments (arising from accident 
i) made before time t. The function t~-~Xj(t) is an increasing step function, 
with Xi( t  ) = 0 for t <  T i (=  reporting time) and Xi ( t )  approaching, as 
t ~ oo, the limit 

(2.3) X~(oo) = ~ Xu, 
jmo 

which is the total compensation paid for the i u' accident. Similarly, 

u~(t) = x , (oo) -  x~(t) 

(2.4) = 2 X,j 
{2: To > t} 

represents the total l iabil i ty at t coming from future payments, with 
Ui ( t )  = Xi(oo) for t < Ti and Ui ( t )  decreasing stepwise to 0 as t--, oo. 

We remark here that, in order to keep this simple structure, we do not 
consider explicitly the effects of interest rate or inflation. This means, among 
other things, that the future claims must be expressed in standardized (deflated) 
currency. 

Second, we can consider the sequence (Tu, Io.)2 ~ o and call it the information 
process for the i u' accident. This, too, is an MPP, with mark IL/taking values in 
some conveniently defined set. As mentioned earlier the form of the marks is 
not restricted in any real way" It will suffice, for example, that there is a 
countable number of possible marks. 

Our third MPP is obtained by combining the marks of the other two, into 
pairs (Xij,lij). We call (To,(Xij ,  lu))j> o the settlement process of the i th 
accident. 
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Considering finally all accidents collectively, we obtain the corresponding 
collective payment process, information process and settlement process by a 
simple summation (superposition) over the index i. However, we do not need a 
separate notation for these MPP's and will therefore confine ourselves to the 
cumulative payment process 

(2.5) X . ( t )  = ~ X,( t )  
i 

and the liability process 

(2.6) U. (t) 2 U, (t). 
i 

Observe that it is not necessary to restrict the summation to indices i satisfying 
i <  N because, unless this is satisfied, X, ( t )  = Ui( t )  -- 0 for all t. 

3. CLAIMS RESERVES AS A P R E D I C T | O N  PROBLEM 

The estimation of  the claims reserves can now be viewed as a prediction 
problem where, at a given time t representing " the  present",  an assessment of 
the future payments is made on the basis of  the available information. Most of 
our mathematical considerations do not depend on whether the assessment 
concerns the payments from an individual i th accident, or all accidents during 
the considered year of  occurrence. Because of this we will often simply drop the 
subscript ( " i "  or " - " )  from the notation. Thus, for example, U ( t )  can be 
taken to be either the accident specific liability Ui(t) or their sum U. (t).  

The role of the information process above is to provide a formal basis for the 
assessments made. This is done most conveniently in terms of  histories, i.e., 
families of a-fields in the considered probability space, which correspond to the 
knowledge of  the values of the random variables generating them. In particu- 
lar, we let the a-field 

(3.1) "~-t  N = tY{(Tij,lo,Xo)i>_ ,,j~0 : T~/< t} 

respresent the information carried by the pre-t settlement process arising from 

all claims. (For  background, see e.g. KARR (1986), Section 2.1). For complete- 
ness, we also allow for the possibility of  having information which is exogenous 
to the settlements. Writing G for such pre-t information, we shall base the 
estimation of  the future payments on the history (3 , ) ,  with 

(3.2) ~r = .:ft N V ~'t '  

In an obvious sense, the most complete assessment at time t concerning X(ov), 
the total of  paid claims, is provided by the conditional distribution 

= I .7 , ) .  
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When t varies, these conditional distributions form a so called prediction 
process (~i) (see e.g. NORROS (1985)). Here, however, we restrict our attention 
to the first two moments of u~. Assuming square integrability throughout this 
paper, we write 

(3.3) M, = E",(X(oo)) (= f xlt,(dx) ) 

and 

(3.4) V, = Var :'(X(oo)) 

We now derive some fundamental properties of (Mi) and (VI). From now on 
we also write Xt and Ut instead of  X(t) and U(t). 

Having introduced the idea that ,7, represents " informat ion which the 
company has at time t " ,  it is of course the case that the payments already 
made are, at least in principle, included in such knowledge. Formally this 
corresponds to the decomposition of  X~o into X, and Ut (see (2.4)), i.e., 

(3.5) Xo~ = X,+ U,, 

where X, is determined from ...~ (i.e., ,,a-measurable). Therefore, the (.F~)- 
based prediction of  Xo~ is equivalent to predicting Ut. 

CONDITIONAL EXPECTATIONS. Let us first consider the expected values M t. As 
a stochastic process, (M, is easily seen to have the martingale-property: For 
any t < u, 

(3.6) E:'(Mu) = M,. 

Thus, since M, is an estimate of X~o at time t and M u is a corresponding 
updated estimate at a later time u, (3.6) expresses the simple consistency 
principle : 

(PI) "Cur ren t  estimate of  a later estimate, which is based on more 
information, is the same as the current estimate".  

Another way to express the martingale property is to say that the estimates 
(M,) have no trend with respect to t. 

Since Xt is determined from : ,  we clearly have 

Mt = X t + E : ' ( U t )  = Xt+ml. 
def 

Here, the estimated liability at t, 

(3.7) m, = E:'(U,), 
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is a supermartingale, with the "decreasing trend proper ty"  

EJ'(mu) < m, for t < u.  

This follows readily from the fact that the true liability Ut is decreasing in time, 
as more and more of the claims are paid. Unfortunately such a monotonicity 
property is of  little direct practical use because the process (U~) is unobserva- 
ble : Only the differences U , -  Ut = X , -  X,, can be observed, but not the actual 
values of U, or U,. 

The trend properties of  (Mr) and (mr) lead to a crude idea about how the 
reserve estimates should behave as functions of  time. Considering them as a 
time series may therefore be useful. On the other hand, one has to remember 
that the (super)martingale property is quite weak and only concerns the 
(.Tt)-conditional expected values. Thus an apparently downward trend in an 
observed time series could be balanced by a rare but big jump upwards. 

For a more refined analysis, it would be interesting to study (Mt) in terms of 
its martingale integral representation (see e.g. BREMAUD (1981)). The key 
ingredient in that representation is the innovation gains process which deter- 
mines how (M~) is updated in time when ( J , )  is observed. This theory is well 
understood. Unfortunately, however, actuaries seem to have very little idea 
about what properties the updating mechanism should realistically possess, and 
presently there is no detailed enough data to study the question statistically. 
Therefore, a more systematic research effort must wait. 

It is instructive to still consider the differences 

(3.8) M(t ,u)  = M , , - M , ,  t < u .  

By the martingale property (3.6) we clearly have EJ'(M(t ,  u)) = 0. Now, using 
the analogous notation X(t, u ) =  X , , - X  t for the cumulative payments we 
easily find that 

M(t, u) = [X( t ,  u) - E ; , ( X ( i ,  u))]  + [EJo(U, , )  - E ; ' ( U , ) ] .  

The first term on the right is the error in the estimate concerning payments in 
the time interval (t, u]. The second term, then, is the updating correction which 
is made to the estimated liability when the time of  estimation changes from t to u. 
Both terms have .7,-conditional expected value 0. This suggests that it might 
be beneficial in practice to split the estmate into two parts: one that covers the 
time interval to the next update (typically a year) and another for times 
thereafter. 

CONDITIONAL VARIANCES. The variances V t give rise to somewhat similar 
considerations. First observe that, since X, is determined by ._.~'~, the variance V, 
defined in (3.4) satisfies 

(3.9) V r = Var~'-~(U,) = Var"- '(M(t,  ~ ) ) .  
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Thus, if the used estimation method produces also estimates of Vt, the 
observed oscillations in (U~) can be compared with the square root of V,. 
(Warning: Do not expect normality in short time series!) Second, it is 
interesting to note that (Vt) is a supermartingale as well, i.e., 

(3.10) E'"-'(V~,) < V t for t < u. 

This expresses the following intuitively plausible principle: 

(P2) "Measured by the conditional variance, the estimates M t tend to 
become more accurate as time increases and more information becomes 
available". 

To show that (3.10) holds, we first find that 

E"-'(M(t, u) X(u, oo)) = E"-'(M(t, u) E'Z°M(u, oo)) = 0 

so that M(t,  u) and M(u, oo) are uncorrelated. This implies the well known 
additivity property (" Hattendorf's formula", e.g. GERBER (1979)) 

(3.11) Var'T'(M(t, or)) = VarJ '(M(t,  u)) +Var ' ; ' (M(u,  co)). 

On the other hand, 

(3.12) VarJ '(M(u,  co)) = EJ'(Var~o(X~)) = EJ,(V,), 

so that (3.10) follows by combining (3.9), (3.11) and (3.12). 

REMARK. Recall the following well-known result which complements this 
picture: with respect to a quadratic loss function, the conditional expectation 
M t is the optimal estimate of X(ov). More precisely, for any estimate ,Q, of Xoo 
which can be determined from .Y-t (i.e., IQt is .95-measurable), the following 
inequality is satisfied: 

(3.13) E.7,((X _ ~ , ) 2 )  > E z,((X _M, )2)  (= V,). 

KNOWN AND UNKNOWN ACCIDENTS. Finally in this section we divide the 
collective estimate m. t - -  E~'(U t) into two parts depending on whether the 
considered accidents are at time t known (= reported, IBNER) or unknown 
(= not reported, IBNR). 

Let the number of known (= reported) accidents at time t be 

(3.14) N~ = Z llr,~l" 
i 

from future payments is then 2 Uit. Since the The corresponding liability 
i <  N r 

events {T,.< t} are determined by .~, the corresponding .7,-conditional 
estimate is simply given by 
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This formula expresses the intuitively obvious fact that the reserves correspon- 
ding to reported accidents could, at least in principle, be assessed individually. 

If we are willing to make the assumption, which may not be completely 
realistic, that the liabilities Ui, are uncorrelated across accidents given .y,, we 
also have a corresponding equality for variances: 

( 3 . 1 6 )  VarY' ( 2 i  <_ N, Uu) =2Var'/'Uit=Zi< N t i X  N, Vi t"  

Note that although the processes (m~,) and (V,) were above found to be 
supermartingales, the processes defined by (3.15) and (3.16) do not have this 
property. This is because Ni is increasing. 

Considering then the unknown (IBNR) accidents, it is obvious that also their 
number N - N ,  is unknown (i.e., not determined by .~) and therefore the 

liability estimate E'~' ( ~i>u, U~ , ) canno t  be determined " termwise"  a s w a s  

done in (3.15). Therefore the estimate needs to be determined collectively 
for all IBNR-accidents, a task which we consider in the next section. The only 

qualitative pr°perty which we n°te here is that the pr°cess ( E " (  Z,>N, Uil)) 

is again a supermartingale. This is an easy consequence of the supermartingale 
property of (mil), which was established above, and the fact that N, is 
increasing. 

4. AN ILLUSTRATION:  THE ESTIMATION OF IBNR CLAIMS RESERVES 

We now illustrate, considering the IBNR claims reserves, how the mathemati- 
cal apparatus of  the stochastic calculus can be used to derive explicit estimates. 
But we are also forced to introduce some more assumptions in order to reach 
this goal. 

For known accidents, the delays in the reporting times T~ are only important 
in so far as they are thought to influence the distribution of the corresponding 
payment process. For unknown accidents the situation is completely different: 
For unknown accidents the only thing which is known is that if an i '/' accident 
occurred during the considered year and it is still unknown at time t, its 
reporting time T, exceeds t. (Recall the convention that T,. = oo for i > N). 
Therefore, it is impossible to estimate the IBNR reserves individually. A 
natural idea in this situation is to use the information which has been collected 
about other (i.e., known) accidents and hope that they would have enough in 
common with those still unknown. The problem resembles closely those in 
software reliability, where the aim is to estimate the unknown number of  
" b u g s "  remaining in the program. More generally, it is a state estimation or 
filtering problem. 
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It is most convenient to formulate the " c o m m o n  elements" in terms of  
unobservable (latent) variables whose distribution is updated according to the 
information 9-~...~, has thereby an indirect effect on the behaviour of IBNR 
claims. In the following we study the expected value and the variance of  the 
IBNR liability. The presentation has much in common with JEWELL (1980, 
1987), and ROBBIN (1986), and in particular NORBERG (1988). 

Since the marked points belonging to the settlement process of  an unknown 
accident are all " in  the future" ,  most considerations concerning the reserves 
will not change if the payments are assigned directly to the reporting time T,.. 
This is possible because we, as stated before, don' t  consider the effects of  
interest rate or inflation. This will simplify the notation to some extent. We 
therefore consider the MPP (T,., Xi) , where X; = Xi(ov ) is the size of  the claim 
caused by the i r;' accident. The corresponding counting process is 
{Nt(A); t > 0, A c Rt}, where 

(4.1) Ni(A) = Z I{T~t,X,~AI 
i 

counts the number of  accidents reported before t and such that their liability X; 

is in the set A. (Note that N r (A) cannot in general be determined from .y-~ since 
the Xi's counted before t may also include payments made after time t. Also 

observe the connection to (3.14): Nt = N~(RI)) .  

For the purpose of using the apparatus of the stochastic calculus we start by 
writing the total liability from IBNR claims as an integral (pathwise): 

I = I = 
(4.2) 2 Ui, = ~ Xi = x dN=(dx) . 

i>N~ {i:Ti>t} s = t  . r=0 

We also let 

I I  U(t, u; A)  = 2 X; = x dN=(dx),  
{i:t<Tt~u, XieA} s=t xEA 

so that ~2. U , =  0( t ,  co; RI). 
i> N t 

Adapting the idea from NORBERG (1986) we now suppose that the above 
mentioned latent variables form a pair (~, O) and are such that q~ can be 
viewed as a parameter of  the distribution of the process (Nt), formed by the 
reporting times, whereas O parametrizes the distribution of  the claim sizes (X/). 
(Note that this simple model is " s t a t i c "  in the sense that the latent variables do 
not depend on time. This assumption could be relaxed, for example, by 
introducing an autoregressive scheme of state equations, as in the Kalman 
filter). There are no restrictions on the dimension of (~, O). On the other hand, 
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these parameters are assumed to be sufficient in the sense that if q~ and O, 
together with some initial information J0 ,  were known, no information from 
.Y-t would change the prediction concerning the IBNR claims after t. Thus the 

estimates of q~ and O which are obtained from .9",, or more exactly, their 
conditional distribution given.Y-t, can be said to include " tha t  part of 
J r in fo rmat ion  which is relevant in the IBNR-problem" 

The formal expression of this idea is as follows. Fixing t (" the present") we 
consider times u > t and define 

(4.3) .Y,, = ~o  v o-{~, O} v a { ( T , ,  X 3 ;  t < 7;,. _< u}. 

Thus .-~oo represents the information contained collectively in .~0, the parame- 
ters • and O, and all post-t payments, cf. KARR (1986), Section 2.1. We then 
assume the conditional independence property 

(4.4) --~o~ U J~t, 
Jov a;q~, O} 

stating that 3,  is irrelevent for predicting the post-t payments provided that 
J-0 and (q~, O) are known. 

Let the (ff ,)- intensity of counting process (N,,(A)),  ~ t, be (~,(A)), ,>t,  with 
A c R t. The probabilistic interpretation of 2,,(A) is that 

(4.5) i , (A )du  = P(dN, , (A)  = !1 ...~,,_) = P ( T i e  du, X, eA [ ~._) 

on the interval ~_l  < u < Ti. On the other hand, ~,(A) can obviously be 
expressed as the product 

(4.6) ~,(A) = 7.,, ~0,,(A), 

where 2, = ).,,(R I) and ~o~(A)/2,, (cf. KARR (1986), Example 2.24). Here (2,) 
is the (ff ,)- intensity of the counting process (N,), i.e., 2,,du = 
P ( d N ,  = 1 [ 57,_) = P ( T i e d u  [ . ~ _ )  for T~_, <u_< Ti, whereas ~0,,(A) can 
be interpreted as the conditional probability of { X i e A }  given ...~,_ and that 
T i e R .  

It follows from (4.4) that the intensity (7~,(.)),>, can be chosen to be 
.y-0-measurable and parametrized by (~, O). According to " the  division of 

roles of • and O "  we now assume that in fact X, in (4.6) is parametrized by ~, 
and ~0, ( . )  by O..~, can then be expressed in the form 2, = h (u; ~),where, for 
fixed ~, u~----,h(u; q~) is .g0-measurable. This is only another way of saying that 
the reporting process (N,) is assumed to be a doubly stochastic (non- 
homogeneous) Poisson process (or Cox process) with random parameter ~. 
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Similarly, we assume that the claim size distributions tp,(.) can be written as 
~o,(A) = F,,(A; 0),  where, for fixed u and O, F , ( . ;  O) is a distribution function 
on R~_. This, then, amounts to saying that, given 0 and the (unobserved) 
IBNR reporting times, the claim sizes X i are independent. 

We n°w derive an expressi°n f°r the expected lBNR-liability E : ' (  >~N Ui' ) , 

First note that fit = ,70 v a (~ ,  0). By a straightforward calculation we get 
that 

( z )  (I I ) E J' Uil = E: '  xdN~(dx)  
i>Nr u = t  x=O 

= E "  x (dx)du 
(*) u = ,  x = o 

= h(u; ~) x F~(dx; O) du 
U=I .x'~O 

i 
O9 

= h (u ;  q~) mu  ( 0 )  du,  

where rnu(O) is the mean 

S (4.7) mu(O) = x F~(dx; 0 ) .  
x=O 

(The equality (*) here is a simple consequence of the definition of (~,); for a 
general result see e.g. KARR (1986, Theorem 2.22). On the other hand, because 
of the conditional independence (4.4), we have that 

and therefore finaly 

( z ) I  (4.8) E:'  Ui, = 
i>Nr u = t  

e:, (h (u; ~) me(O)) du. 

We consider some special cases at the end of this section. 
Let us then go over to calculating the corresponding conditional variance 

expression V a r : ' ( ~ , .  , Ui, ) . The calculation goes as follows. 
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= Var Z x dN,,(dx) = E'L(( U(t, "; R ~) )o~) 
u = t x = 0 (*)  

= E ' ,  ( O ( t , . ; a x ) ) o o  = E ,  x Z a ( N c . ) ( d x ) ) ,  
x=O ~'*s x=O u=t 

= E 7' x21,,(dx) du = h(u, qb) x2F.(dx;19) du 
X = 0  11=1 / / = [  X = 0  

i 
oo 

= h (u; 4)  m~ 2) (19) du, 
/ d : f  

where m(u 2)(19) is the second moment 

s 
oo 

(4.9) rn<,2)(19) = x2 Fu(dx; 19). 
x = O  

(Here ( ( . ) , , )  is the predictable variation process, see e.g. KARR (1986), 
Appendix B, (*) is a direct consequence of the definition of this process, and 
(**) follows from Theorem B.12 in KARR (1986)). Therefore, and again using 
the conditional independence (4.4), 

(4.10) V a r ~ ' ( ~ i  , Ui') =EJ 'Var) ' (  2i>N, Ui') +Var';'E'L ( 2i>N, Ui,) 

i ) = EJ,(h(u; qs) m~2)(O)) du+Var  J, h(u; q~) rn.(O) du . 
l l = l  U = I  

The formulas (4.8) and (4.10) can be briefly summarized by saying that the 
conditional expectation and the conditional variance of the IBNR liability 

Ui, can be obtained if the following are known: 
i >  N r 

(i) the intensities h( . ;  4) ;  
(ii) the first two moments of the distributions F( . ;  19), and 
(iii) the conditional distribution of the latent variables (4, O) given ~ .  

Concerning (i), the common expression for h( . ;  4)  (e.g. RANTALA (1984)) is 
obtained by assuming that during the considered year (=  unit interval (0, 1]) 
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accidents occur according to the Poisson(~)-process,  and that  the report ing 
delays D~ are i.i.d, and distributed according to some known distribution G ( ' ) .  
Then it is easily seen that 

(4.11) h ( u ;  ~)  = ~ [ G ( u )  - G ( ( u -  1)÷)] .  

More  generally, • can parametrize both the occurrence process and the 
distr ibution o f  the delays in the reporting, cf. JEWELL (1987). 

The simplest case in (ii) is o f  course when only the number  N -  N t o f  future 
claims is considered, instead o f  the liability they cause. Then we can make the 
obvious  convent ion that every Xi  = I, giving m s ( O )  = m~2)(O) = 1. 

Requirement  (iii), finally, s trongly supports  the use o f  the Bayesian para- 
digm. It is part icularly appealing to use the Po isson-gamma conjugate  distribu- 
tions for the pair  (Nt, # )  since this makes the updat ing extremely simple (see 
GERBER (1979) and NORBERG (1986)). Since deciding on claims reserves is a 
management  decision, rather than a problem in science in which some physical 
constant  needs to be determined,  Bayesian arguments  should not  be a great 
deterrent to a practit ioner.  Choos ing  a reasonable prior for (~ ,  O) could be 
viewed as a good  oppor tun i ty  for an ac tuary  to use, in a quanti tat ive fashion, 
his experience and best hunches. 
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