
P R I Z E - W I N N I N G  PAPERS 

SUNDT AND J E W E L L ' S  FAMILY OF DISCRETE DISTRIBUTIONS 

BY GORDON WlLLMOT 

Untverstty of Waterloo 

ABSTRACT 

A class of  claim frequency dlsmbutlons d~scussed by SUNDT and JEWELL (1981) 
is completely enumerated. Computa tmnal  techniques for the associated com- 
pound total claims distribution in the presence of policy modifications are then 
derived. 
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1. INTRODUCTION 

The total claims payable on a portfolio of business is often modelled as a random 
sum, or a compound distribution, in order to account for randomness m both 
frequency and severity of claims. Computation of the distribution of total claims 
often causes difficulty, but for certain parametric claim-frequency distributions 
the probability density function (pdF) may be obtained numerically as the solu- 
tion to an integral equation. See PANJER (1981), SUNDT and JEWELL (1981), or 
STROTER (1985), for details. 

The total claims distribution may be complicated by the imposition of certain 
policy modifications, such as deductibles and maximums This has the effect of 
creating a more complicated claim-severity distribution, for which the usual 
integral equation does not hold. 

It is the aim of this paper to study a family of number of claims distributions 
which was introduced by SUNDT and JEWELL (1981), and the associated total- 
claims distribution. All members of the family are enumerated, and then an 
mvariance property of a larger family is derived which leads to distributional and 
computauonal simplifications in the presence of certain types of reinsurance. 

A more general procedure for Sundt and Jewell's family is then outlined which 
allows one to entertain models with a maximum benefit per claim. This may be 
used m conjunction with the previously mentioned invariance property to allow 
for the simultaneous treatment of deductibles and maximums. 

In the final section, the extremely good fit to automobile claim frequency data 
of one member is demonstrated. The simplicity and flexibility of  this distribution 
suggests that it be considered as a claim-frequency model. 
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2. BACKGROUND AND NOTATION 

Let the number  o f  claims N have probabihty  distribution I P , = P r ( N = n ) ,  
n = 0, I, 2, .. } and probability generating function (pgf) P(z) = E(z") .  The clatm 
sizes are denoted by a sequence [ Xz, X2, X3 . . . .  ] o f  non-negative independent 
and identically distributed random variables with Laplace-Stiel t jes t ransform 
Lx(s) = E(e  - ' x )  where X is a generic claim size random variable. The total 
claims Yls  defined by Y = X z + X 2 + . . . + . A N  if N>~I and 0 otherwise. The 
associated Laplace-Stlel t jes t ransform is L~ (s) = E(e - ')  ), and it is well known 
that Lv(s )= PI LA(S)]. 

SUNDT and JEWEL[_ (1981) considered the family of  number  of  claims 
distributions which satisfy the recurslve relatIonship 

(2.1) p , ,=  ( a + ~ - ) p , - , ;  n = 2 , 3 , 4 , .  

and show that if the claIm sizes are absolutely cont inuous with pdf  f ( x )  for 
x > 0, then the pdf  g(x)  of  the total claims satisfies the integral equation 

(1.2) g(x)  p l f ( x )  + , a + b  f ( y ) g ( x - y ) d v ,  x > O ,  
J o 

which may be solved numerically for g(x).  Thus,  the relation (2.2), when com- 
bined with the fact that P r ( Y =  0) = Po, specifies the distribution o f  Yin this case. 

3. MEMBERS OF THE CLASS 

AS discussed in SUNDT and JEWELL (1981), the family (2.1) includes the well- 
known Poisson, negative binomial,  binomial,  and logarithmic series distribu- 
tions. Another  member  is the so-called extended truncated negative binomial 
(ETNB) distribution introduced by ENGEN (1974) with probabili ty function 

- ~ F ( n  + ~) p" q , -  ; n =  1 ,2 ,3 ,  . , 
n ! F ( I  +cO 1 - ( l - p ) - "  

(3.1) 

and pgf  

(3.2) 
I -(I - pz)-" 

Q ( z )  = 
1 - ( l - p ) - "  ' 

where - l < c~ < 0 and 0 < p < I. It will be demonstra ted in Theorem l below 
that (3.1) is also a valid probablhty  distribution if p = I. Furthermore,  if c~ > 0 
then the resulting distribution is a negative binomial t runcated at 0, and so the 
possible parameter  values are [ - l  < ~ < 0 , 0 <  p~< l]  and [ 0 < o ~ , 0 <  p <  I ] .  
The case with [ - l  < c ¢ < 0 , 0 < p ~ <  l]  shall henceforth be referred to as the 
ETNB distribution. As c~ + 0 it is easily shown that the logarithmic series 
distribution results. This distribution often provides a good fit to data and is 
discussed m more detail in Section 6. 
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From (2.1) and (3.1), one finds that  a = p  and b = p ( c ~ - I ) .  SUNDT and 
JEWELL (1981) appea r  to have ove r looked  the poss~b~hty o f  a d i s t r ibu t ion  wtth 
a = l .  

All members  o f  the class (2.1) are identified in the fol lowing theorem.  

THEOREM 1. The only nondegenerate distrtbuttons whtch sattsfy (2.1) are those 
wtth pg f  o f  the form 

(3.3) P(z) = n + (1 - p)Q(z) 

wtth -Q(O)[I-Q(O)]-~ ~ < p <  I and Q(z) the pgf  o f  a Potsson, negattve 
bmormal, bmomtal, Iogartthmtc series, or ETNB dtstnbutton. 

PROOF. SUNDT and JEWELL (1981) demons t r a t e  that  the only nondegenera te  
d t s t r lbuuons  which sat isfy (2.1) are those with pgf  o f  the form (3.3) where Q(z) 
is the pgf  o f  a Poisson,  negative b inomia l ,  or  b m o m m l  dlstr ibut~on, plus those 
which sa t i s fy(2 .1)  w~th a > 0, a +  b ~< 0, and 2a + b/> 0. If 2a  + b = 0 t h e n ,  from 
(2.1), p 2 = 0 ,  and the two-po in t  b inomia l  d i s t r ibu t ion  (degenerate  if p o = 0 )  
results.  If  a >  1, then there must  be a posi t ive integer N~>2 such that 
a+ bN- t  = 0 so that  pN= 0; otherwise  there would  exist m such that  p,,÷~ > p,, 
for all n > 177, and the p robab ih t l e s  would diverge.  Thus b = - Na, and from (2. I) 
one finds that  Pz = a ( l -  N/2)p~ is negative unless N =  2. But this means  
2 a +  b = 0 as before ,  and  so a ~< 1 otherwise.  F rom (2.1), one finds that  

(3.4) P" = n~ 1-'(n + 1 + ba-l)a,  ,_ t; ... r ( 2  + b ~ - " )  n = 1 ,2 ,3 ,  

Also,  

(3.5) P" a(l  +ba-1) 
- -  = ; n = 2 , 3 , 4  . . . . .  

P n -  t n 

Then (lett ing f , +  R = P,,), it fol lows by Raabe ' s  test (MARSDEN, 1974, p 60) that  
the series ~f,, = ~Pn converges  if 0 < a <~ 1 and a + b < 0, since, in this case, 
from (3.5), 

f , ,+l  A 
- - < ~ l - - -  

f .  n 

where A = - b a - l >  i.  Thus,  let p = a a n d  ~ = l + b a - l .  T h u s 0 < p ~ <  1, and 
since ba -x < - I  it follows that  o ~ < 0 .  The condi t ion  2 a + b > 0  imphes that 

> - 1. F r o m  (3.4), it follows that  

= P_~ I~(n+O~)p~-~ 
(3.6) P" n! F ( I + ~ )  ; n = 1 , 2 , 3  . . . . .  
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Now 

P__2 ~ F ( n + c ~ )  1 Po + p,, 
p ,,=l n ! f ' ( l  +e¢) 

.g-,,,d 

Hence ,  

= P o +  p~ [ ( 1 - p ) - " - I }  
acp 

- cup(1 - Po) 

1 - ( 1  - p ) - "  

and  s u b s n t u t i o n  m (3.6) yields 

, ( - c ~ F ( n + c ~ )  I - ( l P " - p ) - ' : l  
(3 7) p,, = ( I - p , , j [ . n ~ . F ( i + - 5  , n =  1 , 2 , 3 ,  

T h u s ,  (3.7) c o r r e s p o n d s  to (3 3) with Q(z)  the E T N B  pgf  (3 2), as may  be seen 
by c o m p a r i s o n  with (3.1). Now suppose  that  a + b = 0  T h e n ,  f lora (3 4), 

P l  a ' -  1 
(3.8) p , , -  - -  ; n = 1 , 2 , 3 ,  

I? 

Clear ly ,  this series diverges 11" a =  1, an d  converges  i I"  0 < a < 1 since,  for 
example ,  p,,/p,,_ ~ = a ( I  - I / n )  --, a as n --~ ~ ,  which mlphes  conve rgence  by the 
r a u o  test (MARSDEN, 1974, p. 47). F r o m  (3 8), one  finds that  for 0 < a < 1, 

1 =  Po + p~ 
(./ 

£/ n = 1 17 

= po - p ~  Iog(l - a) .  
a 

Thus ,  Pl = (1 - P o ) [  a ] ( - l o g ( 1 -  a))} and  (3.8) becomes  

I °' / (3.9) p,, = (1 - pa)  n = - n  l o g ( l -  a )  ; 1 , 2 , 3  . . . .  

which c o r r e s p o n d s  to (3.3) with Q(z)  a loga r i thmic  series pgf. 
S u m m a r z z m g ,  the hne  2 a + b = 0  c o r r e s p o n d s  to the two-po in t  b i n o m i a l  

d l s t n b u u o n  (degenerate  If p0 = 0). The  region l0  < a ~ 1, a + b < 0, 2a  + b > 0l  
c o r r e s p o n d s  to the E T N B  dls lnbut fon (3 I) with { - 1 < ee < 0 , 0  < /2 ~< I ]. The  
region  {0 < a < I, a + b = 0l  c o r r e s p o n d s  to the loga r i thmic  series d~s tnbu t lon  
The re  are no  o the r  poss ib le  regIons.  

If one  sets o = - Q(0 ) [ I  - Q ( 0 ) ] - ~  m (3 3), one  ob ta ins  the t r u n c a t e d  d i s t r ibu-  
tion, with the zero class miss ing.  
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Some of  the o ther  members  have been used m insurance contexts .  GOSSIAUX 

and LEMAIRE (1981) used the modif ied  geometr ic  in fitting a u tomob i l e  insurance 
da ta  JEWEkk and SUNDT (1981) suggested the use of  the modif ied  b inomia l  m 
a p p r o x i m a t i n g  the mdwldua l  risk model .  WANt and LO (1986) have considered 
the family (2.1) within the class of  power  series d~s tnbuuons ,  suggest ing that  the 
empir ica l  r auo  (2. I), ob ta ined  by replacing the p r o b a b l h t y  p .  by the p ropo r t i on  
of  observa t ions  equal  to n, may  be used to d i scr imina te  between members  of  the 
family.  By Theorem 1, it is clear that  it may also be used to decide whether  the 
family i tself  is app rop r i a t e .  

4, DEDUCTIBLES AND REINSURANCE 

There are many types of insurance agreements which give rise to models for the 
total claims as discussed earher, but with a possible mass point jq) at 0 and con- 
tmuous density f (x )  for x > 0 for the amount actually payable on each clmm. 
These include deductibles and excess-of-loss and certain catastrophe remsur- 
anccs.  See PANIER and WILl.MOT (1984) for detai ls .  

It is convenient  to in t roduce  tile cond i t iona l  pdf  f , ( x ) =  f ( .v ) / ( l  - f  o) with 
Laplace transform (f, (x)  = 0 i f  x < 0) 

,c,e 

(4 l) Z(s)= I e-"Ji (x)  dx 
J 0 

Then the k a p l a c e - S t i e l t j e s  t r ans fo rm of  the smgle-clmm amoun t  d~stnbut ion 
becomes 

(4.2) L.v(S) = f ,  + (I - f,).~ (s), 

and that of  the total clmms ~s thus 

(4 3) Lv(s)  = P l f o +  (1 -fo)f~(s)). 

The recurswe formula (2.2) is not apphcable in this case owing to the presence 
of  the mass point fo at 0. However, the dtstrlbuuon with uansform (4.3) may be 
expressed m a fashion which permits the use of  (2 2) with l itt le addit ional difficul- 
ty when the number -o f - c l a ims  dts tnbut~on sausfies (2.1) In pa ruc u l a r ,  note that  
(3.3) may be rewri t ten as 

(4.4) P(z) = P ( 0 ) +  [ l -  P(0)I K(z) 

where K(z) = I Q ( z ) -  Q(0) I /I  I - Q ( 0 ) ] .  Since the re lauon  (2.1) begins at n = 2, 
P(0) is a free pa ramete r .  Similar ly ,  for all members  of  the class (2.1), one can 
find a pa ramete r  X and a funcuon  B(x) not depend ing  on X such that  

(4 5) K(z; X ) =  B [ x ( z -  1)] 

- B ( - X )  ' 

where the explicit  dependency  on X ts noted on the le f t -hand side o f  (4 5). 
For  the Polsson case, B ( x ) =  e '  and k > 0 For  the negative b inomia l ,  

B(x) = (1 - x ) - "  with c~ > 0 and k > 0. The ETNB pgf  (3 2) is o f  the same form 
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as the negative b inomia l  but  with - 1 < c~ < 0 and X = p(1 - p ) - ~  > 0 (unless 
p = 1, tn which case one may  choose  B(x) = 1 - ( -  x)-" where - I < a < 0 and 
~, is a rb i t r a ry  since (4.5) does not involve ~.). The  b inomia l  has B(x) = (1 + x ) "  
where 0 < X < 1 and n is a posi t ive integer.  One has B(x) = 1 + log(l  - x)  and 
~, > 0 for the logar i thmic  series d i s t r ibu t ion .  

Hence,  the pgf  (3.3) depends  on (at least) two paramete r s  7r and X, and thus 
tt may be expressed as 

(4.6) P(z; X, 7r) = 7r + (1 - 7r)K(z; X) 

where K(z; X) is gwen by (4.5) and 0 ~< 7r < 1. The main result of  this secuon is 
the fol lowing,  which general izes that  of  PANJER and WILLMOT (1984) and 
includes all members  o f  the family (2.1) as special cases. 

THEOREM 2. For the pgf (4.6), 

(4 7) P l f o  + ( I - f o ) z ;  X, Trl = P { z ;  X ( I - j ] , ) ,  P0Co; X, rc)l .  

PROOf. F rom ( 4 . 5 ) ,  

K l f o +  ( I -  Jo)z; X] = 
B I X ( I - f o ) ( Z - 1 ) 1 -  B ( -  X) 

I - B ( -  X)  

B [ - X ( I - ~ ) ) ]  - B ( - X )  1 - B [ - X ( 1  - f o ) ]  _ + 
1 - B ( -  X)  1 - B ( -  X)  

× [ B [ h ( I - f ° ) ( z - I ) ] - B [ - X ( I - f ° ) ]  l i ~ - - B T - g ~ O ~ - f ~ ]  

= K(fo; X ) +  [ I -  K(fo; X)]K[z ;  X ( I - f o ) } .  

Thus ,  from (4.6), 

P I N ) +  ( I -  fo)z;  X, r l  

= re+ (1 - rc)K{fo + (1 - fo)z;  X] 

= r + ( l - 7 r ) l K ( f o ;  X ) +  [ 1 -  K(f0; X) ]K[z ;  X(l - f o ) ]  } 

= P(fo;  X , r ) +  [1 - P(fo;  X , r ) ] K l z ;  X(l - f o ) } .  

One consequence  of  Theorem 2 Js the fact that the total  number  of  claims 
which are o f  a p a m c u l a r  amoun t  (or range o f  amounts )  is from the same family 
o f  d l s t n b u t m n s  as the total  number  o f  claims Th~s follows by let t ing fo be the 
p robab i l i t y  that  a p a m c u l a r  claim is not o f  the amoun t  o f  interest ,  and then (4.7) 
is the pgf  of  the number  o f  claims o f  the amoun t  o f  interest .  

Suppose  an insurer  only  observed claims o f  a certain size (for example ,  a 
deduct ib le  may cause an individual  not to submit  clmms which are clearly below 
the deduct ib le  level), and it was decided to fit a number  o f  claims d is t r ibu t ion  to 
these observed claims only.  If this model  does not sat isfy (4.7), then the imphed 
total  number -o f -c la ims  d i s t r ibu t ion  is not f rom the same family.  This imphes that  
a different  model  would  have been selected had the deduct ib le  been omi t ted  (or 
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had it been different) .  This  is likely to be undes i rable ,  and so (4.7) may be con- 

s ldered to be an impor t an t  p roper ty .  
F rom a compu ta t i ona l  s t andpo in t ,  the theorem is also convement ,  since the 

recurslon (2 2) may  be apphed  (if, in add i t ion ,  (2.1) is satisfied) af ter  first apply-  
ing the theorem.  S imply  replace f ( x )  by f c ( x )  and use the same number -o f -c l a ims  
d i s t r ibu t ion  as before ,  but  wnh po = 7r replaced by P(fo ;  X, 7r) and the pa rame te r  
X replaced by X(l - f o ) ,  as may be seen from (4.3) and subs t i tu t ion  o f f ,  (s) for 
Z In (4.7). This IS convenient  in that  the recursive fo rmula  need not be modif ied.  
PANJER and WILLMOT's (1984) result is recovered by choos ing  7r = B ( -  X), but 
Is only  appl icab le  if B [ X ( z -  1)] is itself a pgf  

It is clear that  the d is t r ibu t ions  which sat isfy (4.7) are invar lant  under  r a ndom-  
sum reinsurance agreements .  WANI and LO (1983) descr ibe d i s t r ibu t ions  which 
sat isfy (4.7) in a biological  context ,  referr ing to them as invarmnt  abundan t  
d~stributlons. They show that  the only power  series distr~buttons which sat isfy 
(4 7) are all the members  o f  the class (2.1). Theorem 2 generahzes  this family  as 
well, since it depends  on the representa t ion  (4.6) only,  and is not restr icted to 
power  series d i s t r ibu t ions  and thus the family defined by (2.1). 

5 MAXIMUM BENEFITS PAYABLE 

In the previous  section,  methods  for deal ing with claims of  size 0 were presented.  
A similar  p rob lem which IS more  difficult to deal  with ma themat ica l ly  involves 
the impos i t ion  o f  a max imum benefit payable .  This has the effect o f  creat ing a 
s lng le -c lmm-amount  d~stributlon wnh a single mass  point  and a densi ty  por t ion .  

Hence,  ~t is now assumed that the s ing le -c la im-amount  d~smbut lon  has a mass 
point  f , ,  at the value 07, and cond i t iona l  pdf  f c ( x ) ,  given that  m is not payable  
(again it is assumed that  f ¢ ( x )  = 0 if x < 0) This general izes the a s sumpt ion  of  
the previous  section,  where it is assumed that m = 0. 

If the under ly ing claim size d i s t r ibu t ion  has pd f  f ( x ) ,  then the imposi t ion  o f  
a m a x i m u m  benefit of  m lmphes  that  

(5.1) f . ,=  I ~ 
t i t  

and 

f ( x )  d x  

f f ( x ) / ( I  - f,,,), 0 < x < m 
(5.2) re ( x )  = (0, x / >  m. 

Thus,  a s i tua t ion  involving a max imum may be treated as a special case o f  what  
fol lows.  

Similar ly ,  a deduct ib le  may be handled  by let t ing m = 0 in the fol lowing,  thus 
provid ing  an a l te rna t ive  der iva t lona l  a p p r o a c h  to that o f  the previous section. 
However ,  m the s i tuat ion involving both a deduct ib le  and a m a x i m u m ,  It is much 
more  convenient  to " r emove  the mass point  at 0" using the results o f  the previous  
sect ion and then use the fol lowing for the m a x i m u m  only,  ra ther  than a l lowing 
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for two mass points (one of  which is at 0) and a continuous portion. The latter 
approach leads to unnecessarily complicated algebra. 

The total claims Y has mass points at integral multiples of  m, i.e. 

(5.3) Pr(Y=mn)=p,,f ,", ,;  n = 0 , 1 , 2  . . . .  

and P( f , , )  is the total of the discrete portion (if m = 0, there is a single mass point 
P(fo) at 0). The pdf portion may be obtained by conditioning on the number of  
claims, and then on the number of  nonzero claims. Therefore let 

(5 4) g,,(x) = j,,, j,,,, jc 
/~=1 

where f*, ~(x) is the k-fold convolution of fc (x)  with itself. Thus, g,,(x) is the 
conditional pdf  of  Y given that n claims occurred, and is obtained by condition- 
ing on how many are for amount  m. Note that if f,,, = 0, g,,(x)=J~*~"(x), as it 
must. Then the pdf  portion of the distribution of Y ~s 

(5.5) g(x)  = ~ p,,g,,(x). 
I t =  1 

Clearly, (5.5) is not well suited for computational  purposes, and it ~s of  interest 
to derive a computational  formula for g(x).  For any number-of-clmms distribu- 
tion with pgf satisfying (4.7), the total claims of size m and of those not equal 
to m may be obtained easily as discussed in that section, but only m the Poisson 
case are they independent (cf. KARLIN and TAYLOR, 1981, pp. 433-6). Thus, 
only in the Poisson case may a standard convolution approach be used to com- 
pute the total claims distribution. Hence, a more general approach ~s needed for 
the class (2.1), and a generalization of (2.2) is now gwen. 

THEOREM 3. I f  the claim frequency distribution satisfies (2.1), then the density 
(5.5) satisfies the integral equation 

l,£,1 [ , ,~ ( m n \ ]  - - . J  . . . . .  
g ( x ) = p , ( l - f , , ) f , ( x ) + ( l - f , , )  p,, a + b  l - - -~ - ) l J , , , J ,  t x - m n )  

(5.6) (,'") + a+b . -~  f , , g ( x - m ) + ( l - f , , )  a + b  J , ( y ) g ( x - y ) d y ,  
1) 

where [ x] denotes the greatest-mteger function. 

PROOF. Suppose that, for fixed n, Xt, X2, ..., X,  are itd single claim amount 
random variables. Then by symmetry,  one has that 

If x # kin, then the right-hand side of  (5.7) may be obtained by considering the 
case when Xj = m, all but X~ are equal to m, and when Xt and others are.equal 
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to m (note that not all may be equal to m simultaneously).  This yields 

. . . .  f,,,)f,,, f [ x - m ( n - l ) ]  
X 

25 

f( + (I - f,,,) a + b  f ( y ) g , , _ ~ ( x - y ) d y  
o 

Thus, from (5.5), (2.1), and (5.8), one finds that 

m )  . 
= p , ( l - f , , , ) f ( x ) + , , . ~  p , - ,  a + b x J J , , , g , - , ( x - n t )  

- - f , , ) f , , ,  f , [ x - m ( n -  I)1 + p,,-i a + - -  [ x - m ( n  1)] (I "-~ 
n=2 X 

+ p , , - i ( l - f , , )  a + b  . f ( y ) g , , - i ( x - y ) d y  
It  = 2 I't 

+ ( l - f , , )  a + b  y f , (y )  p , , _ ,g , , _~ (x -y )  dy 
o x /  L ,  = z 

m\  
= p l ( 1  - f , , , ) f , ( x ) +  a + b  x ) f , , , g ( x - m )  

+ ( 1  - f ' " ) , ,= l  p,,f',J, a + b  I - ~ . _ j ) J , ( x - m n )  

+ ( I -  f,,,) a + b f ( y ) g ( x -  y) dy 
1) 

which Is (5 6) since f , ( x )  = 0 if x < 0. 

The  theorem may also be proved analytically along the hnes of  WILLMOT and 
PANJER (1987) using Laplace transforms, although the algebrmc detads are more 
cumbersome .  

Some comments  are in order at this point. First, if f , ,  = 0 then (5.6) reduces 
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to (2.2). Also, if m = 0 then (5.6) reduces to 

(5 9) 

1 - f o  I [ p l  
g (x ) -  l 2 ~o 

f( + a + b  
0 

+ (a + b ) ( P ( f o )  - p o ) ] f ~ ( x )  

~)f~ ( y ) g ( x -  y) dy I , 

m agreement with (1.21) of WILLMOT (1986) Fur thermore,  ff (5 2) holds, then 
f, (x - rnn) ~s nonzero for but one or two values of n and so the comphcated sum 

m (5.6) becomes sampler. Finally, ~t seems clear that this approach ~s tractable, 
yet cumbersome algebraically,  ff there are several mass pomts.  Thus,  for 
example,  a s i tuat ion revolving both a deductible and a max imum leads to mass 
points at 0 and m, and it Is simpler to " remove"  the mass point at 0 using (4.7), 
and then use Theorem 3 to deal with m, rather than generalize Theorem 3 to the 
case revolving two mass points.  

6. THE MOI)IIIED ETNB DISTRIBUTION 

Consider  the d lsmbut~on xwth pgf 

(6 1) P(z)  = 7r+ (1 - 7r)Q(z) 

where Q(z) is defined by (3.2) with parameter  space [ - 1 < m < 0 ,0  < p ~< 1 l 
t.3 [ 0 < c ~ , 0 <  p <  I I ,  and where 0~<Tr<  1 The resultant probabflmes are 

given by 

(6 2) Po = ~r 

and 

(6 3) p,, = (1 - 7r)q,,; n = 1,2, 3 . . . . .  

where c1,, is gwen by (3.1). This d i s t n b u n o n  is qmte flexible owing to the extended 
range of the parameter  space, and includes the modtfied geometric of GOSSIAUX 
and LEMAIRE (1981) as the spemal case c~ = 1, and the logarithmic serms with 

zeros as the l immng case oe --+ 0 
The ,ntegral e q u a n o n  (2.2) may be augmented with a convement  asymptouc  

formula for the tall of  the total-claims d i s t n b t m o n  Strmghtforward applicat ion 
of  Surhng ' s  formula (FEIA VR, 1968) tO (3 1) ymlds 

o~(I - a-)n"-'  
(6 4) p , , -  p",  n --* oo. 

V ( l + c ~ ) l ( I - p ) - " -  11 

This ,s an asymptouc  formula of the form discussed by EMBRECHTS, et al 
(1985) C o n s e q u e n t l y , , f p <  1 the tall of t h e a s s o c l a t e d c o m p o u n d d ~ s m b u t m n  
satisfies 

~ ( l - 7 r ) . v "  l e - "  
- +  

(65)  P t ( Y >  x ) -  tF(i + c e ) [ ( l _ p ) _ .  i ] [ _ p L , ( ( _ ~ ) ] ,  ' x 
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where the single-claim-amount distribution is nonar i thmenc  and ~ > 0 sat|sfies 
L x ( - x ) =  p - l .  (This includes the situation discussed in the prewous secnon 
revolving the maximum benefit payable.)  The formula  (6.5) should be used in 
con juncnon  with (2.2) or (5.6), which are not as convenient for large values o f  x. 

The distribution provides a very good fit to automobi le  insurance data.  Sup- 
pose that the data consist o f  I Fk; k = 0, 1,2 . . . .  I where Fk represents the number  
o f  policies with k clmms. The method of  maximum likelihood suggests that the 
values of  7r, ~, and p should be chosen so as to maximize 

(6.6) /Or, a,  p )  = k F~ log pk. 
k = O  

For notational simplicity, let 

(6.7) 

be the number  o f  pohcles and 

(6 8) 

N = k F ,  
k=O 

X=N -I k kFk 
1 , ~ 1  

be the average number  of  claims per policy. Then,  setting the partials o f  (6.6) 
equal to 0 and solwng for the parameters,  one finds that the maximum-l ikel ihood 
estunate o f  7r is 

(6.9) ~ '= N-~Fo 

and the maximum likelihood estimates o f  c~ and p sansfy the equanons  

~. = (i  - ~-)a/5/(i  - / 5 )  
i - ( 1  - / 5 ) ~  

(6. ~ 0) 

and 

(6.11) - N---~ (1 -15)  l o g ( l - / 5 ) = &  Fk (&+ m ) - t  
/ 5  / ~ = 1  I,' " 

The double sum on the right-hand side o f  (6.11) may also be written as 
~...., co , c o  

.... o (& + m)-Z ~ ,  . . . . .  ~ Fa, a formula whmh may be more convement  for com- 
putational purposes. 

The derivation of  (6.10) and (6.11) is s t ra ightforward but tedious and follows 
that o f  ANSCOMBE (1950). Equation (6.10) equates the theorencal mean to the 
sample mean. The values of  & and /5 must be obtained numerically, but this 
causes little difficulty using a s tandard N e w t o n - R a p h s o n  algorithm. 

The distribution was fitted using this method to six automobile  claim-frequency 
data sets gwen by GOSSIAUX and LEMAIRE (1981). The lesults ale given m 
Table 1 where the fitted values are denoted by E~ The Pearson goodness-of-fit  
s tansnc,  assocmted degrees o f  freedom, significance level, and maximum- 
hkehhood esnmates o f  the parameters are also given. In some cases, grouping 



28 WILLMOT 

TABLE 1 

k F~ E~ kk E~ 

DATA SET I DATA SET 2 

0 103,704 103,704 00 20,592 20,592 00 
I 14,075 14,075 97 2,651 2,651 33 
2 1,766 1,761 48 297 295 84 
3 255 261 32 41 41 94 
4 45 41 80 7 6 58 
5 6 6 98 0 1 09 
6 2 I 20 I 0 19 
Total 119,853 119,852 75 23,589 23,588 96 
Chl-squared 0 76 0 13 
DF 3 2 
Slgmficance level 0 86 0 94 
(&,fi, -k) (0 285,0 195,0 865) (0 104,0 202,0 873) 

DATA SET 3 DATA SET 4 

0 370,412 370,412 00 3,719 3,719 00 
I 46,545 46,546 57 232 232 09 
2 3,935 3,929 04 38 37 26 
3 317 323 73 7 8 51 
4 28 26 35 3 2 23 
5 3 2 13 I 063 
Total 421,240 421,239 81 4,000 3,999 73 
Ch~-squared 0 46 0 52 
DF 2 1 
Sigmficance level 0 80 0 47 
(&,/~, -k) ( I 154, 0 078, 0 879) ( - 0 I 19, 0 364, 0 930) 

DATA SET 5 DATA SET 6 

0 7,840 7,840 O0 96,978 96,978 O0 
1 1,317 1,320 31 9,240 9,241 89 
2 239 225 19 704 696 12 
3 42 54 14 43 53 49 
4 14 14 91 9 4 15 
5 4 4 42 0 0 35 
6 4 137 - -  - -  
7 1 0 4 4  - -  - -  

Total 9,461 9,460 78 106,974 106,974 00 
Cht-squared 8 03 6 64 
DF 3 1 
S~gmficance level 0 05 0 01 
(&, ,6, ~) ( -  0 103, 0 380, 0 829) (0 886, 0 080, 0 907) 

was  d o n e  to e n s u r e  t h a t  e x p e c t e d  f r e q u e n c i e s  are  suff ic ient ly  la rge  0 e. g r ea t e r  

t h a n  1). T h e  fit is qu i t e  g o o d  fo r  the  first f o u r  d a t a  sets ,  a n d  r e a s o n a b l e  fo r  the  

last two .  T h e  a p p a r e n t l y  p o o r  fit o f  d a t a  set 6 is d e c e p t w e  in t ha t  the  m i s m a t c h  

in cells 3 a n d  4 of f se t  each  o t h e r .  I f  they  were  g r o u p e d ,  as GOSSIAUX a n d  

LEMAIRE (1981) d id ,  the  fit w o u l d  be d e e m e d  a d e q u a t e .  It s h o u l d  be n o t e d  tha t  

6¢ was  pos i t i ve  fo r  d a t a  se ts  1 ,2 ,  3, a n d  6, sugges t i ng  tha t  the  t r u n c a t e d  nega t ive  

b i n o m m l  wi th  ze ros  was  fit. 
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