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AB S T R AC T  

This paper deals wtth experience rating of claims processes of ARIMA structures. 
By experience rating we mean that future premiums should be only a function 
of past values of  the claims process. The main emphasis is on demonstrating the 
usefulness of the control-theoretical approach in the search for optimal rating 
rules. Optimality is here defined to mean as smooth a flow of premtums as possible 
when the variauon in the accumulated profit is restricted to a certain amount. 
First it is shown how the underlying model in its simplest form can be transformed 
into the state-space form. Then the Kalman filter technique is used to find the 
optimal rules. Also a time delay in information is taken into account. The optimal 
rules are illustrated by examples. 

1. INTRODUCTION 
i 

Assume that the dth dtfference Adx(t)(d ~> O) of the annual total claims process 
X( ! )  of  an insurance portfolio is a weakly stationary process. Let P(t) be the 
risk premiums to be controlled. Denote by U(t) the solvency margin or 
equivalently the accumulated profit at the beginning of the year t. To simplify 
notations AaX(t), Adp(t) and U(t) are taken to mean the deviations from the 
corresponding expectations. 

Assume that it is desired to find a hnear rating pohcy P(s), P(s+ 1 ) , . . . ,  P(N) 
for a finite ume span, which will minimize the quadratic performance criterion 

(1) E{ ~ [U(t)2+u'(Adp(t))2]} 
where u I> 0. This criterion may be interpreted to mean the minimization of the 
variance of AaP subject to a constraint on the variance of U, or equivalently 
mimmlzatlon of Var (U)  subject to a constraint on Var (AaP). 

Observe that criterion (1) differs from those traditionally used in experience 
rating or credibility theory. In credibility theory, interest is usually in maximum 
accuracy; i.e., premiums P(t) should be a best estimate of X( t ) ;  usually in the 
LSE sense No weight is placed on the time stability of premiums or insurer's 
solvency margin In experience rating theory some attention has been paid to 
the limited fluctuation criterion, where variance in premiums has to be restricted. 
However, the starting-point is generally a fixed formula whose optimahty proper- 
ties are usually not investigated and the link between the rating formula and the 
insurer's solvency margin is not considered. 
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Criterion (1) allows the weighting of variations in premiums and insurer's 
solvency margin. Moreover, the procedure to be introduced below gives for a 
fixed structure of the claims process also the corresponding optimal form of the 
rating formula. Thus criterion (1), together with the opnmal rating rule, may also 
be of practical interest. 

We further assume that the premiums have to be determined with f years' 
time-lag in informatson; i.e., when the premiums P(t) of the year t are to be 
determined, the claims or equivalently the solvency margins at the end of the 
years t - 1 - f ,  t - 2 - f . . .  with f>~ 0 are known. Perhaps the most common value 
is f =  1 i.e., the premiums for the year t have to be calculated during the year 
t - 1 ,  when X(t-1) is soil unknown. But larger values are also interesting; e.g., 
when the IBNR reserves constitute a substantial part of X(t). 

The consideranons are limited to the feedback rules. These rules are based on 
the observed solvency margins (or equivalently on the observed total claims 
amounts). The performance of the feedback rules might possibly be improved 
by adding afeedforward control, where the future outcomes of the claims process 
X(t) are forecast (see e.g., Box-Jenkins, 1976, Chapter 12). Note, however, that 
in order to improve the feedback rule forecasts for the future X(t) should be 
based on external factors: if the past of X(t) only is used for this purpose the 
resulting procedure is again a feedback rule. 

When transformed to a state-space model this problem can easily be 
attacked by using the famous Kalman filter technique. This algorithm was first 
presented by Kalman in 1960. Since then state-space models have been 
used in various areas ranging from engineering to econometrics, one of the 
reasons being that the Kalman filter equations are very easy to deal with on 
computers. 

The idea of using (stochastic) control theory and Kalman filter in premium 
setting and actuarial calculations is not new. Pioneering works include e.g., 
BALZER-BENJAMIN (1980), (1982), BOHMAN (1979), DE JONG-ZEHNWIRTH 
(1983), MARTIN-LOF (1983) and RYDER (1977). 

In many important cases premiums cannot be totally controlled by the insurer 
but are determined e.g., by market conditions. Since in this paper we assume 
that the controller is m a position to set the premiums at the computed level, the 
results might most easily be applied in those insurance classes where the rates 
are subject to public control, or e.g., in long-term reinsurance agreements or in 
individually rated policies. But also for other cases the results may be of some 
interest, e.g., when the appropriate range for solvency margins are set up, or joint 
tariffs, based on the outcomes of the whole market, are used. Another interesting 
application would be for transfers into or from the contingency reserve to be 
calculated using formula (2.1) below, with risk premiums P(t) given by an optimal 
control-theoretical rule (see also CHRISTENSEN, 1984, p. 181) 

The basic model is introduced in Sections 2 and 3 The state-space form of 
the model is derived in Section 4. In Section 5 the optimal solution for the specific 
loss function (1) is given and Section 6 includes some numerical examples and 
an application to empirical data. 
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2 .  T H E  S O L V E N C Y  M A R G I N  P R O C E S S  

The solvency margin (or accumulated profit) ~s assumed to progress according 
to equation 

(2.1) U ( t +  1) = r ( t ) .  U ( t ) +  P ( t ) - X ( t ) ,  

where in the year t 

U(t)  = solvency margin at the beginning of the year, 

r(t) = interest coefficient, 
(2.2) / P(t)  risk premiums retained, 

( X ( t )  = claims incurred on the insurer's own account. 

All these variables are m principle stochastic, but in order to keep the calculations 
simple r(t)  is taken as a non-random and time-independent constant r. 

Note that equation (2.1) is the same for all values of delay p a r a m e t e r f : f  only 
regulates the information available for determination of P(t )  

Equation (2.1) is taken to include only the business retained. Thus in potential 
practical applications the rates resulting from the formulae below should be 
modified by a loading for reinsurance costs Another interpretation is to take 
(2 1) to mean the gross business but let the division of premiums etc between 
direct writer and reinsurer remain unspecified. 

Since U(t ) ,  ~ d x ( t )  and ~dP(t )  denote the deviations from the corresponding 
expectations, then, in order to have a positive expectation for the solvency margin, 
another positwe safety loading should be added to the premiums resulting from 
the rating rules below. A rational magnitude for the safety loading might be such 
that the expectation of U(t )  becomes a suitable multiple of the standard deviation 
of the U(t) .  

3 .  T H E  S T R U C T U R E  O F  T H E  C L A I M S  P R O C E S S  

Introduce next the structure of the claims process. In time series theory much 
attention has been paid to so-called ARIMA models, especially since the publish- 
ing of the monograph by Box-Jenkins in 1970. However, the theoretical jus- 
tification of such models was already given by WOLD (1938) and YAGLOM (1955) 
Recently such models have also received attention tn articles on experience rating 
theory; cf. JEWELL (1976), SUNDT (1981), (1983) and KREMER (1982), (1983). 

In an ARIMA model of order (p, d, q) a stochastic process X ( t ]  is described 
by the equation 

• (B)z~aX(t)  = O ( B ) a ( t ) ,  (3.1) 

where 

(3.2) 

qb(B) = 1 - ¢ b . B - & 2 B  2 . . . . .  qbpB P, 

O ( B )  = I - 01B - 02B 2 . . . . .  OqB q, 

B = backward shift operator; i.e., B X ( t )  = X ( t  - 1), 
a( t )  = a sequence of uncorrelated random variables 

with mean zero and with variance cr2a 
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If  d > 0, then the X(t)  process  defined by (3.1) is non-s ta t ionary ,  but  if the roots  
of  equa t ion  qb(B) = 0 lie outs tde  the unit  circle the d th  difference Adx(t) of  X(t )  
is s ta t ionary.  

In classical  risk theory  tt is usual ly  assumed  that  p =  d = q  = 0  i.e., X(t )  is a 
white noise process.  This a ssumpt ion  is hard ly  just i f ied in pract ice  unless the 
quant i t ies  are d t scoun ted  for inflation. But also the d i scounted  claims process  
may be expec ted  at least  m some insurance  classes to be affected by jumps ,  
t rends,  cycles  etc., which means  that  the c la ims process  is not white noise and 
can even be non-s ta t ionary .  It is often poss ib le  adequa te ly  to descr ibe  these 
mfluences by A R I M A  models .  Unfor tuna te ly  the relevant  t ime series are usual ly  
far too shor t  for any re l iable  es t imat ion o f  parameters .  An a l ternat ive  is then to 
fix in advance  the s t ructure  of  X(t )  such that  it can bel ieved to be a caut ious  
a p p r o x t m a t i o n  to the processes  occurr ing  in pract ice.  This is the logic beh ind  
the numer ica l  examples  in Section 6. 

4. T H E  S O L V E N C Y  M A R G I N  PROCESS IN T H E  S T A T E - S P A C E  FORM 

In o rder  to have access to the Ka lman  filter technique  we have to t ransform 
equat ions  (2.1) and  (3.1) to a s ta te-space model .  A s ta te-space model  consists  o f  
two equat ions :  the state equatton descr ib ing  the t rans i t ion  of  the system and the 
observation equation giving the observable  ou tpu t  of  the system. In our  case these 
equat ions  are re la t ively s imple  to derive. We use the technique  presented  e.g., m 

H A R V E Y  (1981). 
Take  first the state equat ion .  From (2 1) and  (3.1) we obta in  

(4.1) (1 - rB)dP(B)AaU(t + 1) = dp( B)Adp(t )  - O(B)a( t ) .  

Let n = max ( p +  d + 1, q +  1). Assume first that  the delay parameter f = 0 .  In t ro-  
duce n state variables Z(1 ,  t), Z(2 ,  t), . . ,  Z(n, t). A state equa t ion  co r r e spond ing  

to (4.1) is 

(4.2) 

where 

Z(t  + 1) = AZ(t)  + GAdp(t) - Ma(t), 

,¢ 

(4.3) 

[ z(t)--¢z(':'),z(2,'),,zii','))', 
I__ = ident i ty  matr ix of  o rde r  n, 

= ( 1 , - ~ , , - ~ 2 ,  . . , -~ , ) '  
= (1, - 0 , ,  -02 ,  • • •, - 0 , ) ' ,  

'y(B) = (1 - rB)adO(B) = 1 - TtB - 'y2B 2 . . . . .  T,B ° 

with ~b, = 0 for t > p and 0, = 0 for t > q and ' denotes  t ranspos i t ion .  
The so lvency margin  U(t) is now given as the first e lement  of  Z(t). Since, 

accord ing  to a s sumpt ion  that  f = 0 ,  U(t) (and thus Z(t))  is known when the 
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premiums for year t are to be determined, an observation equation is now not 
needed; i.e., we have the case of complete state information (see ,~STROM, 1970, 
Section 8.4). 

The equivalency of (2.1) and (3.1) to (4.2) can be verified by a straightforward 
calculation. Note, however, that the state-space representation is not unique. 

A positive time delay f may be taken into account by the addition o f f  new 
state variables of  the form 

( Z ( n  + 1, t ) =  Z ( I ,  t - l )  

(4.4) I Z(n +2' t)= Z(n+ 1, t - l )  

/ 
Z(n +f, t) = Z(n + f -  1, t - 1) 

and by modifying A, G and M respectively. Moreover, we now also need the 
observation equation of the form. 

(4.5) Y(t )  = HZ ( t ) ,  

where H = ( 0  0 . . .  1) is a (1 x n + f )  vector. Thus Y ( t ) =  U ( t - f ) .  
Note that the solvency margin U(t) is still given as the first element of  Z(t). 

However, its value can only be calculated after f years time; i.e., the total claims 
amounts for the years t - 1, t - 2 , . . . ,  t - 1 - f  are not yet known in the year t - 1. 

5. T H E  O P T I M A L  R A T I N G  E Q U A T I O N S  

Consider a finite planning horizon consisting of years s, s + 1 , . . . ,  N. The loss 
function (1) is a special case of the loss function 

{ } (5.1) E Z(N) 'QoZ(N)+ E [Z( t ) 'Q,Z( t )+v. (Adp( t ) )  ~ , 

where Qo and Qi are symmetric positive definite (n + f ) x  (n +f) -matr ices .  
The optimal linear control rule giving the minimum for this loss function is 

(see e.g., ,~STROM, 1970, Theorem 4.1 in Section 7.4 and Theorem 5.1 in Section 
8.5): 

(5.2) gap(t) = -- L( t)f~(t), 

where gaP(t) is the optimal premium setting to be applied at time t, and ,g,(t) 
is the least squares estimator of the state vector Z(t) when Y(t), Y ( t - 1 ) , . . .  
and the prior distribution of Z(s) Is the data avatlable for determining the control 
action. L(t) is a (1 x n + f )  vector of constants given by 

(5.3) L(t) = [v + G'S(t + I ) G ]  -~ G'S(t + I)A, 

where S(t+ 1) is obtained from recurrence equation 

(5.4) S(t) = A'S(t+ 1)A+ Q i - A ' S ( t +  I)GL(t) 

with the initial condition 

(5.5) S(N) = Qo. 
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(5.6) 

(5.7) 

(5.8) 

(5.9) 

and 

(5.10) 

The state estimator .Z(t) for the undelayed system equals Z(t ) .  For the delayed 
case ,Z,(t) can be obtained from the Kalmanfilter equauons (see ~STROM, 1970, 
Exerctse 7 on p. 235): 

,/~, (t) = Z , ( t ) +  K(t ) [  Y( t )  - H,Z,(t)], 

K( t )  = R,( t )H'[  HR, ( t )H ' ]  -~, 

R( t )  = R,( t)  - K ( t ) H R , ( t ) ,  

2,(t) = A 2 ( t -  1) + GAdp(t  -- 1) 

R i ( t ) = A R ( t - 1 ) A ' + ~ 1 ,  

where El = try, • M M '  the recursion starts with ,Z,(s) = tZo and R(s)  = Eo where ~o 
and ~o are the prior expectation and covariance matrix of Z(s) ,  respectively, 
and with A d p ( s ) = - L ( s ) l z o  . The starting values for P(t)  and Y ( t ) =  
U ( t - f ) ( t <  s) are the actual ones. 

Thus the optimal procedure depends on the chosen prior values ~o and Eo. 
However, one is often interested in an asymptotic or steady-state solution (i.e., 
a solution where the transient effects due to chosen prior values have died out). 
It can be shown that as N ~ co the matrices R(t)  and S(t)  will converge to unique 
steady-state positive definite values R and S. Denote the corresponding hmits of 
L(t) and K( t )  by L and K. Then the steady-state feedback rating formulae are 

(5.1 1) &alp(t) = -- LfS( t), 

(5.12) 2 ( 0  = ( l .+f -  KH)(A- GL)2( t -  1)+ KY(t), 

for f~> 1. In the undelayed f =  0 case the latter equatton is again replaced by 
Z( t )  = Z( t ) .  These equations are quite easy to translate into a more traditional 
form involving only past Adp( t ) : s  and U( t ) : s  or X( t ) : s .  Some examples are 
given in Section 6. 

The corresponding steady-state covariance matrix Cz of the state vector Z( t )  
can be obtained by iteration from equation: 

(5.13) Cz = ( A - G L ) [ C z ( A - G L ) ' + R L ' G ' ] + G L R A ' + ~ .  

The steady-state variance of the solvency margin is given as the left upper  corner 
element of  Cz. 

The corresponding variance of Adp(t)  IS 

(5.14) Var (adp(t))  = L( Cz - R)L'.  

Note that when d > 0  the variance of the premiums is infinite ( X ( t )  also has 
infinite variance) but the variance of the solvency margin ts finite. 

Numerical calculatton by computer of the steady-state solution is quite easy 
since equations (5.3), (5.4), (5.7), (5.8) and (5.10) do not depend on observations 
and the solution can be obtained by successive iteration. 
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It is also possible to derive the above steady-state optimal rating procedures 
in a more easily interpretable way using the technique presented in BOX-JENKINS 
(1976), Section 13.2 (see RANTALA 1984). This technique, however, may lead to 
computational  difficulties when the orders of operators ~ ( B )  or ®(B) in (3.1) 
are not low. On the other hand, the Kalman filter technique is in essence 
independent of  the order of  X( t ) -process ,  only the dimension of the transforma- 
tion (4.2)-(4.5) depends on the order parameters p, d and q. But the method 
presented in Box-Jenkins is also applicable when, for example, the steady-state 
variance of AP(t)  is to be minimized when X(t)  is a stationary process, whereas 
the loss function (5.1) applies only to the variance of P(t). 

6. EXAMPLES 

Next some numerical examples are given of the application of the asymptotic 
procedures introduced in Section 5. 

Example 1. Assume first that there is some variable V(t) which may serve as 
a basic volume measure. For example, V(t) may be the sums insured in fire 
insurance, the payroll in workers' compensation insurance etc. Usually V(t) is 
also stochastic, but since the main variation of X( t ) /V( t )  is obviously due to 
X(t) ,  V(t) is treated here as a deterministic quantity. Our assumptions are 

(a) the quantities of  (2.1) in the year t are proportional to the basic volume 
measure V(t) (and we call them rates), 

(b) AX(t )  = a(t) - Oa(t - 1); i.e., X(t)  is an ARIMA (0, l, 1) process. 

Assumption (a) means that now r = r,/r~ = interest coefficient r, divided by the 
growth factor rg of V(t). Note that r s includes both real and inflation growth of 
the volume. Assumption (b) allows the interpretation that every year a shock 
a(t) is added to the current "basic level" of  the claims rate to produce a value 
X(t).  However, only a proportion 1 - 0 of  the shock a(t) is actually absorbed 
into the new basic level to have lasting influence (see BOX-JENKINS, 1976, Chapter  
4). 

In practice perhaps not every shock changes the level. Thus (b) may be regarded 
as a cautious "upper  limit" for actual claims processes. When 0 = 0 we obtain a 
random walk process; i.e., every new shock is totally absorbed into the basic 
level, this being the "most  dangerous" alternative among the ARIMA (0, 1, l) 
processes. 

We want a rating rule which minimizes the steady-state variance of AP(t) 
subject to a constraint on the steady-state variance of U(t). This can be done by 
choosing the loss function as 

oo:o [: 00] 
and v- -1 .  By varying w different combinations of  Var (AP(t))  and Var (U( t ) )  
can be produced from which a suitable compromise may be found. As an example 
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we take r = 1, 0 = 0 and w = 0.005. By applying the iterative equations of  Section 
5 we obtain the optimal steady-state rating rule simply as 

(6.2) aP(t) = -0 .373.  U(t) +0.314.  U(t - 1). 

Formula (6.2) can also be expressed in terms of previous X(t ) :s  using equation 
(2.1). Straightforward calculation shows that (6.2) is equivalent to 

(6.3) P ( t ) =  1.627. P( t -1 ) -0 .686 .  P ( t - 2 ) + 0 . 3 7 3 .  X ( t - 1 ) - 0 . 3 1 4 .  X ( t - 2 ) .  

The corresponding variances turn out to be 

[Var  ( U(t))  = 27.660r2~ 

(6.4) I. Var (AP(t))  = 0.32o'I. 

In fact, rule (6.2) corresponds to the "integral controller" introduced in BALZER- 
BENJAMIN (1980), see also BOX-JENKInS (1976), Section 12.2.2. It shows that 
in this case the use of  U(t) only (which is equivalent to the traditional exponential 
smoothing formula for experience rating) is not enough to produce an optimal 
scheme. 

Since the underlying claims process used in the derivation of (6.2) is assumed 
to be a random walk, procedure (6.2) is able to detect every persistent jump in 
the claims process; i.e., even if X( t ) -process  has a persistent jump to a new level 
Xo the steady-state values of  both E(P(t ) -Xo)  and EU(t) are zero. The corre- 
sponding steady-state value of EU(t) for traditional exponential smoothing is 
non-zero (see also BALZER-BENJAMIN (1980) and (1982)). 

Example 2 (continued). We take the model of  Example 1 with the same 
numerical values for other parameters but assume that f =  1; i.e., the solvency 
rate U(t)  is not known when the premium rates for the year t are to be determined. 
Now the optimal steady-state rule is 

(6.5) AP(t) = - 0 . 3 7 3  • A P ( t -  1)-0.431 • U ( t -  1)+0.373 • U(t-2) .  

Thus the change in the premiums in the year t now depends, besides on two 
latest observed solvency rates, also on the previous change itself. 

The variance calculations give 

~'Var (U( t ) )  = 51.4tr~ 
(6.6) 1. Var (AP(t))  = 0.4tr2~. 

The following figure shows the possible opt imum combinations of  steady-state 
Var (U( t ) )  and Var (AP(t)) in Examples 1 and 2. Moreover, Example 4 gives a 
practical application of a rule like (6.5). 

As expected, the variances for the case f =  1 are somewhat larger than for the 
case f = 0 .  However, the increases are only moderate. It can also be seen that 
reduction of the standard deviation of AP below 0.5~a entails a rapid increase 
in the standard deviation of U. 

Note also the superiority of  the above optimal scheme over the "naive" strategy 
P(t) = X ( t - 1 )  (when f = 0 ) ;  i.e., the claims of the preceding year are paid by 
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the policy-holders in the next year. This is also the "pure"  credibility rating rule 
for the random walk claims process; i.e., the premiums are set equal to the "best"  
predictor of the total claims amount of  the following year without regard to the 
amount of  the accumulated profit. By this policy the steady-state standard devi- 
ation of the solvency rate would be infinite and the steady.state standard deviation 
of the change in the premium rate would be a tra. However, using the above 
optimal scheme this latter variance can be achieved with the standard deviation 
of  the solvency rate at only 1.6~a. 

As noted, procedures (6.2) and (6.5) are able to detect permanent  jumps in 
the claims process, while linear trends pass unnoticed. The procedure of  example 
3 is designed to deal with such trends. 

Example 3. Now it is assumed that no basic volume measure is available and 
the quantities in (2.1) are absolute amounts, which among other things are subject 
to the influence of inflation. Then a cautious approximation analogous to Example 
1 is: 

(6.7) A2X(t) = a( t )  - O~a( t -  1) - 02a(t - 2 ) ;  

i.e., X ( t )  is an ARIMA (0, 2, 2) process. It can be shown (see e.g., B O X - J E N K I N S ,  

1976, Chapter  5) that for a series generated by (6.7), the optimal forecasts (in 
the mean square error sense) lie along a straight line, the level and slope of which 
are continually updated as new data become available. In fact, in equation (6.7) 
1 + 01 + 02 and 1 -  02 are the fractions of  the shock a( t )  which are transmitted to 
the level and slope parameters,  respectively. Thus, model (6.7) may be interpreted 
to include the effect of  inflation with permanent  changes in the inflation rate 
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every year, this being a cautious approximation to the inflations occurring In 
practice. 

As a numerical example take r = 1.1 and 01 = ~0.5, 02 = 1. It ~s further assumed 
that f = 1. 

Let again v = 1 and 

Qo=Q,= 

"0.005 0 0 0]  

0 0 0 

0 0 0 

0 0 0 

A straightforward calculation gives the optimal rule as 

(6•8) (1 +0.418B+O.384B2)a2p(t) = ( -1 .424+  2 .417B-  1.059B 2) U(t-  1). 

As compared to example 2 we have here the second difference of P(t) and one 
more time lag on both sides of  the rating equation• 

The corresponding steady-state variances are 

IVar  (U( t ) )  = 218o'~, 
(6.9) tVar  (£x2p(t)) = 2.95cr2a. 

2 is independent In interpreting these variances it should be observed that here o'~ 
of the level of  the X(t) process• In practice inflation obviously also increases the 
variance in the nominal claims amount• In any case, this example shows that the 
opttmal smoothing of the claims process with stochastic linear trends obviously 
requires a rather complicated rating rule. 

Example 4. Third party motor liability insurance in Finland 1966-1982 is taken 
as an empirical example. The annual claims and premiums are computed per 
one "reduced policy year",  the durations and bonus reductions of policies being 
taken into account in that e.g., a bonus of 60% and duration of one year correspond 
to a reduced policy year of  length 0.4. The premiums are computed on an earned 
basis• Both claims and premiums are discounted to FIM (1982) using the average 
of living costs and salary index. Thus claims, premiums and solvency margin 
may be taken to correspond to the "rates" introduced in Example 1. The combined 
increase in index and reduced policy years has been on the average 13.8%, and 
since the interest yield of  the acccumulated profit is not credited to surplus, the 
average interest coefficient r=0.8785 (see Example 1). The risk premiums are 
obtained by deducting expenses from gross premiums. The claims for each year 
are those estimated at the end of 1982. Thus they are not quite the same as those 
used in actual premium setting. 

We compare the rates emerging from the rating rule 

(6•10) A P ( t ) = - 0 . 2 7 6 5 . A P ( t - I ) - 0 . 3 0 4 2 .  U ( t - 1 ) + 0 . 2 4 2 9 .  U ( t - 2 )  

to the actual rates• Rule (6.10) is in the following called random walk rating, 
since it gives an optimal combination x/Var (U(t))= 6.3cr~ and x/Var (AP(t))= 
0.477o-, nf X(t) is a random walk and with one year's time delay in information. 
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In applying (6.10) the initial solvency rate is set equal to zero and the initial 
premium equal to the actual value. 

Figures 6.2 and 6.3 show the rates and the accumulated surpluses of the 
procedures. The annual changes in premiums are given in fig. 6.4 

It may be concluded that the random walk rating would have led to somewhat 
smaller fluctuations in accumulated profits and to considerably smoother changes 
in premiums than the actual rating. However, it should be remembered that there 
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may be other background factors than only actuarial for the performance of the 
actual scheme; e.g., the general price freeze in the late 60's after which there was 
a sudden increase of premiums in 1973-1974. That increase and the simultaneous 
decrease in claims led to a rapid increase in accumulated profit. In any case, it 
seems that the theoretical random walk rating (with suitable parameters) does not 
lead to too rapid reactions, and at least in this example its performance is fairly 
satisfactory. Moreover, as noted in the introductTon, its performance could still be 
improved if an "outside" forecast of the claims were added (see e.g., the sudden 
increase in claims at the beginning of  the 70's and a subsequent steep decrease). 

7. C O N C L U D I N G  R E M A R K S  

This paper is intended to illustrate how the methods of  stochastic control theory 
can be used in experience rating. The explicit model considered is a simplified 
picture of  real phenomena and there remain many interesting problems to solve 
when the model is enlarged to greater detail. For example, the effects of run-off 
errors on the optimal control rules can be studied in the Kalman filter framework 
by adding a noise term on the righthand side of the observation equation (4.5) 
to approximate these errors. 
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In addition to the variance criterion, the performance of these rules may be 
studied e.g., by examining their time responses to jumps,  steps and linear trends 
in the claims process. By studying the frequency response functions of  the 
premium and solvency margin filters resulting from these rules it is also possible 
to obtain an image of their behaviour in cases where the claims process is not 
that assumed m the derivation of the rules. In this way it is also possible to obtain 
upper limits for the variances, independent of the actual correlation structure of 
the claims process. Some of these questions are treated in RANTALA (1984). 

ACKNOWLEDGEMENT 

The  a u t h o r  w i shes  to  e x p r e s s  his t h a n k s  to t he  r e f e rees  fo r  m a n y  v a l u a b l e  

c o m m e n t s  w h i c h  led  to  i m p r o v e m e n t s  in t h e  p r e s e n t a t i o n  o f  th is  p a p e r .  

REFERENCES 

BALZER, L A and BENJAMIN, S (1980) Dynamic Response of Insurance Systems with Delayed 
Profit/Loss Sharing Feedback to Isolated Unpredlcted Claims Journal of Insntute of Actuaries 
107, 513-529 

BALZER, L A and BENJAMIN, S (1982) Control of Insurance Systems with Delayed Profit/Loss 
Shanng Feedback and Persisting Unpredlcted Clatms. Journal of Insntute of Actuaries 109, 
285-316 

BOHMAN, H. (1979) Insurance Economics Scandmaman Actuarial Journal 57-74 
Box, G E P and JENKINS, G M (1976) Time Sertes Analysis Forecasting and Control Holden Day 
CHRJSTENSEN, I E (1984) On the Use of Contingency Reserves m Surplus Allocauon Transacnons 

of the 22nd lnternattonal Congress of Actuaries 
DE JONG, P and ZEHNWIRTH, B (1983) Claims Reserving, State-Space Models and the Kalman 

Filter Journal of lnstttute of Actuartes 110, 157-182 
HARVEY, A C (1981) Time Series Models Allan Phdhps Pubhsher L~maed Oxford 
JEWELL, W S (1976) Two Classes of Covanance Matrices Gtvmg Simple Lmear Forecasts Scan. 

dmaotan Actuarial Journal 15-29. 
KALMAN, R E (1960) A new approach to hnear filtering and prediction problems Trans Amer 

Soc Mech Eng, I Basic Engmeenng 82 
KREMER, E (1982) Credzbfllty Theory for Some Evolutionary Models Scandmawan ActunaIJournal, 

129-142 
KREMER, E (1983) A Remark on Parameter-Estimation of Autoregresswe Credibdlty-Models 

Deutsche Gesellschaft fhr Verslcherungsmathemank XVI, 153-160 
MARTIN-LOF, A (1983) Premium control in an Insurance System, an Approach Using Linear Control 

Theory Scandinavian Actuarial Journal 1-28 
RANTALA, J (1984) An Apphcatlon of Stochasttc Control Theory to Insurance Business Ph D. 

Thes~s, Department of Mathematical Sciences, Umverstty of Tampere 
RYDER, J M (1977) Predicting Future Premlums~'Fheory and Practtce. General Insurance Bulletin 

460-483 
SUNDT, B (1981) Recurswe Credlbdlty Estlmatmn Scandmaman Actuarial Journal 3-21 
SUNDT, B (1983) On Time-Heterogeneous Credlbihty EstlmaUon Scandmawan Actuarial Journal 

183-190 
ASTROM, K J. (1970) Introductaon to Stochasnc Control Theory Academic Press 
WOLD, H (1938) A Study m the Analysis of Stanonary Time-Series Almqwst & Wlcksell Stockholm, 

2nd ed. 1954 
YAGLOM, A M (1955) The Correlation Theory of Processes whose nth Dffterence Constttutes a 

Stationary Process Matem Sb 141 

JUKKA RA NTA LA 

Mmtstry of Social Affairs and Health, Insurance Department, Bulevardi 28, SF- 
00120, Helsinki 12. 




