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A B S T R A C T  

Upper and lower bounds are derived for the stop-loss premium of compound 
distributions with fixed claim number distribution and known mean, variance 
and range for the claim severity distribution. 

1. I N T R O D U C T I O N  

In this paper we investigate bounds on stop-loss premiums for compound distribu- 
tions 

(1) S = Xi-~- X 2  + .  ° .-~- X N  

where the claim number distribution FN is fixed (e.g., Poisson (A)) and where 
the claim severity distribution Fx is restricted to have 

(2) 

for some finite b and /.,i. e [0, b]. 

F.(-0) =0 

F x ( b )  = 1 

E [ X ] = ~  

The stop-loss premium of S with stop-loss point t will be denoted by 

(3) 7r(t; Fx)= f,~°(x-t) d[.~oPr(N=n)F~'(x)]  

BOHLMANN et al. (1977), introducing the concept of stop-loss ordering, derived 
bounds for 7r(t; Fx). 

In fact, when the random variable X -  equals tz with probability one, and X + 
has range {0, b} and mean /.z, 

(4) ~-(t; Fx-)~ ~(t; Fx)~ ~(t; Fx+) 

uniformly in t and for all X satisfying (2). 
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(5) 

To prove that this is true first observe that cr and /3 exist such that 

Fx-(x)~Fx(x) f o r x < a  

Fx ( x ) ~ F x ( x )  f o r x ~ > a  

F x ÷ ( x ) ~ F x ( X )  for x ~>/3 

F x * ( x ) ~ F x ( x )  for x </3. 

As E [ X - ]  = E [ X ] =  E [ X ÷ ] ,  this means that X -  is less dangerous  than X and 
X ÷ is more dangerous.  As a more dangerous  distribution has higher stop-loss 
premiums,  we have 

(6) X-oc  X oc X + 

where oc denotes stop-loss order. Stop-loss order  is preserved under  com- 
pounding,  so 

N N N 

(7) E X?oc  E X, oc Z X ,  + 
i = l  t = l  I=1 

which is equivalent to (4) holding for all real t. For a more detailed proof,  see 
GOOVAERTS et al. (1984) 

Since X -  and X ÷ satisfy all requirements for X, the bounds  in (4) are best 
possible, and X -  and X ÷ are extremal distributions. 

It is not  possible to give such extreme distributions when the variance o f  X is 
also fixed, say 

(8) Var (X)  = o .2 

With the techniques o f  GOOVAERTS et al. (1984) one may compute  extreme values 
of  stop-loss premiums,  but unfortunately the corresponding distributions depend 
on the value o f  the stop-loss point chosen. There is no severity distribution in 
this class that is smallest or largest in the sense o f  stop-loss order. 

In Section 2 we exhibit r andom variables Z -  and Z + that give bounds  like 
(4), uniformly in t. These bounds  are not the best possible, since Z -  and Z ÷ 
have variances different from o2. They are, however,  the greatest lower and least 
upper  bound  with respect to dangerousness.  

In Section 3 we give a numerical illustration using the examples o f  GERBER 
(1982). 

2 .  A N A L Y T I C A L  B O U N D S  O N  D I S T R I B U T I O N  F U N C T I O N S  

In GOOVAERTS and KAAS (1986) extreme values are given for distributions Fx 
with range [0, b] and the first few moments  fixed. When X has mean /.t and 
variance o.2, we have 

(10) F ' ( x ) ~  < F x ( x ) ~  F"(x)  

with the values o f  F t and F"  given in the following table, where z = (x-,u,)/o- 
and d = b/z - / z  2 -  o '2~ > 0 are used for notational convenience.  



B O U N D S  O N  S T O P - L O S S  P R E M I U M S  

T A B L E  1 

BOUNDS FOR DISTRIBUTION FUNCTIONS WITH RANGE [0, b] ,  
MEAN ~ AND VARIANCE 0 -2 

x F t ( x )  F " ( x )  

d 1 
0 < x < ~  - 0 

b - / . t  l+aa  2 

d < ~ x ~ b  - d  --  1 I.* d 1 _ ~ 4  d 
b - ~  I.~ b bx b b ( b - x )  

d 1 
b - - - ~ x ~ b  1 - - -  1 

/..t, 1+7,  2 
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Now define the following two severity distributions: 

( l l )  Fz*(X)={F (a) ot~X~13 
[F' (x)  13<~x~<b 

where a and 13 satisfy 

(12) 
Or 

a =/.z-I- o-2+Mb-~.) 

x [cr(b  - 2 ~ )  - 4cr=(b - 2 ~ ) = +  (Or=+/.~(b -/.~))2] 

and 

O r 

13 = u . +  O r 2 + ~ ( b _ ~  ) 

x [Or(b - 2/..t) + 4o'2(b - 2/x)2 + (ors+ p.(b - p.))2] 

I Ft(x) 0 ~ < x < / z  
(13) Fz- (X)=(F. (x )  i.<~x~.b. 

With d as in table 1, we have a-~ d / (b - l* )  and 13 I> b -  d/tz. To check that Fz+ 
is well-defined and 

E[Z-]= E[Z +1= 

is a laborious process but involves only elementary calculus. Since the distribution 
G with d G ( a ) =  F " ( a ) =  l - r iG(13 )  has mean t* and variance or2 we have 
Var (Z  +) > or2. 

In fact, it may be shown that, writing t*=(t-t.~)/cr for all t, 

( (14) V a r ( Z + ) = o r  2 l + l n  \ i ~ - 7 ~ 7 ~ i + ~ 1  ) 

In the same way, considering the distribution H with 

dH(O) = F'(lx), dg(lz)  = F"( tz )  - F ' ( t z ) ,  dH(b) = 1 - F"(I*), 
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which has mean  /.t and  var iance  tr 2, one shows that  Var ( Z - ) <  cr 2. Because o f  
(10) we have immed ia t e ly  that  Z -  is less dange rous  than any X, and Z ÷ is more  
dangerous ,  so 

(15) zr(t; Z- )~< ~r(t; X)~< rr( t ;  Z ÷) 

un i fo rmly  for all t and for all feasible X. 
Now let W be a r a n d o m  var iable  with dFw(x)>O for some x where  also 

F~(x) < Fw(x) < F"(x). It is easy to cons t ruc t  a feasible  X with Fx(x) = Fw(x) 
and x ou ts ide  the spec t rum of  X :  dFx (x)  = 0. But then ei ther  X is more  dangerous  
than W, or  X and W are not  c o m p a r a b l e  because  Fx and Fw have two more  
more sign changes.  So to be more  dangerous  than all X, Fw must be first above  
F",  then cons tan t  be tween  F "  and  F ~, then be low F t. But then it is easy to see 
that  Fz ÷ and Fw have only  one poin t  o f  in tersect ion,  so Z ÷ is less dangerous  
than W. 

Reasoning  a long the same lines for Z -  we may conc lude  that  among  the 
d i s t r ibu t ions  more  dange rous  than any feasible  X, Z + is the least  dangerous ,  
whereas  Z -  is the most  dange rous  less dange rous  dis t r ibut ion.  In this sense Z ÷ 
and Z -  are op t imal  choices.  

3. NUMERICAL ILLUSTRATION 

I n  o r d e r  t o  a s s e s s  t h e  q u a l i t y  o f  t h e  b o u n d s  d e r i v e d  in  t h e  p r e v i o u s  s e c t i o n ,  w e  

give a numer ica l  example .  In GERBER (1982) me thods  are descr ibed  to bound  
as well as to a p p r o x i m a t e  s top- loss  p remiums  o f  c o m p o u n d  Poisson dis t r ibut ions .  
His me thod  to ob ta in  a lower  b o u n d  using mass concent ra t ion  does  not  always 
give an a r i thmet ic  discrete  d is t r ibut ion ,  so we used the me thod  of  match ing  (two) 
moments ,  which is much more  exact  with the same compu ta t i ona l  effort. To 
ob ta in  G e r b e r ' s  uni form (1, 3) c laim severi ty d i s t r ibu t ion  as a special  case, we 
took b = 3, /x = 2 and cr 2= ½ in our  examples ,  the c la im numbers  being Poisson 
(h )  with h = 1, 10 and 100. 

TABLE 2 

BOUNDS FOR STOP-LOSS PREMIUMS WITH CLAIM-RANGE [0,3], MEAN 2, 
VARIANCE 31- AND CLAIM NUMBER POISSON ( | )  

Stop-Loss Gerber's Upper Upper Lower Lower 
Point t Exact Value Bound (4) Bound (15) Bound (15) Bound (4) 

0 2000 1000% 1000% 1000% 1000% 
2 8 277 x 10 -I 124 I 113 5 89 3 88.9 
4 2 689x 10 -k 147 2 124 2 78 4 77.1 
6 7 184x l0 -2 149 4 134 8 67 3 65 0 
8 1.627 x 10 -2 288 4 182.9 56 7 53 5 

10 3 254x 10 -3 364.0 227 3 46 2 42 3 
12 5.815 x 10 -4 365 6 261 1 36 7 32 6 
14 9 346x 10 -5 921 3 3569 28 7 246 
16 I 366x10  -5 11669 4950 221 183 
18 1 840x 10 -6 11540 5974 168 133 
20 2 3 0 2 x 1 0  -7 35786 8075 125 95  
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TABLE 3 

BOUNDS FOR STOP-LOSS PREMIUMS WITH CLAIM RANGE [0,3], MEAN 2, 
VARIANCE 31 AND CLAIM NUMBER POISSON (10) 
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Stop-Loss Gerber's Upper Upper Lower Lower 
Point t Exact Value Bound (4) Bound (15) Bound (15) Bound (4) 

15 5 757 105 4% 103 0% 99 0% 99 0% 
20 2626 118 2 109 2 95.6 95 3 
25 9 321 x 10 - l  141 6 121 2 91 6 91 6 
30 2 563 x 10 -I 175 9 141 1 81 9 80 7 
35 5 507 x 10 -2 257 4 172.0 74 7 74 7 
40 9 383 x 10 -3 380 3 218 8 61.2 59 2 
45 I 289x 10 -3 551 5 2894 53.1 53 1 
50 I 4.49x 10 -'~ 10280 3965 402 379 
55 1 355 x 10 -3 1762 1 560 8 33 3 33 3 
60 I 0 6 7 x l 0  -6 28299 8168 235 215 
65 7 1 7 5 x l 0  -8 64657 12261 186 18.6 

TABLE 4 

BOUNDS FOR STOP-LOss PREMIUMS WITH CLAIM RANGE [0,3], MEAN 2, 
VARIANCE ~ AND CLAIM NUMaER POISSON (100) 

Stop-Loss Gerber's Upper Upper Lower Lower 
Point t Exact Value Bound (4) Bound (15) Bound (15) Bound (4) 

180 2 177 × 10 - t  104 4% 102 2% 99.1% 99 1% 
200 8 304 117 7 109 2 96 1 96 0 
220 I 959 152 0 126.4 89 2 88 9 
240 2 647x 10 -I 230 0 161 6 78 1 77 6 
260 I 992 x 10 -2 420 9 229 6 64 2 63 5 
280 8 395 x 10 -4 922 3 364 7 49 3 48 4 
300 2.319 x 10 -5 2846 4 725 9 33 8 33.4 
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