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SUMMARY 

The allocation of operating costs among the lines of  an insurance company is 
one 'of  the toughest problems of accounting; it is first shown that most of the 
methods used by the accountants fail to satisfy some natural requirements. Next 
it is proved that a cost allocation problem is identical to the determination of 
the value of a cooperative game with transferable utilities, and 4 new accounting 
methods that originate from game theory are proposed. One of those methods, 
the proportional nucleus, is recommended, due to its properties. Several practical 
examples are discussed throughout the paper. 
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I. COST ALLOCATION IN PRACTICE 

Cost allocation is one of the toughest problems of accounting. It occurs whenever 
cooperation between several departments of a company produces economies of  
scale: the benefits of cooperation have to be allocated to the participating 
departments. In insurance, such problems are numerous, especially in countries 
where companies are allowed to operate on a multi-class basis; the accountants 
of  th~ company are then compelled to divide the operating costs between the 
different classes. The amount of  time spent and the complexity of  the methods 
used in cost allocation are absolutely startling: for instance a large Belgian 
company that operates in three classes (life, fire and accident) uses no less than 
11 different criteria or "keys".  

Key No. I: Direct Imputation 

Some operating costs can be directly assigned to a class: the salary of  the 
employees that work exclusively in that class, the brokers '  commissions, the 
surveyors'  f e e s , . . . .  Note that only 57% of the operating costs of  the company 
can be allocated directly. 

Key No. 2: In Proportion to Key No. l 

The salaries of the employees who do not work exclusively for one class, the 
premiums of their insurance policies, the employer 's  contribution to the Social 
Security sys tem, . . ,  are allocated in proportion of the total observed under key 
No I. 
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Key No. 3: In Proportion to the Number of Fdes 

The salaries, the telephone bills, the travel expenses of the administrative inspec- 
tors of  the company are allotted according to the number of files they have to 
consider monthly. 

Key No. 4: In Proportion to the Number of Policies and Endorsements 

Costs allocated according to this key include the salaries of the producing 
inspectors, of the premium collectors, the agents' solidarity fund in case of illness, 
etc . . . . .  

Key No. 5: One Third to Each Class 

The company operates a training center, where its agents now and then come 
for a full week of lessons All costs relating to this activity (instructors' salaries, 
food and beverages, caretaker's wage, heating of the center . . . .  ) are simply 
distributed evenly among the classes! 

Key No. 6: Average of Keys Nos. 3, 4 and 5 

The premiums of the insurance policies "of the inspectors are the only costs 
allocated by this key. 

Key No. 7: In Proportion to the Surface Occupied 

Heating costs, water, electricity, telephone bills, cleaners' salaries, lift mainten- 
anc e , . . ,  are apportioned according to the surface occupied by the three classes 
in the building. 

Key No. 8: In Proportion to Premium Income 

The list of costs divided according to this key is nearly endless and very diversified: 
subsidies to various organizations, subscriptions to papers and magazines, gifts 
for the employees' children at Christmas, prizes for competitions between the 
agents, advertising, travel costs of  the directors, maintenance of  the company 
cars, reception costs of the foreign visitors, printing of the company's news- 
l e t t e r , . . . .  

Key No. 9: In Proportion to the Average Number of Employees of each Class 

In this section we have the maintenance costs of the printing department, the 
operating costs of the restaurant, the stationery suppl ies , . . . .  

Key No. 10: In Proportion to the Number of Computing Hours +the Average 
Number of Disks and Tapes 

This key was selected to subdivide the computer costs. 
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K e y  No. l 1 : In Proportion to the Total o f  Keys  No. I to l 0 

This last key includes the postage costs, the operating costs of  the company 's  
local offices, the insurance policies of  the company cars, the medical aid for the 
e m p l o y e e s , . . . .  

In addition to this complexity, quite large amounts (millions of  Belgian francs!) 
are arbitrarily transferred from one class to another whenever it is felt that one 
of the keys acts unfairly. 

The accountants unanimously acknowledge that their methods are extremely 
complex and in some ways completely arbitrary. They admit that the grand total 
for one class may be wrong by quite a few percent, but pretend that this is not 
too important: since the total profit of  the company is the sum of its three 
components,  they claim that an allocation error simply increases the profit of  
one class at the expense of another, and does not influence the total result. This 
is not correct: unfair allocations may lead to actions that decrease the total profit 
of  the company, as shown by the following examples. 

EXAMPLE !. In the case where service department costs are allocated to 
producing divisions, the overcharged division has an incentive to independently 
contract out such services, and avoid the use of the service department.  While 
the division reports a cost savings from such a move, overall corporate profits 
may suffer. For instance, in one company, some of the policies of  one class are 
printed outside the printing department:  the manager of this class has noticed 
that, due to the selected allocation key, it is cheaper to have its policies printed 
outside than at the company 's  printing department.  This is a nice example of  
an individually optimal decision that turns out to be a collective error: the class 
manager has increased his profit, but the company profit has decreased, since 
the printing department 's  salaries and maintenance have to be paid anyway. 

EXAMPLE 2. Key No. l0 penalizes the computer  programs that use a lot of  
disks and tapes. So there is an incentive for class managers to have those programs 
run outside the company: this reduces the operating expenses of  the class, but 
increases the company 's  expenses. 

EXAMPLE 3. In many countries the technical results of  a class influence the 
commissions paid to the agents and /o r  the bonus paid at the end of the year to 
the employees. Also the profit of  a class is one of the criteria for the evaluation 
of the performance of its manager. All those persons would certainly not be very 
happy if they were to learn that their class is subsidizing another one, by way of 
some unfair cost allocation procedures that have distorted the relative profit- 
abilities of  their products. 

EXAMPLE 4: The worst error that could be induced by an incorrect allocation 
procedure is under-pricing, selling a type of policy below the "break-even"  price, 



64 LEMAIRE 

without being aware of it. Typically this may happen if the selected key fails to 
identify the high operating costs of a line, like travel assistance or familial 
responsibility, that produces numerous small claims. For example, if an allocation 
key is: "For  all policies of the accident class, the operating costs equal 20% of 
the commercial premium", that amounts to have the travel assistance line subsi- 
dized by motorcar third-party hability. 

Those examples show that it is of uttermost importance to develop "fair" cost 
allocation techniques. We shall attempt to show that game theory may be "the" 
solution to this problem. First (Section 2) an introductory example shows why 
the classical cost allocation methods, failing to satisfy some important properties, 
have to be rejected. Then, we show (Section 3) that the cost allocatton problem 
is identical to the problem of computing the value of a n-person cooperative 
game with transferable utilities. We propose (Section 4) four new methods, 
adapted from game theory, and compare them (Section 5) by means of three 
important properties. In Section 6 the case of games without core is briefly 
considered. In Section 7 we present an extensive hst of other applications of 
game theory that show that cost allocation is an area where game theoretic ideas 
are ettectwely implemented. Finally, in Section 8, we completely solve a practical 
example. 

2. AN INTRODUCTORY EXAMPLE 

EXAMPLE I. During the first week of April 1983, three Belgian drivers were 
involved in an accident in Yugoslavia. 

Place of Amount of the 
Pohcy-holder Company accident claim ( X 1 000 dinars) 

Jl I Ljublana s t = 300 
J2 2 Karlovac s 2 = 1000 
J3 3 Blstnca s 3 = 200 

The three concerned companies need a damage survey of the cars. They happen 
to have the same local correpondent in Belgrade, the appraisal bureau Y. Observ- 
ing the location of the three claims on the map, Y notices that it is much cheaper 

Ljublana 500 km Belgrade 

150 km 450 km NxxxXXx250 k m 

Karlovac 

Blstrlca 
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(in total mileage) to sens an expert for a round trip, than to come back to Belgrade 
after each evaluation. 

Let S be any subset o f  N = {I, 2, 3}. Denote  by c(S) the total mileage driven 
in order  to inspect the vehicle(s) o f  S. 

c(l)  = 1000 

c(2) = 900 

c (3 )  = 500  

c(12)= 1100 

c(13) = 1500 

c(23) = 1300 

c(N) = c(123)= 1500 

(for simplicity we denote  c(12) for c({I, 2}), etc). 
So a round trip produces  a total gain o f  1 0 0 0 + 9 0 0 + 5 0 0 = 9 0 0 k m .  This 

however  creates a problem to Y: what  amount  x, should be charged to each 
c o m p a n y ?  Clearly the fixed costs (hotel nights in each city, adjuster 's  fee for each 
vehicle, . .) can be assigned directly to the cor responding  claim, so we only need 
to consider  the repartition o f  the variable costs, the travel expenses. We suppose 
that the expert 's  re imbursement  indemnity is propor t ional  to the mileage driven. 
The classical cost al location methods used in account ing are the following. 

Method 1: Equal Repartition of the Total Gain 

This leads to the allocation vector ~ = (x~, x2, x3): 

g = (700, 600, 200). 

Method 2: Proport:onal Repartttion of the Total Gam (or Morianty's Method) 

x ,=c(O-  c(i) c(k)-c(N) =E c(j) 

J 

In our  example g = (625,562.5, 312.5). 

(j) c( N). 

Method 3: Equal Repartttzon of the Non-Marginal Costs 

Define the marginal cost for ~: 

CM(O = c( N ) -  c( N\{i}). 
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CM(i) (somet imes  called the separable  cost) is the addi t ional  mileage to be driven 
if {i} is considered to be the last claim, if it is added  to the group  N\{~}, a l ready 
formed.  The method advoca tes  

x,=CM(i)+~[c(N)-~~t, k CM(k)] 

i.e., an al locat ion .~ = (500, 300, 700) (the marginal  costs are (200, 0, 400)). 

Method 4: Proportional Repartttion of the Non-Marginal Costs 

x,=CM(,)4 CM(i-----~[c(N)-~ CM(k)J CM(i--------~c(N) 
CM(j) K ~ CM(j) 

J J 

We obtain  .~ = (500, 0, 1,000). 

Method 5: Repartition Proportional to the Clmm Amounts 

S~ 
x, = - - c ( N )  

Esj 
3 

i.e., ~ = (300, 1,000, 200). 

The  five methods  r e c o m m e n d  wildly different al locations.  They can be com- 
pared  by their propert ies.  In order  for a method  to be " fa i r" ,  it certainly has to 
satisfy the two following natural  propert ies .  

Property 1: Individual Rationality 

x, ~ cO). 

A c o m p a n y  cannot  be charged more  than if its pol icy-holder  had been alone to 
cause an accident.  It is inconceivable  that a c o m p a n y  should suffer f rom a global 
saving. 

Property 2: Collective Rationality (or Marginahty Principle) 

x, ~ c( N ) -  c(N\{i}) = CM(i). 

No c o m p a n y  should be charged less than its marginal  cost;  if the p roper ty  is not 
satisfied for a company ,  it is effectively subsidized by the other  two, who have 
interest to secede. 

The two propert ies  limit the range of  the acceptable  values for x,: 

200~< x~ ~< 1000 

0 ~ X 2 ~ 900 

400 ~ x 3 ~< 500. 

Consequen t ly  all of  the above  methods  have to be rejected. 
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The different allocations can be represented in the so-called "fundamental  
triangle of costs". 

{(x,, x2, x3),x, ~ 0 , ~  x, = .  1500}. 

1500  x~ X2 

P 

Xl X2 

The hatched surface is the set of  the acceptable allocations, delimited by the two 
properties. The repartitions are indicated by the number of the method. 

3. LINK WITH COOPERATIVE GAME THEORY 

We shall show in this section that the cost allocation problem is identical to the 
determination of the value of a game with transferable utilities. 

Cost Allocation 

Let N be a set of n departments {I, 2 . . . .  , n} involved in a given job or project. 
A cost c(S) is attached to each subset or coalition S ofdepartments .  A consequence 
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of  scale economies is that the set function c(S) has to be sub-addit ive 

c ( S ) + c ( T ) . ~ c ( S u  T) VS, T D-- S n  T=•:  

it is cheaper  for two depar tments  to collaborate on a job  than to act independently.  
A cost allocation is a vector .~ = ( x ~ , . . . ,  x,), such that x, I> O, V~ and ~,"=j x, = 

c( N). 

is said to be individually rational if x, ~< c0)  Vi. 

£ is said to be collectively rational if, VS, ~ x, ~< c(S). 
IE:S 

Imputation of a Game 

A n-person cooperat ive game with transferable utilities is a pair IN, v(S)], 
where N = { I , 2  . . . .  ,n}  is the set o f  the players, and v(S), the characteristic 
funct ion o f  the game, is a super-addit ive set function that associates a real number  
v(S) to each coalit ion S o f  players. 

v (S )+v(T)<~v(Su  T) VS, T =>- S n  T = ®  

(it is not limitative to assume that v(i)= 0 Vi). 
An imputat ion is a vector P=(y~  . . . .  , y . )  such that y , ~  v(i) .Vi and ~,"=~ y, = 

v(N). 
The core is the set o f  imputat ions  such that E,~s Y, ~> v(S), VS. 
Clearly the two problems are identical if we define 

v(S) = E c ( 0 -  c(S): 
t c S  

the characteristic function associated to each coali t ion is the saving it can achieve. 
An imputat ion of  this game defines a cost al location by 

x, = c( i ) -  y,. 

So it is equivalent to define a cost allocation game by IN, v(S)] or IN,  c(S)] In 
the sequel, all formulas will be expressed in terms of  c(S). 

Note  that properties I and 2 define the core of  the game (in the 3-player case). 
Obviously none of  the preceding five methods will provide a point  that always 
belongs to the core, since none explicitly considers all the c(S). 

NOTE. The core o f  a game may be void (a necessary and sufficient condit ion 
for a non void core in a 3-person game is c(12)+c(13)+c(23)~-2c(123)). In that 
case, there exists no acceptable cost allocation: there is always at least a set o f  
players who have right to complain  and who have interest to separate from the 
rest o f  the group. Fortunately,  in most  o f  the applications,  economies  o f  scale 
are so large that the game is convex. 

DEFINITION. A game is convex if, VS, T (not necessarily disjoint) 

c(S)+c(T)~> c(Su T)+c(Sc~ T). 
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In the three-player case, convexity reduces to 3 condit ions 

c(12) + c ( 1 3 ) ~  c(123) + c ( l )  

c(l 2) + c(23) >1 c(123) + c(2) 

c(13) + c(23) >~ c(123) + c(3). 

In the four-player  case, there are already 30 condit ions!  

An equivalent definition o f  convexity is 

DEFINITION. A game is convex if, Vi, V S ~  T ~  N 

c(TL2 {i}) -- c(T)<~ c (Su  {i}) - c(S). 

So in a convex game there is a " snow-ba lhng"  effect: it becomes more and more 
interesting to enter a coali t ion as its number  o f  members  increases, since the 
"admiss ion  cost" c(S u { i}) -  c(S) decreases. Particularly, it is always preferable 
to be the last to enter the grand coalit ion N (this justifies our  definition o f  the 
marginal  cost in Section 2: it is only in the case o f  a convex game that one can 
assert that the sum o f  the marginal costs is less than or equal to the total cost c(N)). 

In a convex game, the study of  the different value concepts  is considerably 
easier, since one can show that the core o f  such a game is always non void and 
that it satisfies interesting regularity properties: it is a compact  convex polyhedron,  
o f  d imension at most  n - 1  (Shapley, 1971). Moreover,  it coincides with the 
bargaining set and the Von N e u m a n n  and Morgenstern solution (Maschler,  Peleg 
and Shapley, 1972). 

4. FOUR NEW COST ALLOCATION METHODS 

4.1. The Shapley Value 

Shapley (1953) has proved that there exists one and only one al location .~ that 
satisfies the following 3 axioms. 

AXIOM I. Symmetry. For all permutations II of players such that c[H(S)]  = c(S), 
VS, xn(,) = x,. 

A symmetr ic  problem has a symmetric  solution. I f  there are two players that 
cannot  be distinguished by the cost function, if their contr ibution to each coalition 
is the same, it is normal to award them the same amount  (this axiom is sometimes 
called "anonymi ty") .  

AXIOM 2. Inessential players. If, for a player i, c(S)= c(S\{i})+c(0 for each 
coalition S to which he can belong, then x, = c( i). 

Such a player does not contribute any scale economy to any coali t ion;  he is 
called an inessential player, and cannot  claim to receive a share o f  the total gain. 
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AXIOM 3. Additwity.  Let IN,  c(S)] and IN,  c'(S)] be two games, and x,(c) and 
x,(c') the associated allocations. Then 

x,(c+c')=x,(c)+x,(c') ¥i. 

This axiom has been subject to a lot of criticisms, since it excludes the interactions 
between both games. In the present case, however, those critiques do not appear  
to have much ground; it is indeed quite natural, in accounting, to add profits 
that originate from different sources. 

Denote by s the number  of members of  a coalition S. The only imputation 
that satisfies the axioms is 

1 
x, = 7., ~ (s - i ) ! (n  - s ) ! [ c ( S ) -  c(S\{,})].  

INTERPRETATION. The Shapley value is the mathematical expectation of the 
admission cost when all orders of  formation of the grand coalition are equi- 
probable. Everything happens as if the players enter the coalition one by one, 
each of them receiving the entire saving he offers to the coalition formed just 
before him. All orders of  formation of N are considered and intervene with the 
same weight I / n !  in the computation.  The Shapley value can also be written 

1 
x, = c(i) - ~ .  ~s (s - 1)[(n - s)![c(S\{ i}) + c(i) - c(S)]. 

The term between square brackets is the saving achieved by incorporating t to 
coalition S. The cost charged to ~ is consequently his individual cost less a 
weighted sum of savings. 

The allocation, proposed by Shapley, for example 1, is 

= (600, 450, 450). 

It is represented by an S in the fundamental triangle of  costs. 

4.2. The Nucleolus (Schmeidler, 1969) 

The nucleolus measures the attitude of a coalition towards a proposed allocation 
by the difference between the cost it can secure and the proposed cost Define 
the excess 

e($, S) = c ( S ) -  ~ x, 
I ¢ 'S  

that measures the "happiness  degree" of  each coalition S. If  the excess is negative, 
the proposed allocation is outside the core; if it is positive, the allocation is 
acceptable, but the coalition nevertheless has an interest in obtaining the highest 
possible e(g, S). The nucleolus is the imputation that maximizes (lexicographi- 
cally) the minimal excess. 

Let z(..f) be the vector (with 2 "-~ components) of  the excesses of all coalitions 
S c N (S # Q, S # N),  ordered by increasing magnitude. A lexicographic ordering 
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of the vectors z(22) [i.e., Z(22)~LZ(22') if 2=22' or if Zk(2)>Zk(22') for the first 
component k for which 22 differs from 22'] defines a semi order L. The nucleolus 
is the first element (=the maximal element) of  this semi-order: z(22) ~>L Z(22')V22'. 
TO compute the nucleolus amounts to award a subsidy 8, as large as possible, to 
each proper sub-coalition of N. So one has to solve the linear program 

max 8 

x ,+6<c(S)  VScN, S#®,S~N, 
IcS 

n 

x ,=c(N)  x,~O Vi. 
I=1 

In the case of example 1, the maximal value of 8 is 50; this leads to the same 
allocation 

22 = (600, 450, 450) 

as the one proposed by Shapley. 

4.3. The Proportional Nucleolus (Young et al., 1980). 

The proportional nucleolus is obtained when the excess is defined by the formula 

c( S) - Z x, 
iES 

e(22, S ) -  
c(S) 

instead of granting the same amount to each proper coalition of  N, a subsidy 
proportional to c(S) is awarded. One has to solve the linear program 

max s 

x,~<c(S)(i-s), V S c N ,  S # ® , S ~  N, 
z~S 

x ,=c(N)  x , ~ 0  Vi. 
zEN 

In the case of example I, we obtain the allocation (denoted PN on the fundamental 

triangle) 

22 = (1000, 0, 500): 

all the profit of cooperation goes to the second player, who makes the most out 
of his veto right; without him, indeed, players I and 3 cannot achieve any saving. 

4.4. The Disruptive Nucleolus ( Littlechild and Vmdya, 1976) 
( Michener, Yuen and Sakuraz, 1981) 

For each allocation 22 define the propensity to disrupt for coalition S as the ratio 
between what N\S and S would lose if 22 were to be abandoned. 
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c( N \S) -  ~ x, 
re N \ S  

d(~, S ) -  
c(S)- ~ x, 

I c S  

The disruptive nucleolus is computed like the nucleolus, replacing e(2., S) by 
d(2, S): let z(2) be the vector whose components are the d(2, S), VS ¢ O, N, 
ranged in increasing order. By lexicographically ordering the z(2), we obtain a 
semi-order; its first element is the disruptive nucleolus. 

In the case of a 3-person game, we obtain the allocation 

x, = CM(i)  -+ 
c ( i ) -  CM(,)  

3 

Z [ c f j ) -  CMfj)] 
3~1 

c ( N ) -  ~ CM(k)] .  

This leads, for example i, to 

.~ = (600, 450, 450), 

the same allocation as the Shapley value. 

5.  P R O P E R T I E S  

In Section 4, we have proposed 4 new cost allocation methods, that originate 
from game theory. Which of them should be selected? The study of the following 
theoretical properties will help us in this choice. 

PROPERTY I. Collective ratzonality. The method should provzde an imputation 
within the core (when it is non vmd). 

Examples I and 2 of Section I show that this is a very desirable property. An 
allocation outside the core effectively means that some departments are unwill- 
ingly subsidizing some others; therefore the department managers are enticed to 
quit the grand coalition and to have the work done outside the company. 
Allocations within the core are necessary to remove the incentive for sub-coalitions 
to act independently of  the grand coalition. 

By construction, the three lexicographic concepts always belong to the core. 
On the other hand, the Shapley value may fall outside. For instance, in the 
3-person game defined by c(1)=c(2)=c(3)=c(12)=12,  c(13)=c(23)=20,  
c(123)=23, the Shapley allocation is 2=(6½, 61, 10~), while the core is defined 
by the inequalities 3~<x~, x2 ~< 12, l l~<x3~ 12. In the case of a convex game, 
however, the Shapley value always belongs to the core (Shapley, 1971); it even 
lies in its center, since it is the center of gravity of the core's extremal points. 

PROPERTY 2. Monotomcity in costs. All the players contribute to an increase in 
the project's global cost c( N). 
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More often than not, negotiations related to the allocation of the cost of  a 
project take place before it is even started: an e lecmc power company will accept 
to contribute to the cost of erecting a dam only if it knows m advance how much 
it will cost (or at least if a good estimation of the total cost is known). But it is 
rather infrequent that the final cost of a project is known as early as the first 
discussions" the general rule ~s rather that it exceeds the forecasts. The monotonic- 
ity property demands that each player participates to a rise m the total cost: it 
would be unfair to have a player benefit from an increase of c(N)  (it is assumed 
that c( S), V S c N is not modified). 

The Shapley value is monotonic. Suppose c(N) increases by a. In the expression 

1 
x, = ~  ~ (s - I)!(n - s ) ! [c (S)-  c(S\{0)], 

c(N)  appears only once, when i enters coalition N\{i} to form N. This term (and 
thus x,) 

1 ~.,(n -])!l ![e(N)-c(N\{i})] 

increases by [ ( n - l ) ! / n [ ] a = a / n .  Consequently, any budget overstepping is 
spread evenly among the participants. This is open to criticism: it does not seem 
fair that all players must contribute equally to unforeseen costs, while their shares 
in the project may be very different; a "smal l"  department,  that only has to pay 
a small share of the initial allocation, gets the same increase as a " large" 
participant. 

The proportional nucleolus is also monotonic: each increase of  the global cost 
is shared among the players in proportion of their profit c ( 0 - x ,  : this is intuitively 
far more satisfying (see Young, Okada and Hashimoto (1980) for the proof). 

On the other hand the nucleolus and the disruptive nucleolus are not monotonic. 
In the case of  the nucleolus, a counter-example was presented by Meglddo (1974). 
As for the disruptive nucleolus, consider the following example 

c(1)=4,  c ( 2 ) = c ( 3 ) = 6 ,  c (12)=c(13)=7.5 ,  c(23)=12, c(123)=13. 

One verifies that the disruptive nucleolus proposes the allocation 

.~ = (I.75, 5.625, 5.625). 

I f  we now put c(123)= 13.1, we obtain 

= (1.727, 5.6865, 5.6865)' 

while the total cost of  the project has increased, the contribution of  player 1 has 
decreased. 

PROPERTY 3: Additivity. A subdtviston of  a player into two should not affect the 
allocation. 
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Let IN, c(S)] be an allocation game and .~ = (xl . . . . .  x,)  the proposed allocation. 
Let IN* ,  c*(S)] be the game that results from the splitting of the cost center j 
into two centers jl and J2. The cost functions has to be such that, for all S c N\~},  

c*(S) - -c (S)  and c*( S u {jz}) = c*( S w {j2}) = c*( S u { jh  j2}) = c( S U {j}) 

(in words: either fragment, in the absence of the other, incurs the same costs that 
the two together would incur). Then additivity demands that the allocation 
.~* = (xl* . . . . .  x~, x~ . . . . .  x~*) satisfies 

while for the remaining players i, 

X~ =Xj. 

EXAMPLE 2. An insurance company whose head office lies in Brussels wants 
to install two computer terminals in its local office in Li/~ge, and one in Namur. 
The renting costs of  the telephone lines are i, ndicated in the following figure. 

Brussels 800 fr ~ L~/~ge 

Namur 

What amount  should be charged to each local office? If  we reason in terms of  
terminals, we face a 3-person game, with the cost function 

c*(l) = c*(2) = c*(12) = 800 

c*(3) = 600 

c*(13) = c*(23) = c*(123) = 1100. 

I f  we think in terms of  offices, we have a 2-person (L and N)  game 

c(L) = 800 

c(N) = 6 0 0  

c ( L N )  = 1100. 

A solution concept is additive itt it amounts to the same to reason in terms of  
terminals or of offices. The values of the four concepts proposed in Section 4 are 
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3-person game 2-person game 

I 2 3 Ll~ge Namur 

Shapley 350 350 400 650 450 
Nucleolus 325 325 450 650 450 
Prop Nucl 314~ 314.~ 4713 6283 471~ 
Dlsr Nuel 336~ 336~ 426~ 650 450 

So the Shapley value and the disruptive nucleolus do not satisfy the property. 
The nucleolus and the proportional nucleolus are additive. Let us check this for 
the nucleolus in the case of a 3.person game (the proof  is similar for the 
proporttonal nucleolus and can be easily generalized to any number of  players). 

Consider the 3-person game [{1, 2, 3}, c(S)] and assume player 3 is split into 
3~ and 32 to form the 4-person game [{1,2, 3,, 32}, c*(S)], where 

c*(I)= c(l) 

c*(2) = c(2) 

c*(3,, 32) = c*(3,) = c*(32) = c(3) 

c*(l, 2) = c(l, 2) 

c*(l, 3,, 32) = c*(i, 3,) = c*(1, 32) = c(I, 3) 

c*(2, 3,, 32) = c*(2, 3,) = c*(2, 32) = c(2, 3) 

c*(I, 2, 3,) = c*(l, 2, 32) = c*(i, 2, 3~, 32) = c(123). 

The linear program to compute the nucleolus of the 4-person game is 
max 3 

(1) xt* +8<~c*(l)  

(2) x~ +¢5<-- c*(2) 

(3) x3*, +~<~e*(3,) 

(4) x3'2 +8  <~ c*(32) 

(5) x,* +x~* +8<-c*( I ,2 )  

(6) x~* +x3*, + 8 ~ c * ( I , 3 , )  

(7) x~ +x3*2+8~<c*(l,32) 

(8) x~+x], +8~<c*(2,3t) 

(9) x2* +x~  +8~<c*(2,32) 

(10) x3*, +x3'2+8~<c*(31,32) 

(11) xt*+x2*+x3*,+8<~c*(l,2,31) 

(12) xl* +x2* +x~' +8~<c*(I,2,32) 
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(13) x~* +x3*, +x3"2 +~5~<c*(1,3,,32) 

(14) x2*+x3*~+x3*2+8~<c*(2,3,,32) 

(15) x~*+x2*+x3*,+x3*~=c*(I,2,31,32).  

Given the symmetry of  c*(S), x3*, will be equal to x3"2 So condit ions (4), (7), (9) 
and (12) are unnecessary.  (10), that can be written 2x3", + 8 4  c*(30, is stronger 
than (3), so the latter can be deleted. Also (6) and (8) are superfluous,  due to (13) 
and (14). Finally (1 I) is automatical ly satisfied, due to (15). Consequent ly  only 
7 constraints remain, namely 

x,* + 8 4  c*(I) = c(I) 

x~ + 8 4 c*(2) = c(2) 

xl* +x2* + 8 ~ c * ( I , 2 ) = c ( 1 , 2 )  

x3*, +x3"2 + 8  ~< c*(3 ,32)  = c(3) 

x~* +x3*~ +x3*: + 8 4 c * ( 1 , 3 t , 3 2 ) = c ( 1 , 3 )  

x~ +x3*, +x3"2 + 8  <~ c*(2, 3,, 32) = c(2, 3) 

xl* +x2* +x3*, +x3"2 = c*(1,2, 3,, 32) = c(l ,  2,3). 

Setting x3*, +x3"2 = x3, these are the constraints of  the linear program that computes  
the nucleolus of  the 3-person game [{1,2, 3}, c(S)]. 

In summary, the only method that satisfies the three properties is the proportional 
nucleolus ; we propose it as the best cost allocation method. 

6.  G A M E S  W I T H  E M P T Y  C O R E  

If the core of  the game is empty,  any cost al location proposal  is unstable, since 
at least one coalition has an incentive to back out of  the group. Coopera t ion  
between the players is not spontaneous  any more, it has to be enforced by an 
external  authority.  If one wishes to single out  one point,  it is necessary to relax 
some o f  the collective rationality condit ions until a core appears.  One can for 
instance impose a uniform tax e to each proper  subcoali t ion of  N. The least core 
is obta ined by comput ing the smallest acceptable tax by means of  the linear 
program 

m i n e  
x, 4 c ( S ) + e  V S c  N 

x, = c(N) .  
i=l 

If one feels that the tax has to be propor t ional  to c(S), one obtains the propor t ional  
least core by introducing a tax rate t and solving the program 

m i n t  
x, 4 c ( S ) ( l + t )  V S c N  

I c S  

x, = c(N) .  
i=l  
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Notice the similarity with the nucleolus and the proportional nucleolus: in one 
case coalitions are taxed in order to make the core exist, in the other case coalitions 
are subsidized in order to reduce the core to a single imputation. 

Contrary to the nucleolus and the proportional nucleolus, the Shapley value 
and the disruptive nucleolus always exist, whether the core is empty or not. 

7. COMMENTS 

Cooperative game theory presently faces an interesting turning-point of  its history. 
It was born out of practical problems of considerable importance;  for instance 
engineers of the Tennessee Valley Authority (Ramsmeier, 1943), as early as 1930, 
have considered several cost allocation methods to share among the beneficiaries 
of the project the costs of  improving the existing water communicat ions and 
constructing dams. The concepts of  core, nucleolus and disruptive nucleolus were 
formulated in an embryonic form, a quarter of  a century before those notions 
were presented in game theory, several years before the publication of the 
celebrated book of Von Neumann and Morgenstern (1944). 

As the problem of the repartition of scale economies occurs in so many 
commercial acnvities, it was by no means a surprise to witness the independent 
development,  in numerous areas, of  notions very close to game theory. So the 
disruptive nucleolus is called (in its 3-player version) the "separable costs remain- 
ing benefits method",  the Gately method, the Louderback method, the Glaeser 
method, or furthermore the "alternate cost avoided method",  depending on the 
kind of hterature one consults. 

This enormous duplication of scientific work fortunately seems to come to an 
end; the contacts between researchers of different areas are improving, the authors 
more and more explicitly refer to game theory (Hamlen, Hamlen and Tschirhart 
(1977, 1980), Jensen (1977)) to propose cost allocations. We may now have come 
full circle, since game theory begins to be applied to the kind of problems that 
created it. 

Many practitioners (and actuaries) still consider game theory as a mathematical 
toy without any possibility of practical implementation. Let us undeceive them 
by mentioning several effective applications of  solution concepts of  game theory: 

- - t a x  allocation among the divisions of  McDonnel l -Douglas  Corporation 
(Verrechia, 1982) 

- - repar t i t ion  of the renting costs of  WATS telephone lines at Cornell University 
(Billera, Heath and Raanan, 1978) 

- -a l locat ion of tree logs after transportation between the Finnish pulp and paper  
companies (S~ksj~irvi, 1976, 1982) 

- -ma in tenance  costs of  the Houston medical library (new books, periodmals, 
furniture) shared between the participating hospitals (Bres et al., 1979) 

- - f inancing of large water resource development projects in Tennessee (Straffm 
and Heaney, 198 l) 

- -const ruct ion costs of  multipurpose reservoirs in the U.S. (Inter-Agency Commit-  
tee on Water Resources (1958)) 
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as well as several domains where a concept of  game theory has been proposed 
• -.----depreciation problems in financial analysis (Callen, 1978) 
-----construction of  an 80-kilometer water supply tunnel in Sweden (Young et al., 

1980) 
rebui lding of a power plant in India (Gately, 1974) 
--subsidizat ion of public transportation in Bogota (Diaz and Owen, 1979) 
- - l and ing  fees at Birmingham airport (Littlechild and Thompson,  1977) 
- -a l lo tment  of  water between agricultural communities in Japan (Suzuki and 

Nakayama,  1976) 
reconstruct ion of a waste treatment center in the U.S. (Heaney, 1979) 
~ b u i l d i n g  of a water-filtering plant, financed by three "pollut ing" factories 

(Loehmann et ai., 1979, Bogardi and Sziderovski, 1976) 

Also in insurance, the possibilities of application are numerous: 

- -a l loca t ion  between companies of  the costs 
• of a professional union (like U.P.E.A. in Belgium) 
• of  a statistical bureau (like A.G.S.A.A. in France or Frrsakringstekniska 

Forskningsnamnden in Sweden) 
• of  risks supervision and claims appraisal in case of  coinsurance; 

- allocation between the different classes of  a company of most operating costs 
(see Section 1). 

Allocations based on game theoretical considerations have the only disadvan- 
tage of  requiring more information, since it is necessary to obtain 2 " -  1 costs 
c(S) ,  one for each non-void coalition of  N. 

8. A PROBLEM OF INTEREST ALLOCATION 

EXAMPLE 3. The treasurer of  ASTIN (player 1) wishes to invest the amount 
of  1 800 000 Belgian Francs on a short term (3 months) basis. In Belgium, the 
yield of  such an investment is a function of the sum deposited. 

Deposit Annual interest rate 

0--I 000 000 7 75% 
I 000000--.-3000000 1025% 
3 0~30 000.--5 000 000 12% 

Player 1 contacts the I.A.A. (player 2) and A.A.Br.* (Player 3) treasurers in 
order to make a group investment. I.A.A. deposits 900 000 fr in the commun 
fund, A.A.Br. 300 000 fr. How should the interests be split among the 3 players? 

* Association des Actualres ~ssus de I'Unlverslt6 L~bre de Bruxelles. 
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The solution always adopted in practice amounts to award the same yield 
(12%) to everyone. This allotment is acceptable, since it belongs to the core; it 
however implies perfect solidarity between the players, who all accept not to use 
their various threat possibilities. As this allocation is not the only acceptable one, 
it is interesting to compare the different methods. It is easy to check that 

Core: 

o(1)=46 125 

v(2) = 17 437.5 

v(3) = 5812.5 

v(12) = 69 187.5 

v(13) = 53 812.5 

v(23) = 30 750 

v(123) = 90 000. 

46 125~<y~< 59 250 

17 437.5 <~ Y2 ~ 36 187.5 

5812.5 ~ y3 ~ 20 812.5. 

Proportional repartition: 54 000 (12%), 27 000 (12%), 9000 (12%) 

Shapley value: 51 750 (11.5%), 25 875 (11.5%), 12 375 (16.5%). 

According to the Shapley value, the third player takes a great advantage from 
the fact that he is essential to reach the 3-million mark;  his admission value is 
very high when he comes in last. 

Nucleolus: 52687.5 (11.71%), 24937.5 (11.08%), 12375 (16.5%). 

The nucleolus, as generous towards A.A.Br. as the Shapley value, also takes 
into account the fact that ASTIN is in a better situation than I.A.A., since it can 
achieve a yield of  10.25% by playing alone, while I.A.A. would only make 7.75% 
in that case. Note that ASTIN and I.A.A. receive the same amount,  iq francs, 
over what they would have earned by playing alone: 

y~ - v(I) = y 2 -  v(2) = 8 =6562.5 

Proportional nucleolus: 54000 (12%), 27000 (12%), 9000 (12%). 

We obtain in this case the "intuitive" proportional repartition. We shall see 
later on that this is not always the case. 

Disruptive nucleolus: 51 900 (11.53%), 25 687.5 (11.42%), 12 412.5 (16.55%) 

The strategic possibilities of  the players depend on the amounts they provide. 
Let us consider two variations of  example 3. 
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EXAMPLE 3' 

ASTIN: 1 700 000 fr 

I.A.A.: 1 100 000 fr 

A.A.Br.: 300 000 fr 

Proportional repartition: 51 000 (12%), 33 000 (12%), 9000 (12%). 

Shapley value: 48 395.83 (11.39%), 33 020.83 (12.01%), 11 583.33 (15.44%). 

Nucleolus: 48 708.33 (11.46%), 33 333.33 (12.12%), 10958.33 (14.61%). 

Proportional nucleolus: 51 000 (12%), 33 000 (12%), 9000 (12%). 

Disruptive nucleolus: 48 481.65 (1 !.41%), 33 106.65 (12.04%), 1 i 411.7 
(15.22%). 

Notice the effects of the more favourable situation of I.A.A., who owns more 
than a million and can achieve alone a yield of 10.25%: this improves its 
bargaining power. 

EXAMPLE 3" 

ASTIN: 1 700000fr  

I.A.A.: 1 400 000 fr 

A.A.Br.: 300 000 fr. 

Proportional repartition: 51 000 (12%), 42 000 (12%), 9000 (12%). 

Shapley value: 51 093.75 (12.02%), 43 406.25 (12.4%), 7500 (10%). 

Nucleolus: 51 140.625 (12.03%), 43453.125 (12.41%), 7406.25 (9.875%). 

Proportional nucleolus: 52 378.37 (12.32%), 43 621 63 (12.46%), 6000 (8%). 

Disruptive nucleolus: 51 127.01 (12.03%), 43 439.52 (12.41%), 7 433.47 
(9.91%). 

Notice the deep change: the share of A.A.Br., which is not necessary any more 
to reach 3 millions, is considerably reduced, even in the case of the proportional 
nucleolus. 

The Shapley value and the nucleolus do not seem to be good solution concepts 
to this problem; in both cases the reasoning is performed in an additive way 
while the spirit of the problem is multiplicative. When two players form a coalition, 
the Shapley value simply shares the benefits of cooperation in two equal parts, 
and equal amounts do not lead to equal percentages. In addition to its theoretical 
propemes,  the proportional nucleolus proceeds in a multiplicative way, and seems 
more adapted to this specific problem. 
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