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A B S T R A C T  

Probabilities of ruin are solutions of differential or integrodifferential equations. 
Solving such equations numerically can be performed by means of approximate 
quadrature formulae for the convolution part of the equation. In this contribution 
it is shown how applicable recursion formulae, giving results within a prescribed 
tolerance level, can be obtained. Some numerical results are displayed. 
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1. I N T R O D U C T I O N  

Gerber (1982) introduced a method for approximating the distribution of aggre- 
gate claims and their corresponding stop-loss premium by means of a discrete 
compound Poisson distribution and its corresponding stop-loss premium. This 
discretizatlon is an important step in the numerical evaluation of the distribution 
of aggregate claims, because recent results on recurrence relations for prob- 
abilities by PANJER (1981) and SUNDT and JEWELL (1981) only apply to discrete 
distributions. The discretization technique is efficient in a certain sense, because 
a properly chosen discretization gives raise to numerical upper and lower bounds 
on the stop-loss premium, giving the possibility of calculating the numerically 
estimates for the error on the final numerical results. For calculating the infinite 
time ruin probability numerically one has to solve the following integral equation, 
according to GERBER (1979): 

AI0x ~O(x) = ~- O(x-y) (1-F(y) )dy+~f~(1-F(y) )dy  
cJ~ 

(1) 

with 

(2) 

and where 

¢(0) xp = - - ,  c = A p ( l + ~ )  
C 

(3) p = (1 - F ( y ) )  dy. 
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In the sequel we write h(x)  for 
co 

(4) h(x) = Ix ( 1 - F ( y ) )  dy 

such that h (0) = p. 
In fact, for solving equation (1), use could be made of a discretization technique 

for approximating the integrals in the equation in order to get a system of linear 
equations in the unknown probabilities ~0(xl), tO(xz) . . . . .  ~O(x,). However,  not 
every discretization.,is effective to get numerically stable results, on the contrary 
the propagation of the error induced by the discretization technique provides 
us, in general, with unstable numerical results. In this contribution we will derive 
an efficient discretization technique which allows us to calculate ~(x) numerically 
within a given tolerance by means of a stable recusive algorithm. As by-product 
of the method an estimate for the error in the numerical result is obtained. 

2. A N  E F F I C I E N T  D I S C R E T I Z A T I O N  F O R  T H E  C O N V O L U T I O N  I N T E G R A L  

In the sequel we define the convolution product by 

fO x ~o * H ( x ) =  ~o(x - y )  dH(y)  

where the integral is taken over the closed interval. The iterative procedure for 
calculating numerically the infinite time ruin probabilities is based on the follow- 
ing result: 

THEOREM, The function 0 (denoting the infinite time ruin probability) is a 
solution of the equation 

(5) ~O*(p - h )  =p(1  +r/)O - h .  

In that equation or in any equivalent equation replace (h, p) by (ho, Po) and let 
Oo be the corresponding solution. Then ~0 ~< Oo(t# I> dOo) if ho is decreasing ho I> O, 
and h/p ~< ho/Po(h/p >t ho/Po). 

PROOF. See appendix. 

COROLLARY. In case p = Po the inequality condition of the theorem reduces to 
h <~ ho(h I> ho). 

REMARKS. For the proof of the theorem to hold it is not necessary that h0 
can be written as ho(x) = ~o (1 -Fo(x ) )  dx where Fo is a distribution function. 

In this extended version of the theorem, we do not have the additional 
assumption h0(0)= p. Indeed, h (0 )=  p, so in order to get an upper bound we 
have to suppose p ~< ho(0) and in order to get a lower bound we have to suppose 
p/> ho(0). 
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The theorem, or another version of it, has given us a possibility to obtain 
analytical upper and lower bounds on infinite time ruin probabilities in case of 
constraints on claim size distribution, as explained in GOOVAERTS and DE 
VYLDER (1983). Now it will enable us to deduce numerical bounds on infinite 
time ruin probabilities because an application of the theorem will provide us 
with a stable recursive algorithm. Our aim consists in calculating if(x). In order 
to obtain numerical upper and lower bounds (to obtain an error estimate) the 
following procedure is applied. The underlying motivation of it follows directly 
from an inspection of figure 1 and an application of the theorem. 
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FIGURE 1 

R 
I i  

Practical Procedure 
(i) Consider the following subdivision of the interval [0, x] 

[0, nx-], [nX-, 2nX- ] . . . . .  [nnXx, x]. 

(ii) As indicated in fig. 1 we consider 

[i  x, i +  l x ]  = h(i x) 
VY•Ln- 7 .J h,(y)  

hi(y) = h((i+ 1)~).  
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Consequently 
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(iii) Let g,.(x) be the solution of 

Because h. (y)  is a piecewise constant function, the integral appearing in the 
r.h.s, can be worked out as follows: let k =l(x/n), then: 

- -  ¢../~-y dy. 
C ~-0  \ n ~  a~(xln) 

This equation can be cast into the form: 

(6) ~,,(1~) A x +cA_ [h( ( /  = ; h ( / ' ; )  ,~, -1,~)-h(inX-)]G,((/-i,~). 

We also get, proceeding along the same lines, 
-1 

- ~  x h x [(/;) 
(7) 

+ i~*, [h(inX-)-h((i+ 1' nX-)] ~bt((J- i) nX-)] 

with of course 

(8) 6 .  (o) = ~,(o) = '3.£. 
C 

Starting from (8) we calculate recursively by means of (6) and (7) the couple 
(4/. (/(x/n)), Ol(l"(x/n )) for j = 1, 2 . . . . .  n to obtain two approximations to 6(x), 
namely ~n)(x),  61")(x) where we added explicitly the index n to denote the 
dependence on n. The following inequalities are obtained 

(9) ~p~") (x) ~ 6(x) ~< O~ ") (x). 

Also from the result of the above quoted theorem we conclude that 

612") (x) is not decreasing in n 
I . ~ ( 2 "  ) ~ \ . tx) is not increasmg in n 

Hence 6(x) can be approximated by 
l - - ( n ) :  , - - 1 - - ( m l :  \ 

h(y) ~< h.(y)  V y ~ 0  

h(y) ~ h~(y) Vy 9 0 .  
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with an upper  bound  for the er ror  given by 

do ~ (x )-do l~ (x ). 

In order  to obtain a result within a prescribed tolerance level e, n is chosen 
large enough such that 

do~"~(x) -do l"~(n)<e  

and n = 2 k (k integer). 
In order  to examine the stability of  the numerical  procedure ,  in fact, in order  

to examine the propagat ion  of errors induced by this recursive algorithm, we 
suppose that do(x/n)  . . . . .  d o ( ( / -  1 ) x / n )  are calculated with an error  el . . . . .  e , - l .  
Let  e = max {el . . . . .  e~-l} then the er ror  ej on dO(/(x /n))  is bounded  by: 

e ; < ~  h ( i - 1 ) ~ -  - h  i e1<e.  

Consequent ly  there is no cumulat ive effect of propagat ion  of errors. Let  us 
compare  the kind of recursion reldtion with the recursive algori thm of PANJER 
(1981) and SUNDT and JEWELL (1981) for the calculation of the distribution 
function of a c o m p o u n d  Poisson variable, where 

A ~ if, g1_,. g l  = - -  

] Ira[ 

In case A is relatively small no problem arises as far as the propagat ion  of errors  
is concerned.  

In case a is relatively large however  (and this is exactly the case where it is 
interesting to apply such kind of a scheme) the recursive algori thm is unfor tu-  
nately not very stable as far as the propagat ion  of errors is concerned.  Indeed  
let el, . . . ,  e1-1, e;, denote  the errors on g b . . . , g ;  respectively. In case e = 
max (el . . . .  el_l) then 

el ~<- if, e ~ t t -  ' e. 
1 , ° 1  1 

Consequent ly  as long as j < A the upper  bound  of the er ror  behaves  like 

e I ~--A t " C 

which of course can cause a lot of unexpected  difficulties in actual application 
of the recursion algorithm. 

3 .  I L L U S T R A T I O N  O F  T H E  M E T H O D  

In VAN W O U W E ,  DE VYLDER and GOOVAERTS (1982) the present results are 
successfully apphed to the numerical  calculation of bounds  on infinite time ruin 
probabili t ies in case of constraints on claim size distributions. Use has been 
made  of some of the analytical upper  and lower bounds  on stop-loss premiums.  
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Let us still remark that the rate of convergence of the recursive algorithm is 
determined by the rate of convergence to zero of the ruin probability when 
x ~ co. Therefore  we have selected an application which from the numerical 
point of view has a relatively low speed of convergence. 

We consider the case of Pareto claims, Fx(x)= 1 -  1 / ( l + x )  2, p = 1, r / = 0 . 2  
and of course h (x) = 1/(1 + x). The following results are obtained. 

Upper Bound 

10 50 100 

20 0 455529 0.193577 0 119406 
40 0 449979 0.164704 0.087263 
80 0 439944 0.153144 0.076432 

0 439944 0.148211 0.072358 

Lower Bound 

10 50 100 

20 0.411083 0 121643 0.058221 
40 0.422112 0.129821 0.061631 
80 0.428309 0 135709 0.064429 

0 431619 0.139413 0 066421 

APPENDIX PROOF OF THE THEOREM 

Use will be made of the following result well known from renewal theory: 

LEMMA. I f  H tS a strictly defective distribution function and if f is bounded, 
then the renewal equation 

(A1) ~ : = . f + ~ x H  

has a unique bounded solution ~. f f  f ~ O, then ~ ~ O. I f  f ~< O, then ~ ~ O. 

By means of one partial integration the equation (1) can be cast into the form 

(A2) t# * ( p - h ) = p ( l  +rl)th-h. 

This relation can still be displayed as: 

(A3) p - p ( 1  +r/)~b = ( l - i f ) *  ( p - h ) .  

By the definition of ~o, we still have 

(A4) po-Po(1  + r/)~bo = (1 -~b0) * (po-ho). 
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F r o m  (A3)  and (A4)  we  deduce  

(A5)  (1 + r/)(ff -~o )  = h/p  - ho/po + ( ,~ -~b~) * ( 1 -  h/p  ) + ~o * (ho/po-  h/p  ). 

T h e n  the a b o v e  m e n t i o n e d  l e m m a  can be applied with 

~ = 4 / -41o 

H = (1 - h/p) / (1  + 'r/) 

(A6)  f = (1 - ~o) * ( h / p -  ho/p)/(1 + ~1). 

Then  of  course  f is bounded .  M o r e o v e r  because  h/p t> ho/po we have  f i> 0. T h e  
funct ion H is a distribution funct ion (it is increasing and H I> 0), in fact it is a 
strictly defect ive  distribution funct ion because  H ( o o ) =  1 / ( 1 + , 0 ) .  H e n c e  the 
result of  the t h e o r e m  fol lows.  
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