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B A Y E S I A N S  L E A R N  W H I L E  W A I T I N G  * 

WILLIAM S. JEWELL 

In many estimation problems, incomplete as well as complete samples are 
available for Bayesian prediction. After developing the theory for a special, but 
useful family of distributions, examples are given in life testing, renewal risk 
processes, hfe contingencies, and the problem of estimating a defective distribution. 

1. INTRODUCTION 

In Bayesian predict ion problems, one is interested in using observed values 

of a given process to upda te  the prior  knowledge about  the process para-  
meters,  and thence to make  be t t e r  predict ions about  the process itself. Most 
of the theory  concerns itself ei ther  with exact  calculations using so-called 
na tura l -conjugate  families of prior and likelihood distr ibut ions ~, or with best  
l inear least-squares approximat ions ,  referred to in the actuar ia l  l i tera ture  as 
credibil i ty theory  ~. However ,  bo th  approaches consider only the use of 
complete  da ta  samples. 

The purpose of this paper  is to show tha t  there are m a n y  si tuat ions in 
which incomplete observat ions also provide upda t ing  information,  tha t  is, 
Bayesians can learn while wait ing for the finish of the sampling exper iment .  
After  developing the necessary theory  and int roducing the gamma-pro-  
por t ional -hazard  family of distr ibutions most  appropr ia te  for incomplete  da ta  
formulat ions,  examples are given from life testing, renewal risk processes, 
and life cont ingency reserving. I t  is shown in what  sense an individual  life 
(or cohort  of similar lives) can learn about  his (their) own remaining lifetime 
distr ibutions with the passage of time. The paper  concludes with the problem 
of es t imat ing the parameters  and the defect  in a defect ive distr ibution.  

2 .  MODEL 

As is usual in Bayesian models, we assume tha t  ~, the r andom lifetime of 
interest ,  has a likelihood distribution function, P (x]0), which depends upon an 
unknown random paramete r  ~ which has a prior distribution function, P(O). 
We use p c =  1 - P  to denote  the complemen ta ry  dis tr ibut ion (or survival) 
function,  and we assume tha t  (continuous or discrete) densities exist, denoted  
by  p (xlO), p (0) etc. 

* An earlier version of this paper was presented at the 13th ASTIN Colloquium, 
Washington, D.C., lX{ay 1977. 

1 see AITCHINSON and DUNS~tORE (1975), 
o see JEWELL (1978). 
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The basic problem is to use observational data, sampled from the likelihood 
distribution with fixed, but unknown parameter, in Bayes' law to find the 
posterior-to-data distribution of the parameter, and thence to predict various 
moments and economic functions of the underlying lifetilne process. 

To illustrate the natural way in which incomplete samples arise, we consider 
a life-testing schelne in reliability, as in JEWELL (1977), in which: 

1. N items, all with lifetimes drawn as samples from P ( x '  LO) with common 
and fixed 0, are put "on test" at epochs {h}, and removed from test at 
epochs {t l+r t} ,  (i, t, 2 , . . . , N ) ;  

2. C of these items (with indices in the set S) will have failed before removal 
with observed lifetimes {)l = xi < Tl} (i e S); 

3. ]'he remaining lifetimes aye not completely observed, since the items are 
still operating at removal, so it is known only that  {~l > Ti} (i ~ S). 

Depending upon the experimental protocol, the {Ti} may be fixed in 
advance, giving then a random C; or, C may be fixed in advance for a simul- 
taneous test, giving a common, random time-on-test, T. Considering for a 
moment that  the { Tl} are fixed, and denoting the observed data by D = { Yt, 
Y2, . . . ,  y~v; S}, where 

l) ~ l= txt (ieS) (2. J 

Z~ (i ¢ S) 

we can easily argue that  the likehood density of this data set, given 0, is: 

(2.2) p (n}0) = H p (x, I 0) [I p c ( r j i 0 ) "  

Bayes' law then gives the predictive density for continued testing of items 
j ~ S, or for future experiments on other items with the same parameter value : 

(2.3) p ( x I D )  = p ( x l 0 )  I P ( D 1 0 ' ) p ( 0 ' ) d 0 '  dO. 

The ratio in square brackets is the posterior-to-data parameter density, 
p (OLD). 

(2.2) is also useful for many other life testing protocols. Suppose that  all 
items are put on test at the same epoch; the common testing interval _7" need 
not be fixed in advance, but may be a continuously-evaluated stopping rule, 
a possibly random decision to stop experimenting that  depends upon the 
values {x 1, x~ . . . . .  xc;  S} observed up to and including .7", but not directly 
upon 0. In this case, the likelihood includes additional terms relating to the 
stopping rule that  cancel out of the ratio in (2.3); the stopping rule is non- 
informative, and the likelihood kernel (2.2) is sufficient for O. For instance, 
one could stop after the fifth failure, or at T equal to twice the first-observed 
complete lifetime. 
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3. THE PROPORTIONAL-HAZARD FAMILY 

The calculation of (2.3) can, of course, be carried out by computer for any 
given prior and likelihood distributions. However, for model-building, it is 
desirable to use a family of distributions in which the calculations are es- 
pecially tractable so that parametric behavior can be analyzed theoretically. 
Unfortunately, the Koopnaarl-Pitman-Darmois exponential family of distri- 
butions so useful in credibility theory has no simple form for pc ;  see JEWELL 

0974). 
However, a special case of the exponential family, the proportional-hazard 

family, has useful properties: 

(3.~) P~ (x l0 )  = e-o~(~); p (x I o) = Oq (x) e-oQ(~), (x >_ o) 

where Q (x) is a monotone non-decreasing function (Q (o) = o), and q (x)= 
dQ (x)/dx. We note: 

I. 0Q (x) is the cumulative hazard (failure) fin~ction, making q (x) a u,J,it- or 
prototype failure rate ; 

2. If ~ is a random variable with absolute failure rate, q (w), and 0 is an 
integer, the original lifetime, ), has a physical interpretation as 

3- This family includes the exponential, Weibull, and Gumbel (extreme- 
value) distributions. 

The data likelihood (2.2) becomes" 

(3.2) p (D I 0) = n q (~,) [0c ~-OT~(D)] ,  
tE.S 

where TQT is a statistic, 

(3.3) TQT (D) = Z Q (x d = X Q (x d + z Q (7)), 
t t tES Jqks 

referred to in JEWELL (1977) as the total-Q-o,~t-test-statistic, a generalizatmn 
of the "total-time-on-test" concept of reliability life-testing. Note that if 
item k was already age Sk (and still working) when placed on test, then Q (Sk) 
should be subtracted from the TQT. 

A convenient natural conjugate prior for 0 is the gamnla d.ensity, 

Qo (QoO) c°-1 ~-0Q. 
(3.4) p (0) = p (0 I Co, 90) = P (Co) , (0 ~ o) 

with hyperparameters Co, Qo; the usefulness of (3-4) in modelling uni-modal 
densities is well known. It is easy to see that Bayes'  law then gives a posterior- 
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to-data density of the parameter, p (0 ] D), that is also gamma, with updated 
parameters : 

(3.5) Co+-Co+C; Qo~-Qo+ TQT (D). 

Furthermore, the updated means of "0 and 0-1 obey the exact credibility 
formulae : 

(3.6) [E {~ I D}]-a = (, _ Z~) [E {0}] -~ + Z~ TQT 

(3.7) E{0-11 D} = (1-Z2)  E {~-1} + Zo [ TQT(D)], 

with credibility factors: 

(3.8) Z~ = C / / C  0+C);  Z~ = C / ( C  o - ~ + c ) .  

The posterior-to-data variances are also easily obtained: 

(3.9) V { 0 ] D }  = C ~  [E{~ID}]  2, 

[ , ]  
(3.,o) v{°-IED  = C0-2+C [E{0-11 }]' 

the first terms decrease with increasing C, and so, ultimately, with probability 
one, do the variances. This makes precise the difference between incomplete 
and complete samples; two different data sets could lead the to same mean 
forecast, but we would have more "confidence" in the result with the larger 
number of complete samples. 

The terms in square brackets in (3.6) (3.7) are the classical maximum-like- 
lihood estimators got from the term in square brackets in (3.2). If the experi- 
ment gives a large number of complete observations, relative to Co, then the 
Bayesian and nlaximum-likelihood estimators coincide. However, for relatively 
incomplete tests, more weight is given the prior means, E {~} = Co~ Qo, 
or .~ {0-1} = Q0 / (Co- 1). 

Classical estimators are often obtained from Bayesian formulae when the 
prior knowledge becomes "diffuse"; in our model this corresponds to keeping 
E {~} or E {~-1} fixed, and letting the corresponding variances (the prior 
uncertainty) increase without Limit. From (3.9) (3.to) we see this corresponds 
to letting Co--+ o or Co--> 2, respectively (with corresponding adjustments 
in Qo). Thus, with very uncerlain prior knowledge, we get : 

(3.11) E { 6 [ D }  = TOT(D) ' 
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E {~-'} + TQT (D) 
(312) E{0-11 D} = i + C  

Thus, when estimating 0, we place "full credibility" in the maximum- 
likelihood estimator, and ignore all prior information; but, when estimating 

-1, a Bayesian would ahvays insist on keeping the prior mean as an initial 
data point, because the prior is still informative and proper in this case. 

The mixed, or predictive distribution of ~, averaged over all possible values 
of ~, is: 

(3.Ib I Co, Qo) = [Qol (Qo+Q (x >_ o) 

with density 

(3.14) # (x I Co, Oo) = (Coq (x)/Qo) [Oo/(Qo + (2 (x))]Co+,, 

a generalization of the shifted Pareto distribution. If the prototype failure 
function is Gumbel, we get exponential tails for large x in (3.13), while if the 
underlying failures are Weibull, we get tile "more dangerous" algebraic tails. 
Posterior-to-the-data, predictive density is of the same form, but  with 
updated parameters. 

The cumulative hazard function of the mixed distribution is: 

(3.15) R{xlCo,  Qo)=- InPc(x lCo ,  Qo)=Colu [t 

One can show that this mixing tends to decrease 
fact, the mixed population may have approximately 
hazard rate, even with increasing q (x). 

Life testing applications are covered in more detail 
the problem of model identification of the form of Q 
turn now to applications of these ideas in risk theory. 

+ (Q (x)/Qo)]. 

the rate of failure; in 
constant or decreasing 

in JIZWELL (1977), and 
is also considered. We 

4. RENEWAL PROCESSES 

Ill one model of the collective risk process, claims are assmned to follow a 
renewal process. If, during an exposure interval T, C events (accidents, claims, 
equipment failures, etc.) are observed, this means there are C complete interval 

o 

samples {x,}, and the final interval-in-progress, T - X x,. If all intervals 

are sampled from (3.1) with fixed 0, the parameter updating becomes: 
c c 

(4.1) Co+--Co+C; Qo~-Qo + Z Q(xd + Q (T - Z xd. 

Note that  not only tile random number of events in (o, T], but  also the 
actual lengths of tile intervals provide information in the general case. 

An important special case in risk processes occurs when Q (x)= x, leading 
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to exponentially-distributed intervals, and a Poisson counting process, for 
each O. However, here 

(4.2) Qo<-Qo + X xi + ( r  - _, x,) = Oo + T, 

so we conclude that the Poisson process is specia[ in that  only the number of 
events in (o, T], not the epochs of events, provides predictive information! 

5" INDIVIDUAL LEARNING ABOUT REMAINING LIFE 

We turn now to the interesting question of whether or not a Bayesian can 
learn about his own remaining lifetime distribution function (rldf). For a 
mixed population with average tail distribution pc, 

pc (2" + u) 
(5.1) P r { } >  T + u I ? >  T } - p c ( T  ) - P~ (u) 

represents the fraction of those individual components alive (operating) at 
age T which will survive until age T + u. 

However, for a single life component with known parameter 0, the appro- 
priate rldf is: 

pc (7"+u10) 
(5.2) P r { ~ > T + u I ~ > T ; O } -  P c ( T I 0 )  - P~ (u l0) .  

If we have to estimate this single life behavior as averaged over the popu- 
lation (i.e., without Bayesian learning), we get the prior expected rldf: 

(5.3) E{P~,  (u I0)} = f 
pc (r+,,,  10) 

pc g'10)  p(0)d0, 

which is clearly not identical with (5-1). 

Now let us adopt the Bayesian point of view, and estimate the remaining 
life of a single individua[ who has lived to age T; since he is still alive, we 
have the single datum D = {x > T}, which must update the parameter density 
t o :  

/>c (1" I 0)p(0) pc (T I 0)p(0) 
(5.4) p (0 IZ)) = j, pc  (T l ~3)p(q~)dq~ - pc (T) 

So the Bayesian-updated rldf will be 

f P~ (T + u 1 O) p(O) 
(5.5) E~i o {P.~, (u I 0 ) }  = - p c  (T) dO, 

which is exactly the same as the population rldf in (5.1)! Stated another way, 
a single life (or component) cannot, on the average, gather any additional 
information about his remaining lifetime distribution bv the mere passage 
of time, other than that  given for the population as a whole--even though 
he can learn about his parameter! A surprising, but satisfying result. 
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6. COHORT LEARNING ABOUT REMAINING LIFE 

This does not mean, however, tha t  several incomplete samples cannot  provide 
information about  other lifetimes with the same 0, nor that  a group of lives 
with the same 0 cannot learn from the passage of time. Consider a cohort of 
N lives with the same parameter  which are put  "on tes t"  at the same epoch. 
From Section 2, with T i = T  for all i, we see tha t  the da ta  D = { x i  < T  
(i e S); S} changes (5.5) to: 

(6.1) ESI D {pc (u i ~)) } = j-pc ( T + u  10) 

where learning would clearly take place. 

For  the proport ional-hazard family, 

(6.2) P~, ( u l 0 )  = e-O[Q{T+'O-Q(T}I. 

[pc (T [ 0)] ~v-c-' II p (x, [ 0)p(0) 
dO, pc (O) 

If the prior at T = o  is gamma with hyperparameters  C O and Qo, the pos- 
terior-to-data density of 0 at 7" is gamma with hyperparameters  C o+ C and 
Qo+(N-C)Q(T)+ E Q (x,), giving finally the special cohort-experienced 
remaining-lifetime distribution function: 

(6.3) 
[ Qo + (N-C) Q(T) + X Q(xt) ]Co+C 

E51D{P,~ (u[0)} = Qo + ( N - ~ - - ~ Q ~ T ) -  ~--E ~}(x,) + Q ( T + u )  

I t  is easy to see how learning vanishes when N = I and C = o. 

7- LIFE CONTINGENCIES AND RESERVES 

To apply the results above, consider tha t  we are determining the net single 
premiunl for a continuous life annui ty  of $ 1/year, at force of interest 8, for 
an individual aged x. Given 0, this would be (we omit the usual overbar 
notat ion):  

(7.1) ax (0) = f e-~" P~ (u I 0) du = ,f e-~",-tQ(~+~'}-Q(x)] du. 

Let us suppose tha t  the prior on 0 is gamma with hyperparameters  C,, QQ~ 
at the moment  of underwrit ing (age x). The population-average annu i ty  fair 
premium is then: 

(7.2) az ( c .  9 0  = 9~" .f e ~-" I0~ + 0x  ( . ) i - c ,  du, 

where 

(7.3) Q~ (~) = Q ( ,  + .,.) - Q (x) 

is the prototype cumulat ive failure function for the remaining life, begin- 
ning at age x. 

Now, suppose we have insured a cohort of N lives aged x, all of whom 
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have the same parameter, and let us follow the cohort for t additional years. 
During this time the data provided by the C expirations at additional ages 
{t,}, together with the fact that  N - C  lives are still in existence at age x +  t, 
would update the hyperparameters to: 

(7.4) C~ = Ca + C; Q2(l) = Q1 + ( i v - C )  Q~(t) + z Qx(t,). 
ICS  

Although it is too late to change the 1)remium, this additional knowledge 
could be useful in adaptive modification of the reserves on the N - C outstanding 
policies; for a single-premium annuity of $ 1/year still outstanding at age 
x + t, the correct adaptive reserve would be: 

(7.5) ~v 0~) = ~+~ (co., G (t)). 

We remind the reader that Co and Q~ (t) will be random outcomes, depending 
upon actual cohort experience during ages (x, x +  tl. Only when there is a 
single incomplete life under observation (C2= Cl; Qo. ( t ) = Q i +  Qx (t)) will no 
learning take place, and the reserves will follow the classic result for an average 
member of the mixed population: 

(7.6) a ~ t  = j e-aU 
pc (t + u) 

P--~  (t) du = ~ + ,  (G, G + Q~ (t)). 

A similar develol)ment could be given in terms of the net single premium 
for a life assurance of $ 1, at force of interest 8, payable at the instant of 
death of an individual now aged x, 

(7.7) A~ (0) = I e a,, Pz( u I O) du. 

The appropriate formulae follow from the previous results by  the universal 
relation A~ = 1 - 8ax. 

It  is of interest to follow through the actual stochastic behavior of a "learn- 
ing reserve" of the type (7.5). First of all, we note that adaptive annuity 
reserves do not decrease as quickly as the corresponding ax+t, for small t and 
C = o, which can be seen from: 

dax+t (Co., Qo. (t)) 
- 8 a x + t  (C~,  Q2 ( t ) )  - 1 dt 

(7.s) 
[c.q (x + 

t)j 1 (C2, Q2 (t)) + [" 00~~ { ( N - C )  ax+t 

- ( N - C -  t) ax+t (Co.+ i;Q2 (t))} 

as compared with the well-known classical result 

d a x  ~t _ 
I +  (7.9) d~ LQ1 + Q~ (t)j ax+~. 
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The term in square brackets is, of course, the failure rate at x + t for the 
mixed population in the proportional-hazard family, i.e., the derivative of 
(3-15)- When the first and subsequent deaths occur, there is an instantaneous 
drop in (7.5), since C2 increases by unity, but Q2 (t) is continuous. In general, 
if fewer (more) lives than expected terminate during (x, x+ t], the reserves 
on the remaining lives are larger (smaller) than usual, since this indicates that  
the value of 0 is smaller (larger) than average for this cohort. A complementary 
effect occurs for life assurance learning reserves. 

I t  should be mentioned that  a gamrna-mixed proportional-hazard model 
should be used with care for human mortality. If, for example, the prototype 
failure rate is assumed to follow Makeham's law, q ( t ) = A + B e  ~t, we find 
that the mixed hazard rate (the derivative of (3.15)) is asymptotically constant, 
due to the failure-rate-decreasing properties of mixing! One would have to 
assume that, given 0, individuals follow a much stronger "wear-out" (say, 
Gumbel), in order to obtain a population Makeham-type law. It is interesting to 
speculate as to whether or not this occurs for closely-matched humans, where 
0 would have to include health, genetic, and environmental effects. 

8. DEFECTIVE DISTRIBUTIONS 

Component and human lives are finite, with l)robability one; however, 
defective distributions arise in a variety of other operational situations. 
Consider, for example, the estimation of the time it takes for a number of 
requests for bids, mailed survey responses, etc., to be returned. Some responses 
are received rather quickly; in other cases, an answer is never received. 

A reasonable model for this situation would add an unknown defect para- 
meter, ~, to the usual lifetime distribution, as follows: 

(s.t) P~(xlO,~)=~+(i-~)P~(xlo);p(xlO,~)--(t-~)p(xlo). 
is then the probability that the lifetime is "infinite".  
Under the life testing scheme of Section 2, the likelihood of the date set D 

beconles : 

¢)= (~7)(1-6)c rl p (x,] 0)lI [¢+ (I-¢) pc (T/, 0)]. (8.2) P(DIO,  
i¢s i¢s 

Assuming all the intervals Tj have common value 7", we find the posterior- 
to-data density of 0 and ¢ by a binomial expansion: 

P (0,~1 D) = 
/ g - -C  

1 " 0  

where K is a normalizing constant to make Yl # (0, I D) dOdq~ = 1. To illustrate 
the calculations further, assume that  the "honest" part of (8.1), pe (x I 0), 
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is from the proport ional-hazard family (3.1), with gamma prior on 0 (3.4). For  
simplicity, assume q~ is, apriori, independent  of 0, and has a beta  prior densi ty:  

(8.4) p($ )=p($ lao ,  bo)=B q (ao, bo)~bOo-a ( t-ff)~o-~ (o < ~  < t). 

B (a o, bo) is the beta  function, P (%) P (bo) / P (%+ bo). After straight- 
forward calculations with these special forms, we find the mixed be ta-gamma:  

p (0, ff I D) = 
N - C  

X Hj(D) p(~[ao+ j , b o + N - 3 )  p(OICo+C,Qo+TQT:(D)), 
I o 

(8.5) 

where 

(8.6) TQTj(D) = £ Q(x,) + ( N - C - j )  Q(T), 
t C b  

and the mixing probabili t ies are given by:  

(8.7) Il :  (D) = K -  B (a 0 + j, b o + N -  j) [Qo + TQT: (D)I -(Co +c), 

where, again, K is a normalizing factor  to make ~ H i =  1. I t  is impor tant  to 
note that ,  posterior-to-data,  the est imates of 0 and q~ are dependent ,  unless 
all of the observat ions are complete. For  est imating the mean defect, we have 

(8.8) E { a I D }  = _~, rb (D) , 
o o + b o +  

where we recognize the term in square brackets  as the mean of b, given only 
that  we observe j defects out of N trials. For  N = l and no failure: 

ao [(ao+ ') [l +Q (T)/Qo~e°+ bo] 
(8.9) E { ~ I D }  - ao+bo+ 1 t. aoEl+O(T)/Oo3Co+bo ' 

which shows clearly how the mean defect increases from its original est imate 
of ao/(ao+bo) towards  (ao+ t ) / ( a o + b o +  1) as T--> m with no failure. Of 
course, if the lifetime ever terminates,  E {~ [ D} jumps  to (bo+ 1) / (%+ bo+ 1). 
Other mixing models are given in JEWELL (1977). 
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