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Abstract

Two well-known methods for calculating risk load -- Marginal Surplus and Marginal Variance --

are applied to output from catastrophe modeling software. Risk loads for these marginal methods

are calculated for sample new and renewal accounts. Differences between new and renewal

pricing are examined. For new situations, both current methods allocate the full marginal impact

of addition of a new account to that new account. For renewal situations, a new concept is

introduced -- "renewal additivity". Neither marginal method is renewal additive. A new method is

introduced, inspired by game theory, which splits the mutual covariance between any two

accounts evenly between those accounts. The new method is extended and generalized to a

proportional sharing of mutual covariance between any two accounts. Both new approaches are

tested in new and renewal situations.
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(1) Introduction



The calculation of risk load continues to be a topic of interest in the actuarial

community -- see Bault [1] for a recent survey of well-known alternatives. One

area of great need, where the CAS literature is somewhat scarce, is calculation

of risk loads for property catastrophe insurance.

Many of the new catastrophe modeling products produce occurrence size-of-loss

distributions for a series of simulated events. These output files might contain an

event identifier, event probability, and modeled loss amount for that event for the

selected portfolio of exposures. Given such output files for a portfolio before and

after the addition of a new account, one could calculate the portfolio variance and

standard deviation before and after. The difference will be called the marginal

impact of that new account on the portfolio variance or standard deviation1.

Two of the more well-known risk load methods from the CAS literature -- what

shall be called "Marginal Surplus" (MS) from Kreps [3] and "Marginal Variance"

(MV) from Meyers [6] -- use the marginal change in portfolio standard deviation

(respectively variance) due to the addition of a new account to calculate the risk

load for that new account. However, problems arise when these marginal

methods are used to calculate the risk loads for the renewal of the accounts in a

portfolio. These problems can be traced to the order dependency of the

marginal risk load methods.



Order dependency is a perplexing issue. Many marginal risk load methods --

whether based on variance, standard deviation, or even a selected percentile of

the loss distribution – suffer from it. It is also not just an actuarial issue; even the

financial community struggles with it. "Value at Risk" (VAR) is an attempt by

investment firms to capture their risk in a single number. It is a selected

percentile of the return distribution (e.g., 95th) for a portfolio of financial

instruments over a selected time frame (e.g., 30 days). VAR can be calculated

for the entire portfolio or for a desired subset (e.g., asset class). But so-called

"marginal" or "component" VAR has to this point eluded satisfactory solution in

the finance community precisely because of what will be termed renewal

additivity. Those finance professionals charged with assessing how much VAR a

certain financial instrument or asset class contributes to the total VAR are staring

straight at the same unresolved order dependency issues. As the finance and

insurance worlds blend more and more, perhaps actuaries will combine forces

with the "rocket scientists" and CFA's to determine a solution.

The remainder of this paper is organized as follows. Section 2 describes the

basic characteristics of a catastrophe occurrence size-of-loss distribution.

Sections 3 and 4 describe the application of the MV and MS methods to a

simplified occurrence size-of-loss distribution. Sections 5 and 6 calculate risk

loads both in assembling or building up a portfolio of risks and in subsequently

                                                                                                                                                                    
1The variance and standard deviation are "between account" and "between event," and ignore
any parameter uncertainty associated with the modeled loss amount for a given event and



renewing that portfolio. Section 7 discusses the differences between build-up and

renewal results.

Section 8 introduces a new concept to the theory of property catastrophe risk

loads -- renewal additivity. However, the concept is not new to the field of game

theory. Section 9 introduces game theory concepts underlying a new approach.

Section 10 extends and generalizes the effect of the new approach to sharing of

covariance between accounts. Section 11 concludes by applying the new

approaches to the examples.

(2) The Catastrophe Occurrence Size-of-loss Distribution

For demonstration purposes throughout the paper, a simplified version of an

occurrence size-of-loss distribution will be used. It captures the essence of

typical catastrophe modeling software output, while keeping the examples

understandable2.

                                                                                                                                                                    
account.
2In particular, only single event or occurrence size-of-loss distributions will be considered. Many
models also produce multi-event or aggregate loss distributions. Occurrence size-of-loss
distributions only reflect the largest event which occurs in a given year. Aggregate loss
distributions reflect the sum of losses for all events in a given year. Clearly, the aggregate table
provides a more complete picture, but for purposes of the exposition here, the occurrence table
works well and the formulas are substantially less complex.



A modeled event denoted by identifier i is considered an independent Poisson

process with occurrence rate3 λλi. To simplify the mathematics, following Meyers

[6], the binomial approximation with probability of occurrence pi  [where λλi  = -

ln(1 - pi )] will be employed. This is a satisfactory approximation for small λλi 4.

For an individual account or portfolio of accounts, the model produces a modeled

loss for each event Li. A table containing the event identifiers i, the event

probabilities pi and modeled losses Li will be referred to as an "occurrence size-

of-loss distribution."

From Meyers [6], the formulas for expected loss and variance are:

E [L]  =  Σi  { Li * pi  } [2.1]

Var [L]  =  Σi  { Li2 * pi * (1 - pi) } .    [2.2]

[ Σi  = sum over all events ]

                                                       
3This entails a loss in generality, as it implies the loss for a given event and account to be fixed
and known.
4An  event with a probability of 0.001 (typical of the more severe modeled events) would have �
= 0.0010005.



The formula for covariance of an existing portfolio L (with losses Li) and a new

account n (with losses ni) is :

Cov [L, n] =  Σi  { Li * n i * pi * (1 - pi) } [2.3]

(Note that Cov [L, n] is always greater than zero when each of Li , n i , pi  and (1 -

pi) are greater than zero.)

The total variance of the combined portfolio [ L + n ] is then

Var [L] + Var [n] + 2 * Cov [L, n] [2.4]

(3) The Marginal Surplus (MS) Method

This is a translation to property catastrophe of the method described in Rodney

Kreps' "Reinsurer Risk Loads from Marginal Surplus Requirements" [3].

Consider:

L0 = losses from a portfolio before a new account is added

L1 = losses from a portfolio after a new account is added



S0 = Standard deviation of L0

S1 = Standard deviation of L1

R0 = Return on the portfolio before new account is added

R1 = Return on the portfolio after new account is added

Borrowing from Mr. Kreps, assume needed surplus V is given by

z * Standard Deviation of loss5 - expected Return [3.1]

where z is, to cite Mr. Kreps (p. 197), "a distribution percentage point

corresponding to the acceptable probability that the actual result will require even

more surplus than allocated." Then

V0 = z * S0 - R0

V1 = z * S1 - R1 [3.2]

The difference in returns R1 - R0 = r, the risk load charged to the new account.

The marginal surplus requirement is then

V1 – V0 = z * [ S1 – S0 ] - r [3.3]

                                                       
5Mr. Kreps sets needed surplus equal to z * standard deviation of return - expected return. If one
assume premiums and expenses are invariant, then Var[Return] = Var[P - E - L] = Var[L].



Based on the required return y on that marginal surplus (which is based on

management goals, market forces and risk appetite), the MS risk load would be:

r  =  y * z / (1 + y) * [ S1 – S0 ] [3.4]

(4) The Marginal Variance (MV) Method

This is based on Glenn Meyers' "The Competitive Market Equilibrium Risk Load

Formula for Catastrophe Ratemaking" [6].

For an existing portfolio L and a new account n, the MV risk load r would be:

r = λλ * Marginal Variance of adding n to L

= λλ * { Var [ n ] + 2 * Cov [ L, n ] } [4.1]

where λ is a multiplier similar to y * z / (1 + y ) from the MS method, although

dimensioned to apply to variance rather than standard deviation6.

(5) Building Up a Portfolio of 2 Accounts

                                                       
6Mr. Meyers develops a variance based risk load multiplier by converting a standard deviation
based multiplier using the following formula ([6], p. 573):



Table 12 shows the occurrence size-of-loss distribution and risk load calculations

for building up (assembling) a portfolio of 2 accounts, (X) and (Y). It is assumed

(X) is written first, and is the only risk in the portfolio until (Y) is written.

(5.1) MS Method

Pertinent values from Table 12 for the Marginal Surplus method are summarized

here:

Table 5.1

Building Up (X) & (Y):

Marginal Surplus

Account (X) Account (Y) Account (X)

+ Account (Y)

Portfolio

(X + Y)

(1) Change in

Standard Deviation

4,429 356 4,785 4,785

(2) Risk Load Multiplier 0.33 0.33 - 0.33

(3) Risk Load

= (1) * (2)

$1,461.71 $117.43 $1,579.14 $1,579.14

* Item (1) is the change in portfolio standard deviation from adding each account,

or marginal standard deviation.

                                                                                                                                                                    

λ = (Rate of Return * Std Dev Mult2) / (2 * Avg Capital of Competitors)



* Item (2) is the Risk Load multiplier of 0.33. Using Mr. Kreps' formula, a return

on marginal surplus y of 20% and a standard normal multiplier z of 2.0 (2

standard deviations, corresponding to a cumulative non-exceedance probability

of 97.725%) would produce a risk load multiplier of

y * z / (1 + y) = 0.20 * 2 / 1.20 = 0.33 (rounded) [5.1]

* Item (3) is the Risk Load, the product of Items (1) and (2).

Since (X) is the first account, the marginal standard deviation from adding (X)

equals the standard deviation of (X) (Std Dev [X]) of 4,429. This gives a risk load

of $1,461.71.

The marginal standard deviation from writing (Y) equals Std Dev [X + Y] - Std

Dev [X], or $356, implying a risk load of $117.43.

The sum of these two risk loads (X) + (Y) is $1,461.71 + $117.43 = $1,579.14.

This equals the risk load which this method would calculate for the combined

account (X + Y).

(5.2) MV Method



Pertinent values from Table 12 for the Marginal Variance method are

summarized here:

Table 5.2

Building Up (X) & (Y):

Marginal Variance

Account (X) Account (Y) Account (X)

+ Account (Y)

Portfolio

(X + Y)

(1) Change in Variance 19,619,900 3,279,059 22,898,959 22,898,959

(2) Risk Load Multiplier 0.000069 0.000069 - 0.000069

(3) Risk Load

= (1) * (2)

$1,353.02 $226.13 $1,579.14 $1,579.14

* Item (1) is the change in portfolio variance from adding each account, or

marginal variance.

* Item (2) is the Variance Risk Load multiplier λλ of 0.000069. To simplify

comparisons between the two methods (recognizing the difficulty of selecting a

MV-based multiplier7), The MS multiplier was converted to a MV basis by

dividing by Std Dev [X + Y]:

                                                       
7Mr. Meyers [6] (p. 572) admits that in practice "it might be difficult for an insurer to obtain the
(lambdas) of each of its competitors." He goes on to suggest an approximate method to arrive at
a usable lambda based on required capital being "Z standard  deviations of the total loss
distribution" (p. 574).



λλ = 0.33 / 4,785 = 0.000069 [5.2]

This means the total risk load calculated for the portfolio by the two methods will

be the same, although the individual risk loads for (X) and (Y) will differ between

the methods.

* Item (3) is the Risk Load, the product of Items (1) and (2).

Since (X) is the first account, the marginal variance from adding (X) equals the

variance of (X) (Var [X]) of 19,619,900. This gives a risk load of $1,353.02.

The marginal variance from writing (Y) equals Var [X + Y] - Var [X], or

$3,279,059, implying a risk load of $226.13.

The sum of these two risk loads (X) + (Y) is $1,353.02 + $226.13 = $1,579.14.

This equals the risk load which this method would calculate for the combined

account (X + Y).

(6) Renewing the Portfolio of 2 Accounts



Table 13 shows the natural extension of the Build-up scenario -- renewal of these

2 accounts, in what could be termed a "static" or "steady state" portfolio (one with

no new entrants).

As for applying these methods in the renewal scenario, renewing  policy (X) is

assumed equivalent to adding (X) to a portfolio of (Y); renewing (Y) is assumed

equivalent to adding (Y) to a portfolio of (X).

(6.1) MS Method

Pertinent values from Table 13 for the Marginal Surplus method are summarized

here:

Table 6.1

Renewing (X) & (Y):

Marginal Surplus

Account (X) Account (Y) Account (X)

+ Account (Y)

Portfolio

(X + Y)

(1) Change in

Standard Deviation

4,171 356 4,526 4,785

(2) Risk Load Multiplier 0.33 0.33 - 0.33

(3) Risk Load

= (1) * (2)

$1,376.27 $117.43 $1,493.70 $1,579.14

(4) Build-up Risk Load $1,461.71 $117.43 $1,579.14 $1,579.14

(5) Difference ($85.45) $0 ($85.45) $0



The marginal standard deviation for adding (Y) to (X) is 356, same as it was

during Build-up -- see Section (5.1). The risk load of $117.43 is also the same.

However, adding (X) to (Y) gives a marginal standard deviation of Std Dev [X +

Y] - Std Dev [Y] , or 4,171. This gives a risk load for (X) of $1,376.27, which is

(85.45) less than $1,461.71, the risk load for (X) calculated in Section (5.1).

The sum of these two risk loads is $1,376.27 + $117.43 = $1,493.70. This is also

(85.45) less than the total risk load from Section (5.1).

(6.2) MV Method

Pertinent values from Table 13 for the Marginal Variance method are

summarized here:

Table 6.2

Renewing (X) & (Y):

Marginal Variance

Account (X) Account (Y) Account (X)

+ Account (Y)

Portfolio

(X + Y)

(1) Change in Variance 22,521,000 3,279,059 25,800,059 22,898,959

(2) Risk Load Multiplier 0.000069 0.000069 - 0.000069

(3) Risk Load $1,553.08 $226.13 $1,779.21 $1,579.14



= (1) * (2)

(4) Build-up Risk Load $1,353.02 $226.13 $1,579.14 $1,579.14

(5) Difference $200.06 $0 $200.06 $0

The marginal variance for adding (Y) to (X) is 3,279,059, same as it was during

Build-up -- see Section (5.2). The risk load of $226.13 is also the same.

However, adding (X) to (Y) gives a marginal variance of Var [X + Y] - Var [Y], or

22,521,000. The risk load is now $1,553.08, which is $200.06 more than the

$1,353.02 calculated in Section (5.2).

The sum of these two risk loads is $1,553.08 + $226.13 = $1,779.21. This is also

$200.06 more than the total risk load from Section (5.2).

(7) Exploring the Differences Between New and Renewal

Why are the total Renewal risk loads different from the total Build-up risk loads?

In Section (5.1) Build-up, the marginal standard deviation for (X), ∆Std Dev [X],

was :



∆Std Dev [X] =  Std Dev [X] 

=  SQRT [ Σi  { Xi2 * pi * (1 - pi) }  ] , [7.1]

(Xi = modeled losses for X for event i)

while in Section (6.1) Renewal, the marginal standard deviation was

∆Std Dev [X] =  Std Dev [X + Y] - Std Dev [Y]

=  SQRT [ Σi  { (Xi+Yi)2 * pi * (1 - pi) } ]  -

    SQRT [ Σi  { Yi2 * pi * (1 - pi) } ] [7.2]

For positive Yi, this value is less than Std Dev [X]8. Therefore, one would expect

the Renewal risk load to be less than the Build-up.

Unfortunately, when the MS method is applied in the renewal of all the accounts

in a portfolio, the sum of the individual risk loads will be less than the total

portfolio standard deviation times the multiplier. This is because the sum of the

marginal standard deviations (found by taking the difference in portfolio standard

deviation with and without each account in the portfolio) is less than the total

                                                       
8For example, assume Var [X] = 9, Var [Y] = 4, Cov [X, Y] = 1.5; then
∆Std Dev [X] = Sqrt(Var [X] ) = Sqrt (9) = 3 for X alone
∆Std Dev [X] = Sqrt(9 + 4 + 2*1.5) - Sqrt(4) = 4 - 2 = 2 < 3. for X added to Y



portfolio standard deviation9. This is because the square root operator is "sub-

additive": the square root of a sum is less than the sum of the square roots10.

What about marginal variance? In Section (5.2) Build-up, the marginal variance

∆Var [X] was

      ∆Var [X]  =  Var [X]

=  Σi  { Xi2 * pi * (1 - pi) } , [7.3]

while in Section (6.2) Renewal the marginal variance was

      ∆Var [X]  =   Var [X + Y] - Var [Y]

=   { Var [X] + 2 * Cov [X, Y]  + Var [Y] } - Var [Y] [7.4]

=   Var [X] + 2 * Cov [X, Y]

>  Var [X]. 

Since 2 * Cov [X, Y] is greater than zero, one would expect the Renewal risk load

to be greater than the Build-up.

                                                       
9The same issue is raised in Mr. Gogol's discussion [2]. He suggests correcting for this sub-
additivity by using a weighted average of the contract's own standard deviation and its last-in
marginal standard deviation. The weight is chosen so the sum of these redefined marginal
impacts equals the total portfolio standard deviation ([2], p. 363).
10For example, Sqrt[9 + 16] < Sqrt[9] + Sqrt[16].



However, when the MV method is applied in the renewal of all the accounts in a

portfolio, the sum of the individual risk loads will be more than the total portfolio

variance times the multiplier. This is because the sum of the marginal variances

(found by taking the difference in portfolio variance with and without each

account in the portfolio) is greater than the total portfolio variance. The

covariance between any two risks in the portfolio is double counted: when

each account renews, it is allocated the full amount of its shared covariance with

all the other accounts.

(8) A New Concept: Renewal Additivity

The renewal scenarios point out that these two methods are not what I call

"renewal additive," defined as follows:

For a given portfolio of accounts, a risk load method is renewal additive if the

sum of the renewal risk loads calculated for each account equals the risk load

calculated when the entire portfolio is treated as a single account.

Neither the MS nor the MV method is renewal additive: MS because the square

root operator is sub-additive; MV because the covariance is double counted. So

why should renewal additivity matter? Consider what happens when either of

these non-renewal additive methods are used to renew the portfolio. The MV



method would result in quoted renewal premiums the sum of whose risk loads

would be greater than the "required" total risk load of (λ * total portfolio variance).

One would in essence overcharge every account. The opposite is true for the

MS case, where one would undercharge every account.

In order for the MS or MV methods to be renewal additive, one must assume an

entry order for the accounts. Since the marginal impacts depend on the size of

the existing portfolio, the entry order selected for an account could determine

whether it is written or declined.

Renewal additivity reduces the renewal risk load calculation to an allocation of

the total portfolio amount back to the individual accounts. An objective,

systematic allocation methodology for renewals would be desirable. Examples of

many such allocation methodologies can be found in the field of game theory.

(9) A New Approach from Game Theory

Two ASTIN papers by Jean Lemaire -- "An Application of Game Theory: Cost

Allocation" [4], and "Cooperative Game Theory and Its Insurance Applications"

[5] -- focus on general insurance applications of game theory. He also provides

an extensive list of real world applications of game theory ([4], p. 77), including

tax allocation among operating divisions of McDonnell-Douglas, maintenance



costs of the Houston medical library, financing of large water resource

development projects in Tennessee, construction costs of multi-purpose

reservoirs in the U.S., and landing fees at Birmingham airport. Consider this

example from [5]:

"The Treasurer of ASTIN (player 1) wishes to invest the amount of

1,800,000 Belgian francs on a short term (3 months) basis. In Belgium, the

annual interest rate is a function of the sum invested.

Deposit

(in Belgian Francs)

Annual Interest

Rate

                   0 - 1,000,000 7.75%

1,000,000 - 3,000,000 10.25%

3,000,000 - 5,000,000 12.00%

The ASTIN Treasurer contacts the Treasurers of the International

Actuarial Association (I.A.A. - player 2) and of the Brussels Association of

Actuaries (A.A.Br. - player 3). I.A.A. agrees to deposit 900,000 francs in

the common fund, A.A.Br. 300,000 francs. Hence the 3-million mark is

reached and the interest rate will be 12%. How should the interests be

split among the three associations?" ([5], p. 18)



Games such as this are referred to as "cooperative games with transferable

utilities." They typically feature

(1) Participants (players) who have some benefits (or costs) to share

(political power, savings, or money).

(2) The opportunity to share benefits (costs) results from cooperation of all

participants or a sub-group of participants.

(3) Individuals are free to engage in negotiations, bargaining,  coalition

formation.

(4) Participants have conflicting objectives; each wants to secure the

largest part of the benefits (smallest share of the costs) for himself. (see

[5], p.20)

Cooperative games can be used as models for situations where participants

must share or allocate an amount of money. Each player may want to maximize

or minimize their allocation depending on the nature of the problem. If the group

is deciding who pays what share of the total tax bill, each player will want to

minimize their share. If the group is deciding how to split a pot of bonus money,

each player will want to maximize their share.



The total amount to be allocated is determined by the characteristic function,

which associates a real number v(S) to each coalition (group) S of players. It can

be either sub-additive or super-additive:

Sub-Additive v(S) + v(T) >= v(S union T)   for every disjoint S and T

Super-Additive  v(S) + v(T) <= v(S union T)   for every disjoint S and T

In the actuarial association example above, the characteristic function would be

the money earned by each coalition (combination) of associations. It is an

example of a super-additive characteristic function where the players seek to

maximize their allocation. An example of a sub-additive characteristic function

would be the insurance premium for a risk purchasing group: the sum of the

individual members' insurance premiums is more than the insurance premium for

the risk purchasing group as a whole. These players would seek to minimize their

allocations, since they want to be charged the lowest premium. (Equivalently,

these players want to maximize their savings as a result of joining the group --

savings being the difference between their allocation from the group and their

standalone premium.)

Allocation Rules

A player's marginal impact depends on its entry order; in the example, the

"allocation [to the three associations] of course depends on the order of formation



of the grand coalition" ([5], p. 27). In the interests of fairness and stability, a new

member should probably receive an allocation amount somewhere between its

standalone value and its full marginal impact on the coalition characteristic

function -- but where in between? How much is fair? These questions must be

answered simultaneously for all the players, balancing questions of stability,

incentives to split from the group, bargaining power, and marginal impact to the

coalition characteristic function value.

To help answer the allocation question, game theory has developed a set of

standards or rules for allocations. Firstly, legitimate allocation methods must be

additive -- the sum of the players' allocations must equal the total amount to be

allocated. The MV and MS methods are not (renewal) additive: they either

allocate too much (MV) or too little (MS) in the renewal case.

Secondly, a coalition should be stable, which roughly translates to fair. There

must not be incentives for either a single player or a sub-group of players to split

from the group and form a faction. These "rules of fairness" are referred to as the

conditions of individual and collective rationality (see [4], p. 66 - 68) :

Individual rationality means a player is no worse off for having joined the

coalition.

Collective rationality means no subgroup would be better off on their

own.



These rules can be formalized into a set of acceptable ranges of allocations for

each player. This set defines what is known as the core of the game. It consists

of all allocations which satisfy these fairness and stability conditions.

Consider the Brussels Association of Actuaries (A.A.Br. - player 3) from the

example. They have 300,000 francs, and on their own could earn 7.75%. If they

join as the third player, they will push the coalition rate of return from 10.25% to

12.00%. How much should they earn? Certainly not less than 7.75% -- it is not

individually rational for them to join. Conversely, they should not earn so much

that the other two players end up earning less than 10.25% -- that would not be

collectively rational for them. In that case, they would be better off forming their

own faction. Similar exercises can be performed for the other two players. The

resulting set of acceptable allocations defines the boundaries of the core (see [5],

p. 26).

Translating to Property Cat Risk Load

Given this brief introduction, a reasonable first attempt at translating from the

game theory context might be:

Table 9.1

Translation from Game Theory to

Property Cat Risk Load



Game Theory Property Cat Risk Load

Player Account

Coalition Portfolio

Characteristic Function Portfolio Variance or

Standard Deviation

Because of the covariance component, portfolio variance is a super-additive

characteristic function: the variance of a portfolio is greater than the sum of the

individual account variances. Standard deviation, on the other hand, is a sub-

additive characteristic function because of the sub-additivity of the square root

operator: the standard deviation of a portfolio is less than the sum of the

individual account standard deviations.

This means, from the game theory perspective at least, that the choice between

variance and standard deviation is material: it determines whether the

characteristic function is sub-additive or super-additive. This is a fundamental

paradox of the game theory translation of the risk load problem, and will require

further research to resolve.

Setting aside this paradox for the moment, however, the risk load problem fits

remarkably well into the game theory framework. The "players" want to minimize



their allocations of the portfolio total risk load. The allocation should fairly and

objectively assign risk load to accounts in proportion to their contribution to the

total. Using the current definition of marginal impact of a renewal account,

however, an entry order would have to be assumed in order to make the

allocation additive. The results of that allocation would be heavily dependent on

the selected order, however.

How can one choose the entry order of a renewal? A well-known allocation

method from game theory may provide the answer.

The Shapley Value

The Shapley value (named for Lloyd Shapley, one of the early leaders of the

game theory field) is an allocation method which is:

(1) Additive;

(2) At the centroid of the core; and

(3) Order independent.

It equals the average of the marginal impacts taken over all possible entrance

permutations -- the different orders in which a new member could have been

added to the coalition11 (i.e. a new account could have been added to a

portfolio).

                                                       
11Mr. Lemaire [5] provides this more complete definition of the Shapley value (p. 29): "The
Shapley value can be interpreted as the mathematical expectation of the admission value, when



For example, consider a portfolio of accounts (A) and (B) to which a new account

(C) is added. Shown in Table 9.2 are the marginal variances for adding (C) in the

6 possible entrance permutations12 ("ABC" in Column (1) below means A enters

first, then B, then C) :

Table 9.2

Entry Permutations for Account C

(1) (2) (3)

Permutation C Enters... Marginal Variance

ABC After (A) & (B) Var [C] + 2*Cov [C, A] +

2*Cov [C, B]

ACB After (A) Var [C] + 2*Cov [C, A]

BAC After (B) & (A) Var [C] + 2*Cov [C, A] +

2*Cov [C, B]

BCA After (B) Var [C] + 2*Cov [C, B]

CAB First Var [C]

                                                                                                                                                                    
all orders of formation of the grand coalition are equiprobable. In computing the value, one can
assume, for convenience, that all players enter the grand coalition one by one, each of them
receiving the entire benefits he brings to the coalition formed just before him. All orders of
formation of N are considered and intervene with the same weight 1/n! in the computation. The
combinatorial coefficient results from the fact that there are (s-1)!(n-s)! ways for a player to be the
last to enter coalition S: the (s-1) other players of S and the (n-s) players of N\S (those players in
N which are not in S - DM) can be permuted without affecting i's position."
12The author is indebted to John Major for pointing out an error in the original version of this
exhibit.



CBA First Var [C]

The Shapley value is the straight average of Column (3) Marginal Variance over

the six permutations:

Shapley Value = { Sum [ Column (3) ] } / 6 [9.1]

= { 6*Var [C] +

      6*Cov [C, A] +

      6*Cov [C, B] } /  6

= Var [C] + Cov [C, A] + Cov [C, B]

Or, to generalize, given

L  = existing portfolio

n  = new account

Shapley Value =  Var [ n ] + Cov [ L, n ]. [9.2]

Before seeing this result, there might have been concerns about the practicality

of this approach -- how much computational time might be required to calculate



all the possible entrance permutations for a portfolio of thousands of accounts?

This simple reduction formula eliminates those concerns. The Shapley value is

as simple to calculate as the marginal variance.

Comparing the Shapley value to the marginal variance formula from Section 4:

Marginal Variance = Var [ n ] + 2 * Cov [ L, n ],  [9.3]

the Shapley value only takes 1 times the covariance of the new account and the

existing portfolio.

One can also calculate the Shapley value under the marginal standard deviation

method. However, due to the complex nature of the mathematics -- differences of

square roots of sums of products -- no simplifying reduction formula was

immediately apparent13.

Therefore, the remainder of the paper will focus on the MV method and the

variance-based Shapley value. Life will be much easier (mathematically) working

with the variances, and very little is lost by choosing variance. Citing Mr. Bault

([1], p. 82), from a risk load perspective, "both [variance and standard deviation]

are simply special cases of a unifying covariance framework." In fact, Mr. Bault

                                                       
13Those wishing to employ standard deviation can use approximate methods to calculate the
Shapley value. Two approaches suggested by John Major are (i) taking the average of marginal
value if first in and last in; and (ii) employing Monte Carlo simulation to sample a subset of the



goes on to suggest "in most cases, the 'correct' answer is a marginal risk

approach that incorporates covariance"14.

(10) Sharing the Covariance

The risk load question, framed in a game-theoretical light, has now become:

How do accounts share their mutual covariance for purposes of

calculating risk load?

The Shapley method answers, "Accounts split their mutual covariance equally."

At first glance this appears reasonable, but consider the following example.

Assume two accounts, (L) and (M). (M) has 100 times the losses of (L) for each

event. Their total shared covariance is

2 * Cov(L, M)=  2 * Σi  { Li * Mi  * pi * (1 - pi) }

=  2 * Σi  { Li * 100Li  * pi * (1 - pi) } [10.1]

                                                                                                                                                                    
possible entrance permutations, presumably large enough to achieve satisfactory convergence
while being much more computationally efficient.



The Shapley value would equally divide this total covariance between (L) and

(M), even though their relative contributions to the total are clearly not equal.

There is no question that (L) should be assessed some share of the covariance.

The issue is whether there is a more equitable share than simply half.

One could develop a generalized covariance sharing (GCS) method which uses

a weight Wi
L(L, X) to determine (L)'s share of the mutual covariance between

itself and account (X) for event i:

CovSharei
L (L, X) = Wi

L(L, X) * 2 * Li * Xi * pi * (1 - pi) [10.2]

Then (X)'s share of that mutual covariance would simply be

CovSharei
X (L, X) = [1 - Wi

L (L, X)] * 2 * Li * Xi * pi * (1 - pi) [10.3]

The total covariance share allocation for (L) over all events would be

CovShareTotL = ΣZ Σi  { CovShareiL(L, Z) }      [10.4]

                                                                                                                                                                    
14Mr. Kreps [3] also incorporates covariance in his "Reluctance" R (p. 198), which has the
formula R = [yz/(1+y)]/(2SC + σ)/(S' + S), where C is the correlation of the contract with the
existing book. The Risk Load is then equal to Rσ.



[ ΣZ = sum over every other account in the portfolio ]

The Shapley method is a generalized covariance sharing method with Wi
L (L, X)

= 50% for all (L), (X), and i.

Returning to the example with (L) and (M), one could develop an example of a

weighting scheme which assigns the shared covariance by event to each in

proportion to their loss for that event. Wi
L (L, M), account (L)'s share of the

mutual covariance between itself and account (M) for event i, equals

Wi
L (L, M) = [ Li / [ Li + Mi ] ] [10.5]

= [ Li / [ Li + 100Li ] ]

= (1 / 101)

= roughly 1% of their mutual covariance for event i

This shall be called the "Covariance Share" (CS) method.

(11) Applying the Shapley and CS Methods to the Example

Consider the Shapley and CS methods applied to the 2 Account example for

both Build-up and Renewal.



(11.1) Portfolio Build-up

Table 14 shows the Build-up of accounts (X) and (Y) from Section 5, but for the

Shapley and CS methods; pertinent values for the Shapley value are

summarized here:

Table 11.1

Building Up (X) & (Y):

Shapley Value

Account (X) Account (Y) Account (X)

+ Account (Y)

Portfolio

(X + Y)

(1) Change in Variance 19,619,900 1,828,509 21,448,409 22,898,959

(2) Risk Load Multiplier 0.000069 0.000069 - 0.000069

(3) Risk Load

= (1) * (2)

$1,353.02 $126.10 $1,479.11 $1,579.14

Pertinent values for the Covariance Share are summarized here:

Table 11.2

Building Up (X) & (Y):

Covariance Share

Account (X) Account (Y) Account (X)

+ Account (Y)

Portfolio

(X + Y)

(1) Change in Variance 19,619,900 950,658 20,570,558 22,898,959



(2) Risk Load Multiplier 0.000069 0.000069 - 0.000069

(3) Risk Load

= (1) * (2)

$1,353.02 $65.56 $1,418.57 $1,579.14

Both Shapley and CS produce the same risk load for (X) as the MV method on

build-up - $1,353.02. This is because there is no covariance to share - (X) is the

entire portfolio at this point. However, compare the results of the three variance-

based methods for account (Y):

Table 11.3

Comparison of Build-up

Risk Loads for Account (Y)

Marginal Variance (MV) -

Section 5.2

$226.13

Shapley Value $126.10

Difference from MV $100.03

Covariance Share (CS) $65.56

Difference from MV $160.57



Compared to MV, which charges account (Y) for the full increase in variance (Var

[Y] + 2* Cov [X, Y]), the Shapley method only charges (Y) for Var [Y] + Cov [X,

Y]. The same can be said for the CS method, although the share of the mutual

covariance depends on each account's relative contribution by event, weighted

and summed over all events. Now consider what happens to that difference

from MV upon renewal.

(11.3) Renewal

Table 15 shows the renewal of (X) and (Y) for the Shapley and CS methods;

pertinent values for the Shapley method are summarized here:

Table 11.4

Renewing (X) & (Y):

Shapley Value

Account (X) Account (Y) Account (X)

+ Account (Y)

Portfolio

(X + Y)

(1) Change in Variance 21,070,450 1,828,509 22,898,959 22,898,959

(2) Risk Load Multiplier 0.000069 0.000069 - 0.000069

(3) Risk Load

= (1) * (2)

$1,453.05 $126.10 $1,579.14 $1,579.14

(4) Build-up Risk Load $1,353.02 $126.10 $1,479.11 $1,579.14

(5) Difference $100.03 $0 $100.03 $0



Pertinent values for the Covariance Share method are summarized here:

Table 11.5

Renewing (X) & (Y):

Covariance Share

Account (X) Account (Y) Account (X)

+ Account (Y)

Portfolio

(X + Y)

(1) Change in Variance 21,948,301 950,658 22,898,959 22,898,959

(2) Risk Load Multiplier 0.000069 0.000069 - 0.000069

(3) Risk Load

= (1) * (2)

$1,513.59 $65.56 $1,579.14 $1,579.14

(4) Build-up Risk Load $1,353.02 $65.56 $1,418.57 $1,579.14

(5) Difference $160.57 $0 $160.57 $0

With both the Shapley and CS methods, the sum of the risk loads for Account (X)

and Account (Y) equals the risk load for Account (X + Y), namely $1,579.14. This

means both new methods are renewal additive.

To see what happened to difference from MV, compare the risk loads

calculated at renewal for (X) with those at build-up:

Table 11.6



Build-up vs Renewal Risk

Loads for Account (X)

Shapley Cov Share

Renewal $1,453.05 $1,513.59

Build-up $1,353.02 $1,353.02

Additional Renewal Risk Load

over Build-up

$100.03 $160.57

Difference from MV $100.03 $160.57

The difference from MV during build-up is simply the portion of (X)'s risk load

attributable to its share of covariance with (Y). It was missed during build-up

because it was unknown -- account (Y) had not been written.

(12) Conclusion

This paper introduced two new approaches to determination of renewal risk load

that address concerns with renewal additivity and point out the issue of

covariance sharing between accounts. The ideal solution in practice might

involve using a marginal method for the pricing of new accounts, and a renewal

additive method for renewals.



This paper also represents a first step in addressing the perplexing question of

order dependency. As mentioned in the introduction, order dependency is an

issue which stretches beyond the confines of actuarial pricing to the finance

community at large. It will likely take a joint effort between finance professionals

and actuaries to reach a satisfactory solution.

Finally, this paper brings important information from game theory to the

Proceedings. Game theory is a rich field for actuaries to find new ideas on cost

allocation, fairness and order dependency. Many sticky social issues (taxation,

voting rights, utility costs) have been resolved using ideas from game theory.

Further research could be done on several questions raised during the review of

this paper, including the relative bargaining power of accounts, portfolio

departure rules, lack of account information, and the unresolved paradox of the

sub-additive MS characteristic function versus the super-additive MV

characteristic function.
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Table 12 - Build a Portfolio of 2 Accounts

Loss for Account
Event i P(i) 1-P(i) (X) (Y) Portfolio (X + Y) 

1 2.0% 98.0% 25,000 200 25,200
2 1.0% 99.0% 15,000 500 15,500
3 3.0% 97.0% 10,000 3,000 13,000
4 3.0% 97.0% 8,000 1,000 9,000
5 1.0% 99.0% 5,000 2,000 7,000
6 2.0% 98.0% 2,500 1,500 4,000

E[L] 1,290 179 1,469
Var[L] 19,619,900 377,959 22,898,959

Std Dev[L] 4,429 615 4,785

Covariances (X) (Y) 
(X) 19,619,900 1,450,550
(Y) 1,450,550 377,959

(X) (Y) (X) + (Y) 
Change in Std Deviation 4,429 356 4,785

Risk Load (Std Dev) 1,461.71 117.43 1,579.14
Multiplier : 0.33 Risk Load for (X + Y) : 1,579.14

Change in Variance 19,619,900 3,279,059 22,898,959
Risk Load (Variance) 1,353.02 226.13 1,579.14

Multiplier : 0.000069 Risk Load for (X + Y) : 1,579.14



Table 13 - Renew the Portfolio of 2 Accounts

Loss for Account
Event i P(i) 1-P(i) (X) (Y) Portfolio (X + Y) 

1 2.0% 98.0% 25,000 200 25,200
2 1.0% 99.0% 15,000 500 15,500
3 3.0% 97.0% 10,000 3,000 13,000
4 3.0% 97.0% 8,000 1,000 9,000
5 1.0% 99.0% 5,000 2,000 7,000
6 2.0% 98.0% 2,500 1,500 4,000

E[L] 1,290 179 1,469
Var[L] 19,619,900 377,959 22,898,959

Std Dev[L] 4,429 615 4,785

Covar (X) (Y) 
(X) 19,619,900 1,450,550
(Y) 1,450,550 377,959

(X) (Y) (X)+(Y) 
Change in Std Deviation 4,171 356 4,526

Risk Load (Std Dev) 1,376.27 117.43 1,493.70
0.33 Build Up Risk Load 1,461.71 117.43 1,579.14

Difference (85.45) (85.45)

Change in Variance 22,521,000 3,279,059 25,800,059
Risk Load (Variance) 1,553.08 226.13 1,779.21

0.000069 Build Up Risk Load 1,353.02 226.13 1,579.14
Difference 200.06 200.06



Table 14 - Build a Portfolio of 2 Accounts - Alternatives

Covariance Share $
Event i P(i) 1-P(i) (X) (Y) 

1 2.0% 98.0% 9,920,635 79,365
2 1.0% 99.0% 14,516,129 483,871
3 3.0% 97.0% 46,153,846 13,846,154
4 3.0% 97.0% 14,222,222 1,777,778
5 1.0% 99.0% 14,285,714 5,714,286
6 2.0% 98.0% 4,687,500 2,812,500

Total 
2,328,401 572,699 2,901,100

Chg in Variance (X) (Y) 
If added 1st 19,619,900 377,959

If added 2nd after 1 3,279,059
after 2 22,521,000

Average (Shapley Value) 21,070,450 1,828,509

Shapley Value 19,619,900 1,828,509 21,448,409
Risk Load (Shapley) 1,353.02 126.10 1,479.11

0.000069 1,579.14
Deferred Risk Load 100.03

Covariance Share 19,619,900 950,658 20,570,558
Risk Load (Cov Share) 1,353.02 65.56 1,418.57
0.000069 1,579.14

Deferred Risk Load 160.57



Table 15 - Renew the Portfolio of 2 Accounts - Alternatives

Covariance Share $
Event i P(i) 1-P(i) (X) (Y) 

1 2.0% 98.0% 9,920,635 79,365
2 1.0% 99.0% 14,516,129 483,871
3 3.0% 97.0% 46,153,846 13,846,154
4 3.0% 97.0% 14,222,222 1,777,778
5 1.0% 99.0% 14,285,714 5,714,286
6 2.0% 98.0% 4,687,500 2,812,500

Total 
2,328,401 572,699 2,901,100

Chg in Variance (X) (Y) 
If added 1st 19,619,900 377,959

If added 2nd after 1 3,279,059
after 2 22,521,000

Average (Shapley Value) 21,070,450 1,828,509

Shapley Value 21,070,450 1,828,509 22,898,959
Risk Load (Shapley) 1,453.05 126.10 1,579.14

0.000069 Risk Load for Portfolio (X + Y) 1,579.14

Covariance Share 21,948,301 950,658 22,898,959
Risk Load (Cov Share) 1,513.59 65.56 1,579.14
0.000069 Risk Load for Portfolio (X + Y) 1,579.14


