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Abstract

The paper defines plausible ways to measure sampling error within efficient frontiers, particularly when they are derived using

dynamic financial analysis. The properties of an efficient surface are measured both using historical segments of data and

using bootstrap samples. The surface was found to be diverse, and the composition of asset portfolios for points on the

efficient surface was highly variable.

The paper baces perfOrn1ance of on-frontier and off-frontier investment portfolios for different historical periods. There was

no clear cut superiority to the on-frontier set of portfolios, although lower risk -return on-frontier portfolios were generally

found to perform better relative to comparable, off-frontier portfolios than those at higher risk levels. It is questionable

. whether practical deployment of optimization methods can occur in the presence of both high sampling error and the relatively

inconsistent historical performance of on-frontier portfolios.

The implications of this paper for DF A usage of efficient frontiers is that sampling error may degrade the ability to effectively

distinguish optimal and non-optimal points in risk-return~. The analyst should be cautious regarding the likelihood that

points on an efficient frontier are operationally superior choices within that space. There are many possible frontiers that

optimally fit different empirical samples. Sampling error among them could cause the frontiers to traverse different regions

within risk-rebun space, ped)aps at points that are disparate in a decision sense. What is an efficient point on one frontier may
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be inefficient when calculated from a different sample. The paper finds the use of an efficient surface to be helpful in

diagnosing the effects of such sampling error.

1.0 Introduction

Companies choose among investments often with the purpose of optimizing some goal and always limited by constraints.

Assets are divided among competing investment alternatives with the hope that risk will be minimized for a desired levd of

return, either investment return or overall return. When the allocation fulfills the goals within the boundaries of constJaints, it

is thought to be efficient. The allocation is deemed to be a ~mber of the efficient set at a point on an efficient frontier. It is

efficient because it dominates off-frontier, interior points in the risk-return space.

This paper investigates this popular investment allocation strategy in two ways. First. it seeks to detennine what the sensitivity

of the frontier is to possible sampling error in risk-return S18:e. Secondly, both on-frontier and off-frontier portfolio

allocations for actual series of returns are b'acked for their respective perfonnance. We begin with an apologue; it gives the

reader both a rationale and definition of what we mean by an efficient surface.

1.1 A Sampling Error Apologue

I walk into a casino with shaky knees and a rather small~. Betting doesn't come easily for me, and I expect to lose the

stake. Ralph told me I would lose it But. I have a bevy of infonnation gleaned from experiments Ralph did with a

computerized simuJation of a Claps table. One of the items I call "knowledge" is the efficient surface he made for me. Ralph

said it would help me understand the risk/rebJrn properties of the craps table and guide me in allocating my stake among the

various bets that I can make

"There are many bets you can make at the table," Ralph explained. "'Come', 'Big-8' am lots of others. think of the gaming

as a multivariate~. Of course, it has probabilities that are objective and can be measured Do you want me to figure out

the combinatorics of the craps game aM derive analytic solutions for optimal bet placement? My consulting fee might be a bit

high because the math will take awhile, but I could do il ..

mentally recalculated my meager stake and replied, "Is there a less expensive wayT'
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Ralph shrugged and said, "Sure. I can use a computer simulation I have and take a sample of game outcomes. I'U use the

sample to empirically develop a covariance matrix for some of the bets. Then. I'll figure out which combinations of bets have

minimum variance for a particular payoff. You can choose which risk/return profile of bets is best for you. You'O be able to

more efficiently allocate your stake. By-the-way, this is called an efficient frontier-it gives a profile of bets that are expected

to produce a given return with minimum variance. I'll do a sample of 25 games each with a combination of various bets. This

will keep the cost down.

"Well, okay," I replied. "But, will this single efficient frontier really work?"

"What do you mean, 'single frontier'?" he asked.

"What if the sample your computer simulation comes up with is unusual?" Ralph scratched his head, and I continued, "You

measure this thing you call a sample covariance matrix. But, what if you took a different sample? You'd get a different

sample covariance matrix, right?"

"Yes."

" And, it might be different?"

"Yes. Even materially different."

"So, your efficient frontier (Ef) is subject to sampling elTor-it was empirically derived from the sample of only 25 games." I

then asked, "What if you had a second sample of 25 games and did another mathematical optimization. So, we now have two

different EFs; both do the same thing, but the answers are different Which one do I use when I walk into the casino?"

Ralph exclaimed, "I'll take a sample, and then another, and another. Each will have a different EF. Then, I'll plot each point

of the samples' EFs in risk/return ~ce. I'll count the number of times the various EFs traverse a particular cell in that space.
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Maybe 10 EFs b'averse the cell at the coordinates (10,15). Maybe only 3 EFs traversed the cell at (1,3). Don't you see? Just

by counting the number of times the sample EFs baVerse a region in risk/retmn space aOO normaliring the count to

probabilities, I can measure an efficient surface.

I asked, "Why is the surface importantr'

Ralph was now animated. He leaped to his feet. "Because, if the various sample EFs all nversed the same cells, the EFs

would all be the ~e-d1ere would no sampling error. What if the surface is spread out? SUA>Ose some sectors of it are

relatively flat? Then the efficiency of the EFs varies. Would you prefer to pick a point on the surface (with a particular

combination of bets) that appears most often among different EFs? Probably you would. You want the surface to be tightly

peaked In 3-dimensions, that's a ridge or very JXJinty hill; in two dimensions, it is a probability distribution with little

variance.

He then went home to begin the chore of sampling and constructing an efficient surface for me. I began to think, .. A single

efficient frontier is measured from data. We often think of the data being a sample from a replicable experiment. If a sample

of dice games is observed, the n-tuple bet outcomes for the correlated bets is the empirical data source for an optirni7J11ioo. It is

easy to see how different samples can be drawn when talking about dice games. But, the world of security returns is different

from a craps table. What is a sample there? What is the meaning of sampling error, and how might it affect the way I measure

efficient frontiers? Would an EF for securities really be efficientr

These are imponant questions-ones addressed in this paper. It is difficult to think of how we'd repeat an experiment

involving security returns. Is a series of experiments one that uses different historical periods of returns? Is it a bootStI3p of a

broad segment of history? These are the two approaches that are equivalent to sampling and measuring sampling error. The

result of our measurements is an efficient surface.

1.2 Roadmap for the Paper

Section 2 of the ~r lays the groundwork for measuring sampling error that affects efficient frontier measurement We

examine two approaches that seem ~cularly useful for dynamic fmaocial analysis (OF A). We also review the literature
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relating to EF efficiency. Section 3 introduces die notion of an efficient su1f«e-this is a construct fOf understaOOing and

measuring sampling error in EFs. In this section we describe the methodology and data set used in our ggdy

The main body of results is presented in Sections 4, 5 and 6. We measure forecast perfonnance of efficient frontiers in Section

4. We are particularly concerned about the performance of off-frontier portfolios. Are they really inefficient? Do on-frontier

portfolios dominate performance as we might antici~te given that they are billed as "efficient'" The evidence we present in

Section 4 shows instability in EFs derived both with historical segments and bootstrap samples. This leads us to concluck later

that caution should be exercised when using efficient frontiers in OF A analysis.

On the road to this conclusion, we closely examine the efficient surface in Section 5. It portrays sampling error from two

different ~ve&-historical and bootstrap sampling. The efficient surface is a useful COostJ\lct for visualizing sampling

error in EFs. We observe that such ~r is particularly large in the high risk/return regions of the surface This OOservation is

reinforced in Section 6 by observing the diversity of portfolio composition as we compare different historical segments.

The final section is devoted to conclusions and cautions on the ~ of EFs in OF A work. We conclude that EFs may not

warrant the terD1 efficient. Their best use may be as advisory measurements concerning the properties of risk/return space.

2.0 Scenario Generation in DFA

Dynamic financial analysis involves scenario generation. There are many types of scenarios that are simulated so that the

model builder can measure a hypothetical state-of-the-world with accounting metrlcs. Asset generators typically create returns

for invested assets. They model exogenous economic conditions. Each modeler sees the forces of the financial markets

unfolding according to a set of roles. The rule set is almost as diverse as the number of modelers.

Some OF A model builders prefer stochastic differential equations with various degrees of functional interrelatedness. The

transition of returns over time, as wen as the correlations among different asset components, always is represented in multiple

simultaneous eqWltions. Other DF A modelers use multivariate nomlai models. which conjecture a covariance matrix of

investment returns. These models do not have time-dependent b'ansitiOD modeling information. Such an efficient frontier, by
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definition. has no time transition properties. A sample taken from any sub-period within the time-series would contain

sampling error, but otherwise, the investment allocation would be unaffected

Both approaches begin with a single instance of reality. They both pIrport to model it One approach. stochastic equations,

uses largely subjective methods to ~eterize the process.2 Another awroacb to modeling clings to assumptions that seem to

be or are taken to be realistic! Both produce scenarios that are deemed sufficiently similar to reality to represent it for the

pwpose at hand

The efficient frontier calculation can be a constrained optimization either based on a SUDpie from a historic series of returns or

a derived series with smoothing or other ad hoc lkijustment Alternatively. an EF may be created from simuJated OF A results.

Both the efficient frontier aM OF A asset-based modeling are using the same set of beliefs regarding the manner by which

statistically ac<:eptable parameters are used.4 They both stan with a single historic time-series of rehJrDS for various component

assets.

2.1 Two Viewpoints on the Use of Efficient Frontiers

The pmctitioner has a straightforward objective: define investment allocation strdtegy going forward. Today's portfolio

allocation leads to tomorrow's result The portfolio is then rebalanced relative to expectations. The new one leOOs to new

results. The cycle repeats. Where does the chicken end and the egg begin? In practice, the practitioner has only one instance

of yesterday's reality and tomorrow's expectations from which to construct a portfolio and a model.

There are at least two approaches to using a OF A model to define an investment allocation. In one, a OF A analyst might set up

an initial allocation of assets using an efficient frontier obtained from quadIatic optimi7Jition on a prior historical period. A

OF A model would be repeatedly nm-a different state-of-the-world would ensue each time, and a different ~g obtained

2 The calibration may depend on examination of stylistic facts, but there seldom is formalized. statistical hypothesis testing to

judge whether the facts can be accepted as such or whether the representation of these facts in the model is really a scientific
dctermination.
.1 Some models use multivariate nonnal simulation for rendering investment returns for consecutive periods. There usua1Iy is

an assum~on that the covariance matrix used for multivariate nomlal simulation is stationary from period to period in these
models.
4 DF A and optimization do have a critical junction. Some DF A modelers believe they understand time dependencies within

period-to-period rates of return. EF attem~ to optimize expected return. If there is a time-<iependence conjectured. it should
be factored into the expected returns used to build the EF for any period.
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for the metric. These simulations produce endpoints in the modeled risk-return space. In this approach, one beginning asset

allocation leads to many different observations about eoopoints. The reason they are different is that, although each starts with

the same state, the model simulates various outcomes. Each hypothetical one probably leads to a different endpoint for the

planning horizon.

But, another viewpoint exists.5 We refer to it as the hybrid approach. Suppose that history serves a valid purpose in calibrating

a model, but should not be used to define a beginning allocation. In this viewpoint, the investment mix is suggested by the

optimizer. DF A serves only to measure what could happen with some hypothetical starting allocation.

The optimizer deals the cards in this deck, and DF A traces where the cards lead.6.7 The optimizer, not the modeler, submits an

initial allocation for review. In this hybrid approach. there is no initial portfolio based on optimization using prior history. In

the hybrid model, the optimizer finds a portfolio, which leads to an ex post optimal result The metric used in this optimization

is part of the DF A model-it is calculated by the accounting methodology of the model as it generates future states of the

world. It may be difficult to reconcile the use of efficient frontiers for investments within hybrid-DF A modeling that, on the

one hand, believes there is a historically dependent component that can be used for calibration, but rejects the use of data to

define a starting portfolio. Yet. on the other hand, simulations of that model are derived to construct an efficient frontier. It

may appear as though history has been rejected as information for the purposes of decision-making, yet indirectly it is used to

represent the future. The starting portfolio in the hybrid approach is based at least indirectly through modeling and should

represent an analyst's expectations. These expectations are in theory built into the model for return scenario generation and

that model was calibrated to history in some fashion.

In DF A work. a performance metric is chosen. This metric is measured within a risk-return space. The metric must be

measurable according to the chosen accounting framework. Risk might be variance, semi-variance or some cbance-constrained

5 Correnti, et ai, review an approach similar to the hybrid model described here.
6 The optimizer posits a trial solution; it consists of a certain portfolio allocation. This trial allocation does not depend on any
prior allocation of assets. Rebalancing that ensues during the optimization period (and under the control of the OF A model)
also is unknown to the optimizer. The objective value that is returned by the model is driven by the initial triaI solution and
model machinations that build on the trial solution.
7 Investment rates are forecasted by the OF A model, which might use multivariate normal simulation. There may be an
overlap between what the optimizer uses and what the OF A model uses. For example, the covariance matrix used for the
multivariate normal simulation is estimated from historical data and generally is assumed to be stationary during the forecast
period. It is used both by the optimizer and by the OF A model.
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function of the metric. In the real world. the corporate manager is rewarded for favorable performance of the metric and often

penalized by unwanted risk in the metric. The volume of investment in various stochastic components affects a metric's

performance. The operational question is how should an allocation be made in investments so that performance of the metric is

optimized.

In the forecast period, the modeler generates a scenario of unfolding rates of return using, say, a multivariate, time-dependent

asset model. An example would be any of the multi-factor mean reversion models in use today. The simulated progression of

returns for a scenario generated by one of these models is affected by an underlying mechanism that forces unusual deviations

in the path back towards an expected trajectory of returns. The OF A model typically ties in some way the business operations

to the simulated economic environment.s This economic scenario typically generates other economic rates such as the rate of

inflation. A scenario that is generated by the economic model is taken to be exogenous; it is mingled with expectations about

corporate perfonnance. The company's operations are tied to the exogenous influences of the economic scenario.

In the end, this modeling process is repeated many times for the optimizer in the hybrid model. The optimizer requires an

answer to the question: given an initial investment allocation. what is the end-horizon perfonnance of the metric. The

optimizer forces the model to measure the result of a simulation experiment given only an initial investment allocation. The

model takes the allocation and produces an experimental point in risk return space. All that is required of the model is its

ability to measure the trajectory of the metric within the company's business plan and a beginning allocation of assets. In this

regard, the hybrid model is using a sort of dynamic programming approach to optimization. The possible outcomes are

considered, and the most desirable traced back to the inputs (initial allocation). The hope is that the optimized feasible set is

robust relative to possible stochastic outcomes in the model trajectory. The efficient frontier traces the allocations necessary to

achieve various points in this risk-return space. All of this raises the thorny question of subsequent performance dominaIK:e of

the on-frontier portfolios in the hybrid model. Do EF points truly dominate the perfonnance of off-frontier frontier points-

portfolios that are thought to be inefficient and have higher risk for the same return level?

8 A typical behavioral pattern for business growth is modeling it as a function of inflation, which was generated by the
economic scenario. Another is to tie severity in claims to underlying inflation as unfolded in the economic model simulation.
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The reason that this is a hybrid approach is that DF A modeling is not deployed on an optimal asset allocation derived directly

from the prior time-series. Rather, DF A is combined with optimization to answer the single question: how should the portfolio

be immediately rebalanced to achieve an optimal point in risk-return space over the future OF A planning horizon.

Two portfolios can be devised through optiJIIization procedures-one is based on historical results prior to the start of the

simulated future time periods. Another one involves allocations that are selected and tried by the optimizer-the OF A model is

integral to this second approach. The latter hybrid optimization uses DF A-measured metrics in the optimizer goal function. If

applied over the course of the simulated future time periods, and according to the plan of the DF A model, the hybrid approach

woald seem to yield optimal results at the end of the simulated time horizon. There is no reason to suppose that these two

approaches produce the same initial portfolios. Which one is the real optimwn?

During the planning horizon, the hybrid model may ignore imperfections that. in real life, might have (and, probably would

have) been dealt with by on-going decision making. The EF could have been recalculated with realized data and the portfolio

rebalanced. The published state-of-the art in DFA modeling is unclear in this regard; but, it may be that no inua-period

portfolio optimization is done by OF A models between the time the analysis starts with an allocation posited by the optimizer

and when it ends, say, five-years later with a OF A-derived metric. It is inconceivable that an organization would mechanically

cling to an initial, EF-optimal result for an operational period of this length without retesting the waters.

2.2 Limitations of this Study for Use of the Efficient Frontier in DFA

We do not do a complete DF A analysis-there is neither a liability component nor a conventional DF A metric such as

economic value of a business enterprise. Rather, the data are limited entirely to marketable, financial assets. Nevertheless, we

believe our findings are of value to OF A work. If the efficient frontier produced solely within a traditional investment

9 There is no reason other than a few computational programming complexities why intra-period optimizations cannot be done
within DF A models. The question is whether they are, or they are not, being done. For example, the DF A model can simulate
a wide variety of rebalancing strategies including the real-life one that involves a rebalancing trigger for simulated portfolios
whose allocation has deviated from a recentEF by some amount Mulvey, etal [1998, p. 160] describe an n-period simulation
wherein such rebalancing is triggered. In addition. Mulvey, et ai, describe the use of optimization constraints in a clever way
to achieve an integration of strategic, long-term optimi7.ation with short-term tactical objectives. However, a DF A model that
allows intra-period optimization must also capture the transaction and tax costs associated with the intra-period rebalancing and
re-optimization. See Rowland and Conde [1996] regarding the influence of tax policy on optimal portfolios and the
desirability of longer term planning horizons.
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framework has unstable properties, these instabilities will awly to its use in OF A work were it to be calculated and used in a

similar way.

2.3 Other Investigations of the Efficacy of EF Analysis

Michaud bas extensively investigated the use of EFs with particular regard its general efficacy for forecasting. For example, he

bas shown [1998, pp. 115-126] that inclusion of pension liabilities can substantially alter the statistical characteristics of mean-

variance optimization for investment portfolios.

Michaud's book [1998] examines efficient frontiers both with respect to their inherent uncertainty and what might be done to

improve their worthiness. He suggests that the effects of sampling error may be improved using a methodology described as a

resamp/ed efficient frontier. The motivation for some kind of improvement over classical EFs is that "...optimized portfolios

are 'error maximized' and often have little, if any, reliable investment value. Indeed, an equally weighted portfolio may often

be substantially closer to b11e MY optimality than an optimized portfolio." [Michaud, 1998, p. 3].

The determination of a resampled efficient frontier is complex; Michaud has patented it Although his book exposes the core

of the method that he believes improves on forecast error, there is no empirical evidence provided in the book that a resampled

efficient frontier bas this desirable effect. Interested readers are directed to his book. The concept of an efficient surface

espoused in our paper is built on different constructs. We will readdress the important work of Michaud at a later point in the

paper. We now turn to the definition and measurement of an efficient surface.

3.0 The Efficient Surlace

An efficient frontier consists of points within risk -return space that have minimum risk for a return. If there were a time-

stationary, multivariate probability distribution for prior history, then history is a sample from it History, therefore, would

1~have. sampling error.

10 If there were conjecture, the multivariate distribution would be subjective, and the efficient frontier would be the subjective
frontier. A subjectively derived EF has no sampling error, but it may lose operational appeal when represented in this manner,
because subjectivity requires difficult reconciliation within a corporate, decision-making framework.
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The concept of a conditional marginal probability distribution either for return or risk emerges, and it, too, would have

sampling error. We discuss the properties of this marginal distribution. an equi-return slice of the efficient surface, in Section

S.l

Were the instance of reality to be a sample. what is the sampling error?

Figure 1 Comparison of Efficient Frontiers for Different Time Periods

Figure 1 shows efficient frontiers for random 5-year blocks of history. The EFs were derived from monthly returns beginning

in January, 1988. Each curve in Figure 1 requires optimizations for a 5-year history of returns. The block of monthly returns

was picked at random from the entire time series. The points along each EF are obtained from separate passes through the data

with the optimizer. On each pass, one of the constraints differs. That constraint is the requirement that the average portfolio

return be a specified value in the return domain. The optimizer's objective function is the minimization of variance associated

with that portfolio expected return.

Each EF in Figure I consists of nine points; each point involves a separate quadratic optimization. For example, one of the

optimization constraints is the portfolio expected return, which is set to an equality condition. There were nine different

expected returns used in the study; one was a monthly return of 0.004. An examination of the figure at this value shows a point

for each of the four EFs. An empirically derived covariance matrix was detennined for each of the four time series illustrated

in Figure I as well as for hundreds of others that are not shown. The juxtaposition of the EFs displays a tangle of overlapping,
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crisscrossing curves.!! This illustration can be viewed as sampling with replacement from a historical sample; it is appropriate,

then, to view the figure as illustrative of a probability surface. It is a surface showing the extent of sampling error provided

there bas been a stationary, multivariate distribution of components' retums.12 Figure 1 indicates that it may be hazardous to

This figure shows only several of the EF curves that build upaccept any particular segment of history as the "best estimator.

an efficient surface. Examples of efficient surfaces appear later in Figures 8 and 10. The distribution of risk in a cross-

sectional slice of this efficient surface also is reviewed in Section 5.

The position and slope of the EFs in Figure I are wildly different, and were other historical EFs to be included, the complexity

would be greater. This lack of historical stability casts doubt on the operational validity of a particular efficient portfolio

actually producing optimal performance. The figure also hints that off-frontier portfolios may perfonn as well or better than

on-frontier portfolios. We examine this question of forecast reliability in detail in Section 4.

In addition to the positional changes in EFs over time, there is dramatic change in portfolio composition along the curve of

An example of the change in portfolio composition for EFs appears in Figures 2a and 2b. Each chart iseach EF in Figure

categorical- a tic maIk on the x-axis is associated with one of nine optimi~tion points. Each chart shows a stacked area

rendering of the proportion of an asset component within the efficient set. If the reader views the chart in either Figure 2a or

2b from left-to-right, the unfolding change, and possible collapse, of a particular component is illustrated. This type of chart is

a useful way to show a component's contribution to the efficient set moving along the EF from low-fisk-return to high risk-

return portfolios.

11 Some segments of EFs such as those shown in Figure I can be indeterminate. This is because the quadratic optimizer could
not identify a feasible set of investment alternatives for all of the average returns chosen in the analysis. There is a small
probability of overlap of data because the 5-year blocks of returns used for each EF could have overlapping sub-periods of
time.
12 The population distribution is unknown. but it is estimated from the historical record by calculation of an empirical

covariance matrix for each historical block.
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Figures 2a Portfolio Compositions for Different Efficient Frontiers
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Figures 2b Portfolio Compositions for Different Efficient Frontiers
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There is faint hope that the two different EF portfolio compositions shown in Figures 2a and 2b will operationally prOOuce the

same result when put in practice-were this to be a reasonable representation of the effects of sampling error, the operational

use of efficient frontiers would be questionable; sampling error swamps operational usefulness and forecast responsiveness.
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However, another illustration, Figure 3, indicates that if history is a sample from a multivariate distribution. there should be

optimism that the efficient frontier evolves slowly, at least measured in monthly metrics. This figure shows EFs calculated

from consecutive, overlapping historical blocks of time. In this case, the time interval between between consecutive EFs is one

month. The stability deteriorates fastest at higher risk-return levels. The result was found to hold for a wide variety of

consecutive historical blocks starting at various points since 1977. This stability may provide an operational basis for

investing in an on-frontier portfolio and seeing its perfOrmalx:e prevail over off-frontier portfolios. at least for relatively short

planning horizons.

Figure 3 EFs for Consecutive Time Periods

1Efficient Frontier

L Risk

There are other ways to use the historical record. The paper shortly will turn to the use of the bootstrap as a method of

measuring sampling error. First, the data and manipulation methods are described in more detail.

3.1 Data Manipulation

This studY uses the time series described in Appendix A: Review of Data Sources. Except where gaps were present in the

historical record. the portfolio returns are actual. I 3,14

13 The data represent returns for a selected group of investment components. There was no attempt to filter or smooth the time
series in any way. However, a few gaps in the historical record where interpolated.
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The data were used in two ways: (1) bootstrap samples were made from the original time series in an attempt to approximate

sampling error phenomena, and (2) various historical series of the data were used for performance analysis. The study

examines period segmentation, and the performance of efficient and inefficient portfolios for different forecast durations.

3.1.1 Historical Performance Analysis

In this section of the paper, data for an efficient frontier are extracted for an historical period and used to evaluate the efficient

frontier. The on-frontier portfolios are minimwn variance portfolios found using quadratic programming. I 5 Off-frontier

portfolios also were calculated.16 The study is concerned with whether the performance of off-frontier portfolios really were

inefficient compared to the performance of on-frontier portfolios.

3.2 Bootstrap Sampling

The bootstrap sample of a data set is one with the same number of elements. but random replacement of every element by

drnwing with replacement from the original set of data. When this process of empirical resampling is repeated many times, the

bootstrap samples can be used to estimate parameters for functions of the data. The plug-in principle (Efron and Tibshimni,

1993, p. 35] allows evaluation of complex functional mappings from examination of the same functional mapping on the

of the probability distribution F is estimated by the same function of the empiricalbootstrap samples. The function 8 = t(F:

"" "
distribution F, 8 = t(F) , where the empirical distribution is built up from bootstrap samples. This technique often is

deployed for the derivation of errors of the estimate.

14 One technique for deploying efficient frontiers within DF A analysis involves removal of actual values from the data series
used in optimization. These points in the actual time series may be deemed abnormalities. The efficient frontier calculation
does not use all available data or uses them selectively. See Kirsclmer [2000] for a discussion of the hazards of historical

p;riod segmentation.
5 All optimization was done using Frontline Systems, Inc. Premium Solver Plus V3.5 and Microsoft Excel.

16 It is possible to restate a portfolio optimi~tion problem to produce off-frontier portfolios. These are asset allocations for
points in risk-return space that are within the concave region defmed by the set of efficient points. They are portfolios with
variance greater than the minimum variance points for the same expected returns. They were found by goal equality
calculation using the same constraints as were used for minimum variance optimization. However, the equality risk condition
was set to a higher level than found on the efficient frontier. Non-linear optimization was used for this purpose whereas
quadratic optimization was used for minimum variance optimization.

Page 15 of 45



The plug-in features of a bootstrap enable inference from sample properties of the distribution of bootstrap samples. The plug-

in properties extend to all complex functions of the bootstrap, including standard deviations, means, medians, confidence

intervals and any other measurable function. The EF is one of these functions.

The bootstrap is used in this paper to illustrate the impact of sampling error on the EF .17 EF is a complex function of the

historical returns from which it was calculated. If the sample is from a larger, unknown domain, the bootstrap principles apply.

In the case of correlated investment returns, a segment of history might be thought of as a sample, but it may not be

operationally meaningful because of sampling error. Yet, tl¥: use of the historical data in DF A applications treats it as though

it were both meaningful, representative and not a sample.

The behavior of the EFs for our bootstrap samples is a non-parametric technique used to evaluate the effect of sampling error.

were history to be properly thought of as a sample. Because actuarial science is built largely on the precept that past history,

even of seemingly unique phenomena, really is a sample, we proceed along this slippery slope too.

3.2.1 Bootstrapping n- Tuples

The n-tuple observation of correlated observations at time t can be sampled with replacement. This technique was used by

Laster [1998]. The experiment is similar to drawing packages of colored gum drops from a production lot. Each package

contains a mixture of different colors that are laid out by machinery in some correlated manner. Suppose the lot that has been

sampled off the production line contains n packages. A bootstrap sample of the lot also contains n observations. It is obtained

by draws. with replacement, from the original sample lot. The n-tuple of investment returns at time t is analogous to a package

within the lot of gum drop samples. The historical sequence of correlated returns is analogous to the mix of different colors of

gum drops in a package. The analogy halts because we know the lot of gum drop packages is a sample. We never will know

whether the sequence of historical, n-tuple-investment returns is a sample in a meaningful sense.

The data consist of a matrix of monthly returns; each row is an n-tuple of the returns during a common interval of time for the

component assets (columns of the matrix); the value of n was ten and measures thc use of the ten investment categories

described in Appendix A: Review of Data Sources. The bootstrap method involves sampling rows of the original data matrix.
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An n-tuple describing the actual returns for asset components at an interval of time is drawn and recorded as an "observation'

in the bootstrap sample. Because this n-tuple can appear in another draw, the process involves sampling with replacement.

This randomized choice of an n-tuple is repeated for each observation in the original sample. When the original sample has

been replaced by a replacement sampling of the sample, the result is referred to as a bootstrap sample. This process of drawing

a bootstrap sample can be repeated many times, usually in excess of 2,000.

Each bootstrap sample has both a measurable covariance matrix and an efficient frontier that can be derived using that

covariance matrix. It is unlikely that any two bootstrap samples will necessarily have the same covariance matrix. Each

sample can be subjected to mathematical optimization to produce an efficient frontier. The study asks whether this frontier is

stable across the samples. Instability is measured in two ways. First, the bootstrapped efficient frontier may fluctuate from

sample to sample. This means that the distribution of risk for a return point on the EF is not a degenerate distribution that

collapses to a single point. Rather, there is a range of different portfolio risks among the bootstrap samples at a given return.

There is a probability distribution associated with risk, given a return among the bootstrap samples. In other words, the study

attempts to measure the distribution, and the study views that distribution as a measure of sampling error in risk-return space as

it impacts on the calculation of an efficient frontier.

Second, the portfolio allocations may diverge qualitatively among bootstraps. Were portfolio allocations to be about the same

in an arbitrnrily small region of risk-return space among different bootstrap samples, the practical effects of sampling em>f

would be small.

3.2.1 Extension of the Bootstrap Sample as a DFA Scenario

The bootstrap samples can be used in the way a DF A model might have used the original historical data, including their direct

use within the calculation of the DF A results as a rnndom instance of investment results. They are the source of DF A

scenarios. This paper suggests how that direct use of the bootstrap might unfold in a DF A liability-side simulation, but it does

] 7 The bootstrap has been used in connection with mean-variance optimi~tion by Michaud and others in an attempt to improve

performance of EF portfolios. See Michaud [1998].
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not deploy it in that manner. 1 8.1 9 The authors have a less ambitious objective of examining just the performance of the efficient

frontier built from bootstrapping investment information.

3.3 Sampling Error within Risk-return Space

There is no clear-cut method for estimating sampling error that may exist in risk-return space. We do not know the underlying

distribution generating an historical sample. We do not know whether a population distribution, were it to ex.ist, is stationary

over any time segment. We might, however, view history as an experimental sample, particularly if we want to use it to

forecast corporate strategic decisions using DF A

Sampling error can be envisioned and approximated in different ways for this hypothetical unfolding of reality. One way is to

break the actual time series into arbitrary time segments and ask whether a random selection among the subsets of time leads to

different, operationally disparate results-these would be EFs based on the sub-segment of time that have portfolio allocations

disparate enough to be viewed as operationally dissimilar. If they are dissimilar enough to warrant different treatment, a

sampling distribution of interest is the one measured by the effects of these time-period slices.

Another approach is to envision prior history as an instantiation, period-to-period, from an unknown multivariate distribution.

The sampling error in this process is driven by a multivariate distribution. Depending on our model, we mayor may not place

dependencies from prior realizations on this period's realization. That is, for DFA investment return generation and intra-

period portfolio rebalancing, the multivariate model may be stationary or non-stationary with respect to time.

3.3. 1 Michaud's Efficient Frontier

Michaud [1998] approaches the measurement of sampling error effects on EF in a different way. Although his approach

differs, his overall conclusions are important and consistent with many of our findings. He notes [1998, p. 33], "The operative

18 Although the n-tuplc used in this paper is a cross-sectional observation of returns, it can be expanded to a cross-section of the
entire business environment at time t. This includes all economic aggregates, not just rates of return. Any flow or stock
business aggregate that can be measured for interval t is a candidate for the n-tuple. This would include, inflation, gross
domestic product or any worldly observation of the business climate prevailing at that time. A bootstrap sample can be used as
a component of a larger simulation requiring simulation of these worldly events.
19 DF A model builders spend time modeling empirical estimates of process and parameter risk [Kirschner and Scheel, 1998].
Bootstrapping from the data removes much of this estimation work and leaves the data to speak for themselves.
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question is not whether MY optimi~tions are unstable or unintuitive, but rather, how serious is the problem. Unfortunately for

many investment applications, it is very serious indeed." Our paper will draw a similar conclusion.

He does not refer to an efficient surface but calculates a "resampled" portfolio that seems to capture some similar properties.

Michaud uses multivariate DOnna! simulations from the same covariance matrix used to calculate EFs. This covariance matrix

is from a sample of data-the data observed during some historical period. Just what definition of sampling error bas been

accommodated in the Michaud resampled portfolio is unclear.

One of the Michaud simulations is not equivalent to a bootstrap sample used in this study. Michaud's approach does not

attempt to adjust for a primary source of sampling error-sampling error in the covariance matrix. In our study, each bootstrap

sample has an independently measured covariance matrix. Using the DFAjargon of Kirschner and Scheel [1998], Michaud's

approach may not account for parnmeter risk in the underlying returns generation mechanism. The ranking mechanism used by

Michaud to combine EFs derived from various multivariate nonnal simulations may distort risk/return space because each EF

is segmented in some non-linear fashion to identify equally ranked points in risk/return space [Michaud, 1998, p. 46, footnote

11]. The portfolio profiles for identically ranked EF points are averaged. yet it is not clear that equi-ranked points fall within

the same definition of risk/return space.

3.4/mportance to DFA Scenario Generation

,20 Rather, the modelThis paper cannot and does not attempt to rationalize the process underlying investment yields over time

builder should be careful to design the DF A model to be in accordance with perceptions about how a sampling methodology

may apply. The use of the model will invariably mimic that viewpoint

If, for example, one views history in the fashion imagined by a bootstrap of n-tuples, and if that view does observe operational

differences, then one can create scenarios from bootstrap samples. No more theory is required. Hypothetical investment

returns are just a bootstrap sample of actual history.

20 What if there were no common observable stationary probability measure for security prices? Kane [1999, p 174] argues we

must use utility measurements.
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Similarly, ifEFs for historical periods produce superior performance in forecasting (compared to portfolios constructed from

off-frontier portfolios derived from the same data), then the use of an empirically detennined covariance model and

multivariate nonna! simulation makes a great deal of sense.

3.5/mporlance to DFA Optimization

Optimization often is used within DF A and cash flow testing models to guide portfolio rebalancing. The DF A model usually

grinds through the process of business scenario and liability scenario simulations before the optimizer is deployed. But,

accounting within the model often is done while the optimizer seeks a feasible solution.

The sequence of model events runs like this:

Independently model many instances of exogenous states of the business world (e.g., asset returns, inflation. measures

of economic activity, monetary conversion rates). Nwnber these instances, B" ~, B3,...,Bn. Note that each of these

instances is a vector containing period-specific values for each operating fiscal period in the analysis.

Model many instances of the company's perfonnance. Number these instances C\, ~ ,Cn. C\ often is dependent on

B. because it may use an economic aggregate such as inflation or economic productivity to influence C1's business

growth or loss and expense inflation. Each C is a vector spanning the same fiscal periods as B.

Observe that in some D F A models neither B nor C is necessarily scaled to the actual volume of business. They are

unit rates of change for underlying volumes that are yet to be applied.

Let the optimizer search mechanism posit a vector of weights that distribute the volume of assets at to ' the inception4.

point for a forecast period.

Apply the accounting mechanisms uscd by the DF A model to beginning assets and account for the unit activities
s.

expressed inB and c!\ Do this accounting for each vector pair {BI,CI}, {~,Cl},...,{BnCn} over the rnnge of its time

span.22

Calculate the metric used for the goal and any constraints as of the end of the fiscal period if it is a metric such as6.

economic value or surplus. If it is a flow-based metric such as portfolio duration or discounted GAAP income, derive

21 At this stage, the derivation of taxes would occur. As noted by Rowland and Conde [19%], the detemrination of federal
income taxes is convoluted by the combined effect of discount rates, changes in loss reserves, varying wlderwriting results, and
tax canyforwards and canybacks.
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the metric for the holding period results. This calculation is done for each business/company scenario pair. There are

n resnlts; collectively they constitute a simulated sample.23

Return the required metrics for the sample to the optimizer. If the optimizer is deployed for EF calculation, the goal7.

will be a sample statistic for risk such as variance, semi-variance, or chance-constrained percentile or range. The

sample average for the distribution developed in step (6) for the metric will be used within the constraint set.

The optimizer will repeat steps (4)-(7) Wltil it has obtained a feasible set.8.

The optimizer uses a sample. The optimizer results have sampling error. Steps (1) and (2) are experiments. Let dtere be 10

repetitions of this experiment. Application of steps (1 )-(8) will result in 10 efficient frontiers, each derived from a different

experimental sample. It is likely that they will have different characteristics.

In a DF A experiment there are many draws from the urn; each simulation is another draw. The modeler gets distributional

When enough simulationsinfonnation about the contents of the urn by the experimental grouping of all the simulations.

within each experiment are nm, convergence of the distribution of results can be achieved. Since it is unlikely for the output

distribution to be known, or necessarily capable of being parnmeterized, no a priori estimate is available. Instead, an empirical

measure of convergence must be used.

The allocation of company assets among competing investment alternatives using a single efficient frontier calculation (based

on a single experimental result) may seem to be similar to betting on the allocation among balls of different colors within the

urn based on a single sample from the urn containing them. One may, or may not, be lucky. But, you improve your luck by

increasing the number of simulations.

One still may become victimized by a faulty decision while ignoring sampling error. This may arise in calibrating a model to

history. The historical record is a single draw from a true underlying probability distribution. We may be lucky that the

number of periods in the historical realization contains sufficient infonnation about the underlying process for unfettered

decision-making. But, we could be victims of sampling error, which we are unable to control or even limit

22 Some models may achieve computational efficiencies when economic scenarios are paired with E(C) instead of with direct
pairing to C\, C2, , Cu. When this is done, however, the variance of the metric being optimized will be reduced, and the
minimum variance portfolio is likely to be different.
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4.0 Historical Performance Comparison

Figure 4 illustrates the performance of several portfolios over increasingly longer forecast periods. It shows results for

24 The multipliers shown in the legend of Figure 4portfolios, which, a priori, have different levels of risk for the same return.

are multiples of the minimum variance risk. The line for Multiplier-l tIaces the performance of the on-frontier, EF, portfolio.

Other lines in the figure with multipliers> 1 show perfonnance of portfolios with the same expected return, but higher

variance.

Figure 4 Comparison of Performance for On-Frontier and Off-Frontier Portfolios

IPerformance

~..A~

A
762 - Multiplier 1

~ Multiplier 1.25

-cO- Multiplier 1.5
- Multiplier 1.75

~ Multiplier 2

562 ~

,362

162

-.038

-.238

Performance Information Ratio
Historical Period: January, 1988 - December, 1992

Forecast: January, 1993 - December, 1999
Expected annualized return=.O825

23 If enough pairs are used, the chance that the model will converge improves.
24 Risk in this study is measured as the standard deviation of return.
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Figure 4 bares perfonnance using a variation of the Sharpe perfonnance measure.25 It is known as the infonnation ratio. The

Sharpe performance ratio, which measures excess return to risk, is adjusted in the denominator of the information ratio. The

denominator of the Sharpe performance indicator is changed to excess risk. The information ratio is given by (0.1):

E(rp-rf)
SD(rp-rf) (0.1)

where,

r p = monthly return on the portfolio,

r f = monthly return on the risk free component of the portfolio26,

E = expectation operator,

so = standard deviation operator.

Although the infonnation ratio was computed with monthly data, it is expressed as an annual measure in the paper.

4.1 EF Performance Is Better for Low Risk-return Portfolios

The off-frontier portfolios, so-called inefficient portfolios, achieve perfonnance that rivals or betters that of the EF portfolio.27

There is no concept of "significance" that can be attached to the observed differences. However, it is clear that the

performance differences are great and that. inefficient portfolios out-perform the efficient one in the Figure 4. When

perfonnance is measured by geometric return. the under-perfonnance of the EF portfolio can be more than 100 basis points as

shown in Figure 5. The underperfonnance shown in Figure 5 is measured over a seven-year holding period, and there was no

25 Laster [1998] created various portfolios by combining two asset components, domestic (represented by S&P 500) and

foreign (represented by Morgan Stanley EAFE). His bootstrap samples of these two components were used to calculate
portfolio variance, assmning various mixes. He did not separate historical and forecast periods. Instead. he measured quantiles
from the bootstrap samples after constructing portfolios. He concluded that diversification into foreign equities substantially
changed and improved the risk/return profiles.
26 The 90-day Treasure bill index is used as the proxy for the risk free return.
27 Short holding periods have performance measures calculated with few observations. The ordinal rnnkings among the

different multipliers are volatile and should be ignored. The first six monthly periods are generally ignored in this paper.
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portfolio rebalancing during this time. Data for other time periods and the use of intervening portfolio rebalancing might

materially affect this evidence of underperformance.

Figure 5 Comparison of Geometric Return for On-Frontier and Off-Frontier

Portfolios

Performance

,079

,074

,069

,064

,059

-Multiplier 1
-0- Multiplier 1.25

-A- Multiplier 1.5

~ Multiplier 1.75

~ Multiplier 2
.054

049 I L I ,--r-

21 41 61 811

Geometric return
Historical Period: January, 1988 - December, 1992

Forecast: January, 1993 - December, 1999
Expected annualized return=.O825

The performance varies considerably with the level of return and historical period. For example, Figure 6 illustrates

perfonnance for an earlier period and a lower expected return level. Here, the EF portfolio, does, indeed, out-perform tre ofI-

frontier portfolios for about ten years. Thereafter, it reverses and perfonnance falls below off-frontier portfolios. The Figure

illustrates that the contemplated holding period for use of an EF should probably not be as long. The performance variance

illustrated in Figure 6 is volatile; the differences in perfOmlance in on- and off-frontier portfolios varies considerably with the

choice of historical starting point and length of the holding period.
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Figure 6 EF Portfolio Performance at Low Risk-return Levels

Performance

1.606
-Multiplier 1

-a- Multiplier 1.25

-.- Multiplier 1.5

-0- Multiplier 1.75
-.- Multiplier 2

1.106

.606

106
1 51 101 151

Performance Information Ratio
Historical Period: January, 1980 - December, 1984

Forecast: January, 1985 - December, 1999
Expected annualized return=.0649

4.2 Overall Behavior of On-Frontier Portfolios for Information Ratio

The historical record was examined from several perspectives to see whether an EF portfolio continues to out perform ofJ-

frontier portfolios. Equi-retum portfolios were examined. These are portfolios whose returns are the same, but they have

higher risk. The forecast period immediately following the end of the historical segment was examined to detennine how long

the on-frontier portfolio maintained superior performance. This forecast horizon extended to the end of the data, December,

1999. Historical segments consist of a 5-year block of 60 observations.

Several adjustments were made for this analysis. The first six-month period was ignored because the ratio is highly volatile

and computed from few observations. The exb"eme low return levels also were removed from the analysis because higher ones

2Sshown in the table dominated them.

-
28 The extreme low risk-return observations occur below where the EF curve has a positive first derivative. A portfolio with a

higher return for the same risk can be found above this change in the curve.
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Table 1 shows the relative behavior of the information ratio at the return level indicated at the top of the column. Each row

block includes the time for subsequent row blocks. For example, the forecast beginning January, 1980 covers the period

ending December, 1999. The interval of measurement is a month. All of the other blocks begin at a later point, but all forecast

periods end in December, 1999.29

Missing cells in Table I indicate that a feasible set was not found at that return level for one or more of the on or off-frontier

portfolios. There were five portfolios with risk up to two times the risk of the on-frontier point.

Table 1 Information Ratio Behavior

Return LevelsForecast Period

0.009 0.0095 0.01Infonnation Ratio (forecast begins 1/1980) 0.00661 0.008 0.0085

:leriods until on-frontier point under perfonT1s (max=238)

10 14~ 148 153 154 151Number of periods on-frontier point outperforms all others

4.33 4.30 4.271Average on-frontier rank (5 is highest) 3.05 4.3~ 4.34

0.0095 0.011Information Ratio (forecast begins 1/1985) 0.0066 0.008 0.0085 0.009

119 69'jeriods until on-frontier point under performs (max=178) 11 110 109

105 104 10~ 11~ 124Number of periods on-frontier point outperforms all others

1.92 3.72 3.903.4~ 3.40 3.38Average on-frontier rank (5 is highest)

0.0066 O.OO~ 0.0085 0.009 0.0095 0.01Information Ratio (forecast begins 1/1990)

~eriods until on-frontier point under performs (max=118) 40

66 83 103 11Number periods on-frontier point outperforms all others 34

4.89 4.964.18 4.05 4.57 4.72Average on-frontier rank (5 is highest)

0.0085 0.009 0.0095 0.01Infomlation Ratio (forecast begins 1/1993) 0.0066 0.008

10"'eriods until on-frontier point under performs (max=82) 19

29 Each block of rows uses a different set of on and off-frontier portfolios-the respective EFs are derived from optimizations
on different periods. For example, the January, 1980 forecast is based on the perfonnance of EFs derived from an historical
segment covering the five-year period, January, 1975 - December, 1979). However, the January, 1995 forecast uses EFs
derived from a different period, one covering the five-year ~riod, January, 1989 - December, 1994. The information in the
blocks is not cumulative; the nwnber of periods the on-frontier excels or outperforms off-frontier portfolios is a separate
measurement for each row block. The row blocks show performance for portfolios constructed at different points in time.
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Return LevelsForecast Period

~umber of periods on-frontier point outperforms all others 15

1.83 1.8~ 1.81! 1.60 1.56IAverage on-frontier rank (5 is highest) 2.10

0.009Information Ratio (forecast begins 1/1995) 0.00661 0.008 0.0085

56 57 Never:)eriods until on-frontier point under perfonns (max=58) 5~

4~ 50 5" 53Number of periods on-frontier point outperforms all others

4.8~ 4.94; 4.96 5.00Average on-frontier rank (5 is highest)

"Periods until on-frontier point under perfonns" means the first period that an off-frontier portfolio beats the on-frontier

efficient portfolio. "Number of periods on-frontier outperforms all others" means the last period where the efficient portfolio

wins. Performance tends to hold up better for lower return levels. This effect is reinforced by the larger values shown for the

number of periods the on-frontier portfolio does out rank the off-frontier portfolios. In genernl, the on-frontier portfolio ranks

well compared to the others. The average rank is generally high, above 3 out of 5. But. the performance is not consistent. The

on-frontier portfolio did well during the long forecast period starting January, 1980 and during the shorter forecast period

starting January, 1995. However, the low average of the on-frontier for the January, 1993 shows that the perfonnance is

greatly influenced by the historical period and perhaps influenced by sampling error.

There also is great inconSistency in the nwnber of periods before an off-frontier portfolio has a higher infonnation ratio. The

scan begins in period 6 of the forecast horizon. so the reversal shown in the table will either be never or a number between 6

and n. In most cases, the reversal is early, but not pennanent There are many situations where the on-frontier portfolio wavers

between highest rank and something less. This latter fact is found in the rows, "Number periods on-frontier outperfonns. In

most cases this number is larger than the number of periods before reversion. indicating that the on-frontier waflles in and out

of superior performance. This could be another indication of sampling error. The choice of an on-frontier point may no~ and

probably does not, imply superior perfonnance.

4.3 Behavior for Other Performance Measures

The information ratio is believed to be a valid measure of perfonnance because it adjusts for variation in the return series

during the period of measurement Were it applied to two consultants' portfolio allocation recommendations, the consultant
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with lower excess returns could be ranked higher than the other consultant because of proportionately lower risk in excess

return. This may be small consolation to the bolder of the lower wealth portfolio recommended by the higher ranked

consultant. This is why it is important to assess other characteristics beyond the appetite for risk before making an allocation

decision. The manager with the higher infonnation ratio has the better cost of risk per unit of return; yet. it is not of much use

if a minimum return level or ending wealth is required.

There is considerable historic instability in the standard deviation of returns. This can be seen in Figure 7, which shows the

historic progression of changes in the standard deviation of monthly returns of the portfolio components used in this study.

The lines show the change in standard deviation for rolling five-year blocks of data. 30 Any performance measure tl1at is a

function of this risk proxy, such as the infonnation index, will be inherently sensitive to such volatility and, perhaps, exhibit

similar historic instability. This volatiljty m risk helps to explmn why Wstorical EFs may lack forecast power.

30 There was significant volatility in the securities markets in 10/87 ("Black Monday") and 8/98 (Long Term Capital crisis).

These periods are highlighted in the figure.
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One measure ofperfonnance that is not risk-adjusted is geometric return during a holding period. Results are anayed in Table

2. The layout of this table is similar to Table 1

Table 2 Geometric Return Behavior

Return LevelsForecast Period

-0.0081 0.0085 0.009 0.0095 0.01Geometric Return (forecast begins 1/1980 0.0066

~eliods until on-frontier point under performs

(max=239)

106 102 102 105Number of periods on-frontier point outperforms 107

3.35 3.39 3.3~ 3.38 3.40~verage on-frontier rank (5 is highest) 2.4

O.OO~ 0.0095 0.01Geometric Return (forecast begins 1/1985 0.0066 0.0081 0.0085

~eriods until on-frontier point under performs

l(max=179)

Number of periods on-frontier point outperforms

1.041.00 1.00 1.00 1.00 1.03fAverage on-frontier rank (5 is highest)

0.0066 o.ooal 0.0085 o.oo~ 0.0095 0.01Geometric Return (forecast begins 1/1990)

~eriods until on-frontier point under performs

74 89 11 11921(max=119)

15 68 85 105 113Number of periods on-frontier point outperforms

4.75 4.92 4.9~Average on-frontier rank (5 is highest) 4.1 4.06 4.60

Geometric Return (forecast begins 1/1993) O.OO6~ O.OOal 0.008~ O.OO~O:OO95 0.011

16 16 16:leriods until on-frontier point under pelforrns (max=83) 15 15 16

16 1~ 1- 10Number of periods on-frontier point outperforms 1 18

1.731.99 2.1~ 2.22 2.22 1.92Average on-frontier rank (5 is highest)

0.0066 O.OO~ 0.0085 0.009Geometric Return (forecast begins 1/1995)

':'eriods until on-frontier point under performs (max=59)
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Return LevelsForecast Period

30~umber of periods on-frontier point outperforms

2.44 2.80 2.96 3.3~fAverage on-frontier rank (5 is highest)

The forecast propensity of the on-frontier allocation is markedly changed. Wealth growth appears to be unrelated to the on or

off-frontier portfolio choice, and often is worse for the on-frontier allocation. The number of holding periods the efficient

frontier portfolio dominates off-frontier portfolios is generally a lower proportion of the possible nwnber of holding periods in

Michaud [1998, pp. 27-29] claims there is a portfolio within the EF, the "critical point," below whichTable 2 than in Table

single period mean-variance efficient portfolios are also n-period geometric mean efficient and above which single period MY

efficient portfolios are not n-period geometric mean efficient

Performance Failure within CAPM

Work with beta has led to various criticisms [Malkiel, pp. 271].3] For example, some low risk stocks earn higher returns than

theory would predict Other attacks on beta tend to mirror what we see with EF:

.Capital asset pricing model predicts risk-free rates that do not measure up in practice.

»
2. Beta is unstable and its value changes over time.

Estimated betas are unreliable:4),

Betas differ according to the market proxy they are measured against.354.
Average monthly return for low and high betas differs from predictions over a wide historical span. 365.

31 Beta is a measure of systematic risk either for an individual security or for a portfolio. High beta portfolios, measured ex

ante, in theory should have higher returns ex post than low beta portfolios.
32 When ten groups of securities, ranging from high to low betas, were examined for the time period 1931-65, the theoretical

risk free rate predicted by CAPM and actual risk free rates significantly diverged. Low-risk stocks earned more and high risk
stocks earned less than theory predicted. [Malkiel, pp. 256-7]
33 During short periods of time, risk and return may be negatively related. During 1957-65, securities with higher risk

~roduced lower returns than low beta securities. [MaIkiel, pp. 258-60]
The relationship between beta and return is essentially flat. Beta is not a good measure of the relationship between risk and

return. [MaIkiel, pp. 267-8]
35 Predictions based on CAPM about expected returns both for individual stocks and for portfolios differ depending on the

chosen market proxy. In effect, the CAPM approach is not operational because the true market proxy is unknown. [MaIkiel,
pp. 266-7]
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Malkiel [po 270] concludes from his survey that, "One's conclusions about the capital-asset pricing model and the usefulness of

beta as a measure of risk depend very much on how you measure beta." This appears to be true of EFs too. The definition of

efficiency is what is important here-perbaps more important because correct measurement requires precise definition.

The choice of an optimization mechanism couched in tenDS of risk-return trade-off may not lead to wealth maximization.

Under these pretenses one might wish to deploy a different optimization mechanism such as the one mentioned by Mulvey, et

oJ [1999, p. 153] in which the optimiZ3uon seeks to maximize utility. The choice ora particular utility function may be framed

in tenns of absolute risk aversion-negative exponential utility works in this regard 37 And. if the behavior of security prices

does not have an observable stationary probability measure [Kane, 1999], utility approaches seem to be mandatory

The subject of what is optimal is controversiaL and not apt to go away. The use of optimization within hybrid models and

generation of metrics by DF A models has many subtle manifestations. One is the choice of planning horizon. Michaud [1998,

p. 29] argues that investors with long-tenn investment objectives can avoid possible negative long-tenD consequences of mean-

variance efficiency by limiting consideration to EF portfolios at or below some critical point. There is a parallel in our paper,

in what we refer to as sampling error and its affect on the shape of the efficient surface. This surface appears to have properties

at the lower risk-return areas of both lower dispersion, greater similarity in portfolio composition, and better on-frontier

performance among different samples (either bootstrap or historic segment).

5.0 Characteristics of the EF Surface

The bootstrap-generated EF surface rises within the risk-return space. Views of this surface from two different angles arc

shown in Figures 8.

36 The ratio of price to book value and market capitalization did a better job of predicting the structure of nonfinancial
corporate share returns than beta during a 40-year period. Eugene F. Fama and Kcnncth R. French, "The Cross-Section of
Expected Stock Returns," Journal of Finance, June, 1992.
37 The recommendation of a utility-decision approach has great breadth in the insurance literature-beyond the use of utility as

goal function in optimization, other venues find it appropriate where stochastic dominance is sought. For example, exponential
utility use was suggested in rate making by Freifelder. See Freifelder Leonard R, A Decision Theoretic Approach to Insurance
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Figures 8 Views of EF Surface Created from Bootstrap Samples

The surface is constructed from monthly returns. Looking down on the surface of the views, one obtains a projection on risk-

return space. The surface is seen to curve as the efficient frontier curves. In the low risk-return sector, the surface is more

Ratemaking, hwin, 1976, pp. 141. The choice of parameters for utility functions is perhaps as much an art as the

Page 33 of 45



peaked. The surface flattens and broadens in the risk-return space. Imagine yourself walking along the ridge starting in the

southwest and proceeding northward and then northeast. You would first be descending a steep incline and then a vista of a

vast plane would unfold along your right. This can be interpreted within the context of changes in the marginal distributions

representing slices through the surface either along the risk or along the return dimensions. We refer to the latter as an equi-

return slice, and its properties are examined in more detail at a latter point in the paper. In either case, the visualization is one

of moving from less dispersed marginal distributions to ones with greater variance as either dimension is increased

There is an artifact of the intervalization that results in a sudden rise in the surface at the highest risk level. This occurs

because higher risk observations were lumped into this final interval. Were higher levels of risk intervalized over a broader

rnnge, this ridge would flatten.

The surface shown in either of the views in Figures 8 is built from many efficient frontiers, each produced from optimizations

done on a bootstrap sample. We already have seen in Figure I a subset ofEFs that tangle together-they can be organized to

produce a surface. The surface develops the same way an empirical probability distribution is built from a sample. Repeated

sampling produces points that are intervalized and counted

A frequency count can be made of observations for EFs falling within an arbitrnrily small, two-dimensional region of risk-

return space. An example of this mapping for 5,000 bootstrap-simulated EFs appears in Figure 8. Collectively, this mapping

involves the 2-dimensional, intervalization of approximately 45,000 quadratic optimizations constituting the EFs for the

underlying bootstrapped samples.38

5.1 Equi-Return Slice of the Efficient Surface

A slice through the efficient surface along the return plane produces a histogram of the minimum risk points for a given return

in the EFs used for the EF Surface. As return increases, this marginal probability distribution becomes more disperse. An

example appears in Figure 9.

~eterization of claims generations in DF A models.
Equi-return, minimwn variance points for the 5,000 bootstrapped EFs were intervalized based on an overall evaluation of the

range of risk among all points on all EFs. If an efficient set could not be identified for a return level, the observation was
ignored. The marginal probabilities (risk-return) were normalized to the nwnber of viable observations for that risk level. The
nwnber of viable optimizations exceeded 4,500 at each return level.
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Figure 9 Dispersion of Risk Given a Return Level
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The dispersion increases with return for both surfaces constructed from bootstrap samples and from randomly selected blocks

of history. The distributions are positively skewed. increasingly so as return increases. The inset bars in Figure 9 identify the

intervals containing tile mean and median points of tile distnbutioo. Additional statistics botil for bootstrapped and historical

segment evaluations of sampling error appear in Tables 3 and 4.
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Table 3 Statistics for Equi-Return Slices of the Efficient Surface

Statistic Efficient Surface from Bootstrapped Efficient Frontiers

0095 0100Return Level 0053 0066 0080 .0085 0090

Mean .0125 0533 3.76 8.86 17.9 33.6 50.7

(times 1.0E4)

Standard .627 3.77 38.2 58.6 81.8 109.7 131.6

Deviation

(times 1.0E4)

Skewness 000123 378 57.8 136 27S 516 779

(times 1.OES)

The statistics are visually apparent in the EF surface shown in Figures 8. The surface is partially bowl-like-sloping

downward in a concave fashion. Its rim encompasses a plane within the risk-return domain that is broad in the risk dimension.

As one moves from low to high return, the marginal distribution ofEF points measuring optimized risk (an equi-return slice

through the surface as illustrated in Figure 9) becomes more dispersed. In a visual context as one moves from low to high risk

along the EF surface and takes equi-return slices through it, one would find higher variance in the distribution of optimized EF

risk points-variance shown in histogram plots such as Figure 9 is greater.

An efficient surface also can be created from EFs calculated for historical time periods. An example appears in Figure 10. The

data are for 5-year, overlapping blocks calculated on a monthly basis starting in 1970. The same general features are found in

this representation of sample error. However, the surface is less flat than the one developed from bootstrap samples. The

reduced dispersion in the surface of Figure 10 arises in part from the use of overlapping five-year blocks used to construct the

underlying EFs from which the surface is built. A statistical table similar to Table 3 was constructed for this surface. It

appears in Table 4.
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Figure 10 Efficient Sutface from Historical Samples

Bflclent Surface
(based on historical segments)

Table 4 Statistics for Equi-Return Slices of the Surface Shown in Figure 10

Statistic Efficient Surface from Bootstrapped Efficient Frontiers

Return Level 0053 0066 ,0080 0085 0090 0095 0100

Mean 663 5.53 21.0 25.5 28.8 33.2 46.5

(times 1.OE4)

Standard 080 451 861 940 995 1.06 1.23

Deviation

(times 1.OE2)

.00676 769 2.92 3.54Skewness 4.00 4.62 6.46

(times 1.0E6)

Page 37 of 45



6.0 Stability ofPol1folio Composition Along an Efficient Frontier

Portfolio allocation among component securities changes, usually dramatically, along the efficient frontier. A component may

enter the feasible set at some point, increase in weight, decrease and then drop out at another point along the EF. This effect

was shown in Figure 2.

The change in composition for an equi-retum level was examined among different EFs, constructed both from historical

segment EFs and bootstrap EFs. We refer to this type of comparison as an avalanche chart because when shown in an

animation, the change in composition is similar to an avalanche. An example appears in Figure II

Figure 11 Avalanche Chart for Historical Segments

The vertical bars are stacked columns. Each segment within a column represents a different component of the portfolio. A bar,

therefore, compares the percentage value each component in the feasible set contributes across all components in the set. All

bars are shown for a constant, equi-return level of an EF; but each bar is for a different historical segment In Figure 11, each

bar represents the portfolio composition for the equi-return level point on the EF, which was caicuiatcd for a five-year block of

monthly observations. The bars are for ten randomly chosen historical segments.39 Were the blocks within the bars to consist

39 There is a small chance that two or more bars in an avalanche chart could be identical. However, there is a much larger

probability that two or more bars have overlapping time periods in the calculation of their respective EFs.
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of the same components and were they to be about the same size, the portfolio allocations would be the same regardless of the

time frame. Examination of Figure 11 shows that the composition of the bars and individual component allocations varies

considerably.

The portfolio composition is much more stable at lower risk-return levels. This result is in accordance with other similar

findings based on the EF surface. It. too, shows less disperse results for lower return levels. This approach to measuring

sampling error implies that performance of efficient frontiers may not be optimal relative to off-frontier portfolios. If the mix

and composition of portfolios fluctuates considerably both with respect to historical aIKi bootstrap sampling methods, the

performance expectations of an ex ante allocation are not apt to hold ex post.

7.0 Conclusion

The behaviors shown in both Tables 1 and 2 illustrate a marked tendency towards randomness. The efficient surface built from

bootstrap samples is highly variable within the risk-return domain. There appears to be some temporal dominance of on-

frontier portfolios for lower risk -return levels, but the historical record is mixed. The bootstrapping of the single sample of

asset returns provided by the historic data illustrates that sampling error could materially affect the position and shape of the

efficient frontier.

7.1 Should Efficient Frontiers Be Used in DFA Models?

There is no strong support in this paper for the practical deployment of efficient frontiers in DF A. The risk in DF A models

stems from model, process and parameter risk. It impacts through all aspects ofDF A models of the insurance enterprise. The

existence of model and process risk [Kirschner and Scheel, 1997] thwarts the usual convergence to the true w1derlying

distributions gained by running large numbers of simulations. When all of these new risk elements are heaped on top of the

sampling error derived from asset model calibration or empirically measured covariance matrices, one wonders whether EFs

are really useful in DFA analysis.

The work of Michaud [1998] bears on the issue of improving the perfonnance ofEF portfolios. He defines a measure of

statistical equivalence for mean-variance efficiency. Any portfolio within the efficient surface sufficiently close to the optimal

portfolio is considered equivalent to it. The extension of his idea to the efficient frontier surface is to identify a region on it
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whose ex ante chance-constrained probability both can be measured and has desirable statistical properties in a forecasting

sense. This is analogous to acknowledging the existence of sampling error and specifying an unknown population parameter

only to within an interval of statistical confidence. Unfortunately, the definition of sufficiently close is constructive but

difficult to implement in a rigorous manner, particularly within the context of the hybrid DF A model.

Future study will have to answer the question of whether on-frontier asset allocations that are measured from hybrid DF A

models suffer a similar unreliability. But, the problems with on-frontier asset portfolios raised in this paper are apt to be

exacerbated by inclusion of known sampling error in tile liability side of DF A models.

7.2 How Can EFs Be Efficiently Deployed?

Users of this construct should be aware that the tenD "efficient" in efficient frontiers has a good chance of being operationally

false. The efficiency of portfolio composition is unlikely to be manifest in better perfonnance of the on-frontier portfolio

compared to other, off-frontier portfolios. The risk/return surface is not adequately measured by a single EF, and sampling

error may lead to unwarranted conclusions about the efficacy of portfolios measured in such singular optimizations.

The user ofEFs should probably view them as containing provisional, useful information about risk/return relationships. But,

any single EF has limited value in understanding the risk/return surface. The conceptual basis of an efficient surface is an

organized resampling of the data so that the decision process benefits from better wlderstanding of uncertainty that might arise

just because the EF is operationally derived from a sample. The misunderstanding of this uncertainty may lead to erroneous

decisions, and the practitioner must be alert to potential inefficiencies of a single EF measurement. The authors recommend

the elicitation of an efficient surface because the surface is apt to show a lack of statistical confidence in any single frontier on

that surface. Under these circumstances, the practitioner must think in tenDS of confidence ranges. The sampling error shown

in the efficient surface emphasizes how careful one must be when drawing inferences derived from optimization. An

optimized frontier is based on an empirical covariance matrix; one that has sampling error. That error may be very important.

It is easy to believe that stmtegic or tactical decisions motivated by so-call optimized DF A measurement will effectively move

the organization to a better position in risk/return space. Unfortunately, there appears to be a broad region of "inefficiencY"

that may serve as well. An EF may be better than a crystal ball; but there is a good chance that it should not be taken too

seriously.
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Appendix A: Review of Data Sources

This paper uses monthly time series of asset class total returns. A selection of broad asset classes typical of P&C insurance

company asset portfolios was chosen for examination. The time series all begin January 1, 1970. However, certain asset

classes (e.g. mortgage backed securities) do Dot have a history that extends back this far. For these classes the time series were

backfilled to the January I, 1970 start date by an investment. consultant. The backfill process was based on a consideration of

the market conditions of the time (e.g. interest rates, fixed income spreads, inflation expectations) and how the particular sector

would have performed given those market conditions. The Start Date in Table 5 refers to the date historical data begins.

Table 5 Asset Components

Class Code Source Start Date

International Equities EAFEU MSCI EAFE Index 1/1970

International Fixed Income INTLHDG JP Morgan Non-US Trnded Index 1/1970

S&P5Large Cap Domestic Equities s&P 500 Index 1/1970

Cash usm 90 Day US Treasury Bill 1/1970

Mid Cap Domestic Equities RMID S&P Mid Cap 400 Index 1/1982

High Yield mYLD CSFB High Yield Bond Index 1/1986

Convertible Securities CONY CSFB Convertible Index 1/1982

Corporate Bonds LBCORP Lehman Brothers Corporate Bond Index 1/1973

Government Bonds LBOOVf Lehman Brothers Government Bond Index 1/1973

Mortgage Backed Securities LBMBS Lehman Brothers Mortgage Backed Securities Index 1/1986
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The time series used in this study are monthly returns. With the exception of work relating to performance, all returns are

expressed as monthly returns.

For perfonnance measurement purposes, returns have been annualized using the following formulas.

Annualized Expected Return

Rp = (I+T,)12-1 (0.2)

where,

R = annualized return,

p

r p = monthly return.

Annualized Variance of Return

Vp =[vp +(1+ jlpt]12 -(I+MpY (0.3)

where,

annualized variance of return,

monthly variance of return,

expected monthly return.

M p = expected annualized return.

Annualized Geometric Return

The growth rate, g, for a holding period of n years is given by:
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1+ g = (~tl" (0.4)
Va

where,

v" = portfolio value at the end of the holding period 0,

v 0 = portfolio value at the beginning of holding period.
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