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Antitrust Notice

The Casualty Actuarial Society is committed to adhering strictly to the letter and 
spirit of the antitrust laws.  Seminars conducted under the auspices of the CAS 
are designed solely to provide a forum for the expression of various points of 
view on topics described in the programs or agendas for such meetingsview on topics described in the programs or agendas for such meetings.  

Under no circumstances shall CAS seminars be used as a means for competing 
companies or firms to reach any understanding – expressed or implied – that 
restricts competition or in any way impairs the ability of members to exercise 
independent business judgment regarding matters affecting competition.  

It is the responsibility of all seminar participants to be aware of antitrustIt is the responsibility of all seminar participants to be aware of antitrust 
regulations, to prevent any written or verbal discussions that appear to violate 
these laws, and to adhere in every respect to the CAS antitrust compliance 
policy.
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Topics

Hierarchical Modeling Theory

Sample Hierarchical Model

Hierarchical Models and Credibility Theoryy y

Case Study:  Poisson Regression
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Hierarchical Model Theoryy



Hierarchical Model Theoryy



What is Hierarchical Modeling?

• Hierarchical modeling is used when one’s data is grouped in 
some important way.

• Claim experience by state or territory• Claim experience by state or territory
• Workers Comp claim experience by class code
• Income by profession
• Claim severity by injury type
• Churn rate by agency
• Multiple years of loss experience by policyholder.
• …

• Often grouped data is modeled either by:
• Pooling the data and introducing dummy variables to reflect the groups
• Building separate models by group

• Hierarchical modeling offers a “third way”.
fl b h ’ d l h h
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• Parameters reflecting group membership enter one’s model through 
appropriately specified probability sub-models.



What’s in a Name?

• Hierarchical models go by many different names
• Mixed effects models
• Random effects models• Random effects models
• Multilevel models
• Longitudinal models
• Panel data models

• I prefer the “hierarchical/multilevel model” terminology 
b k h d l h d l dbecause it evokes the way models-within-models are used to 
reflect levels-within-levels of ones data.

• An important special case of hierarchical models involves 
multiple observations through time of each unit.

• Here group membership is the repeated observations belonging to each 
i di id l
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individual.
• Time is the covariate.



Varying Slopes and Intercepts

Random Intercept
Model

Random Slope
Model

Random Intercept / 
Random Slope

Model

• Intercept varies with group
• Slope stays constant

• Intercept stays constant
• Slope varies by group

• Intercept and slope vary 
by group

• Each line represents a different group
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Common Hierarchical Models

• Notation:  
• Data points (Xi, Yi)i=1…N

• j[i]:  data point i belongs to group j.j[ ] p g g p j

• Classical Linear Model Yi = α + βXi + εi
• Equivalently:  Yi ~ N(α + βXi, σ2)
• Same α and β for every data point

• Random Intercept Model Yi = αj[i] + βXi + εi
Wh N( 2 ) & N(0 2)• Where αj ~ N(μα, σ2

α)   &   εi ~ N(0, σ2)
• Same β for every data point; but α varies by group

• Random Intercept and Slope Model Yi = αj[i] + βj[i]Xi + εii j[i] j[i] i i
• Where (αj, βj) ~ N(Μ, )  &  εi ~ N(0, σ2)
• Both α and β vary by group

  2
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Parameters and Hyperparameters

• We can rewrite the random intercept model this way:

),(~),(~ 22
][ αα σμασβα NXNY jiiji +

• Suppose there are 100 levels:  j = 1, 2, …, 100      (e.g. SIC bytes 1-2)
• This model contains 101 parameters: {α α α β}

),(),( ][ ααμβ jiiji

• This model contains 101 parameters: {α1, α2, …, α100, β}.
• And it contains 4  hyperparameters: {μα, β, σ, σα}.

Here is how the hyperparameters relate to the parameters:• Here is how the hyperparameters relate to the parameters:
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• Does this formula look familiar?



Sample Hierarchical Modelp



Example

• Suppose we wish to model a company’s policies in force, by region, for 
the years 2005-08.

• 8 * 4 = 32 data points.
Policies in Force by Year and Region

• One way to visualize the data:
– Plot all of the data points on the 00

27
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Policies in Force by Year and Region
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Plot all of the data points on the 
same graph, use different 
colors/symbols to represent 
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Trellis-Style Data Display

• We wish to build a model that captures the change in PIF over time.
• We must reflect the fact that PIF varies by region.
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Option 1:  Simple Regression

• The easiest thing to do is to pool the data across 
groups  -- i.e. simply ignore region

• Fit a simple linear model
Alas this model is not appropriate for all regions

εβα ++= tPIF
• Alas, this model is not appropriate for all regions
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Option 2:  Separate Models by Region

• At the other extreme, we can fit a separate 
simple linear model for each region.

• Each model is fit with 4 data points.
Introduces danger of over fitting the data

{ } 8,..,2,1=++= k
kkk tPIF εβα

• Introduces danger of over-fitting the data.
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Option 3:  Random Intercept Hierarchical Model

• Compromise:  Reflect the region group structure using a hierarchical model.

),(~),(~ 22
][ αα σμασβα NtNPIF jij +
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Compromise Between Complete Pooling & No Pooling

εβα ++= tPIF
No Pooling

{ } 8,..,2,1=++= k
kkk tPIF εβα

Complete Pooling
• Estimating one model for each 

group
• Ignore group structure 

altogether

Compromise

Hierarchical Model
E ti t t• Estimates parameters 
using a compromise 
between complete 
pooling and no pooling 
methodologies
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Option 1b:  Adding Dummy Variables

• Question:  of course it’d be crazy to fit a separate SLR for each region.
• But what about adding 8 region dummy variables into the SLR?

εβγγγ +++++= tRRRPIF 882211 ...

• If we do this, we need to estimate 9 parameters instead of 2.

In contrast the random intercept model contains 4 hyperparameters:• In contrast, the random intercept model contains 4 hyperparameters:  
μα, β, σ, σα

• Now suppose our example contained 800 regions If we use dummy• Now suppose our example contained 800 regions.  If we use dummy 
variables, our SLR potentially requires that we estimate 801 parameters.

• But the random intercept model will contain the same 4
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But the random intercept model will contain the same 4 
hyperparameters.



Varying Slopes

• The random intercept model is a compromise between a “pooled” 
SLR and a separate SLR by region.

• But there is nothing sacred about the intercept term:  we can also 
ll th l t b i

),(~),(~ 22
][ αα σμασβα NtNPIF jij +

allow the slopes to vary by region.
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• In the dummy variable option (1b) this would require us to interact 
region with the time t variable… i.e. it would return us to option 2.
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• Great danger of overparameterization.

• Adding random slopes adds considerable flexibility at the cost of only 
two additional hyperparameters.
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yp p
• Random slope only:  μα, β, σ, σα
• Random slope & intercept: μα, μβ, σ, σα, σβ, σαβ



Option 4:  Random Slope & Intercept Hierarchical Model

• We can similarly include a sub-model for the slope β.
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Does Adding Random Slopes Improve the Model?

• How do we determine whether adding the random slope term improves 
the model?

1. Graphical analysis and judgment:  
• the random slopes arguably yield an improved fit for Region 5.
• but it looks like the random slope model might be overfitting Region 3.
• Other regions a wash

2. Out of sample lift analysis.

3. Akaike information Criterion [AIC]:  -2*LL + 2*d.f.
• Random intercept AIC: 380.40
• Random intercept & slope AIC: 380.64p p
• Slight deterioration  better to select the random intercept model.

• Random slopes don’t help in this example, but it is a very powerful form 
of variable interaction to consider in one’s modeling projects
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of variable interaction to consider in one s modeling projects.



Parameter Comparison

• It is important to distinguish between each model’s parameters and 
hyperparameters.

SLR random intercept random intercept & slope
region intercept slope intercept slope intercept slope
1 2068 0 100 1 1911 3 100 1 1999 3 70 3

μα, β, σ, σα μα, μβ, σ, σα, σα, σαβα, β

1 2068.0 100.1 1911.3 100.1 1999.3 70.3
2 2068.0 100.1 2087.8 100.1 2070.2 111.2
3 2068.0 100.1 2236.1 100.1 2137.0 137.4
4 2068.0 100.1 2267.3 100.1 2159.6 133.2
5 2068.0 100.1 1980.3 100.1 2033.1 79.3
6 2068 0 100 1 1932 3 100 1 2008 9 73 8

• SLR: 2 parameters and 2 hyperparameters

6 2068.0 100.1 1932.3 100.1 2008.9 73.8
7 2068.0 100.1 2066.8 100.1 2066.3 101.2
8 2068.0 100.1 2061.8 100.1 2069.5 94.1

• SLR:  2 parameters and 2 hyperparameters
• Random intercept:  9 parameters and 4 hyperparameters
• Random intercept & slope:  16 parameters and 6 hyperparameters
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• How do the hyperparameters relate to the parameters?



Connection with Credibility Theoryy y



Hierarchical Models and Credibility Theory

• Let’s revisit the random intercept model.

),(~),(~ 22
][ αα σμασβα NtNPIF jij +

• This is how we calculate the random intercepts {α1, α2, …, α8}:

),(),( ][ ααμβ jij
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2ˆ)1()(ˆ α
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μβα
+

=⋅−+−⋅=
j

j
jjjjjj

n

n
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Th f h d i t t i dibilit i ht d

ασj

• Therefore:  each random intercept is a credibility-weighted average
between:

• The intercept for the pooled model (option 1)
• The intercept for the region-specific model (option 2)

23Copyright © 2009 Deloitte Development LLC.  All rights reserved.

• As σα0, the random intercept model   option 1     (complete pooling)

• As σα∞ , the random intercept model  option 2 (separate models)



Bühlmann’s Credibility and Random Intercepts

• If we remove the time covariate (t) from the random intercepts model, 
we are left with a very familiar formula: 

2
2ˆ)1(ˆ α

σ
σ

μα
+

=⋅−+⋅=
j

j
jjjjj

n

n
ZwhereZyZ

• Therefore: Bühlmann’s credibility model is a specific instance of

ασ

• Therefore:  Bühlmann s credibility model is a specific instance of 
hierarchical models.

• Similarly for Bühlmann-Straub and Hachemeister.Similarly for Bühlmann Straub and Hachemeister.

• Hierarchical models give one a practical way to integrate 
credibility theory into one’s GLM modeling activities.
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Example:  The Hachemeister Data

• Number of claims & average severity for 5 states, over 12 quarters.

• Rich structure allows us to fit the three classic credibility models.
• Bühlmann random intercept no weight• Bühlmann random intercept, no weight
• Bühlmann-Straub random intercept, weighted
• Hachemeister random slope & intercept model, weighted

• These are three special cases of hierarchical models.

Hachemeister Claim Severity Data
state 1 state 2 state 3 state 4 state 5 combined

quarter #claims severity #claims severity #claims severity #claims severity #claims severity #claims severityquarter #claims severity #claims severity #claims severity #claims severity #claims severity #claims severity
1 7,861   1,738   1,622   1,364   1,147   1,759   407       1,223   2,902   1,456   13,939 1,622   
2 9,251   1,642   1,742   1,408   1,357   1,685   396       1,146   3,172   1,499   15,918 1,579   
3 8,706   1,794   1,523   1,597   1,329   1,479   348       1,010   3,046   1,609   14,952 1,690   
4 8,575   2,051   1,515   1,444   1,204   1,763   341       1,257   3,068   1,741   14,703 1,882   
5 7,917   2,079   1,622   1,342 998     1,674 315     1,426  2,693 1,482 13,545 1,827 
6 8,263   2,234   1,602   1,675   1,077   2,103   328       1,532   2,910   1,572   14,180 2,009   
7 9,456   2,032   1,964   1,470   1,277   1,502   352       1,953   3,275   1,606   16,324 1,836   
8 8,003   2,035   1,515   1,448   1,218   1,622   331       1,123   2,697   1,735   13,764 1,853   
9 7,365 2,115 1,527 1,464 896 1,828 287 1,343 2,663 1,607 12,738 1,893 
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7,365   2,115   1,527   1,464 896     1,828 287     1,343  2,663 1,607 , ,
10 7,832   2,262   1,748   1,831   1,003   2,155   384       1,243   3,017   1,573   13,984 2,024   
11 7,849   2,267   1,654   1,612   1,108   2,233   321       1,762   3,242   1,613   14,174 2,027   
12 9,077   2,517   1,861   1,471   1,121   2,059   342       1,306   3,425   1,690   15,826 2,156   



Note on Software

• Note that the Hachemeister data is included as part of Vincent Goulet’s “actuar” 
R package.

• Actuar also contains a function cm() that computes the Bühlmann and 
Hachemeister credibility models.

• It is possible to replicate cm() credibility model results using the standard• It is possible to replicate cm() credibility model results using the standard 
hierarchical modeling function lmer().
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Bühlmann Model

• To illustrate the Bühlmann 
model, we ignore the time 
structure.

0

Simple Buhlmann Credibility Model

• No pooling:
– Regression model with 5 state 

dummy variables
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Bühlmann-Straub Model

• We continue to ignore the time 
structure but reflect the 
varying number of claims in 

0

Buhlmann-Straub Credibility
Size of Dot proportional to Number of Claims

each cell.

• No pooling:
– Weighted Regression model with 5

25
00

simple average
Buhlmann-Straub Estimate

Weighted Regression model with 5 
state dummy variables

– i.e. weighted averages

• Bühlmann-Straub 
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– Weighted Hierarchical model with 

random intercept.
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Hachemeister Model

• Finally we reflect the time 
structure of the data.
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random intercept and slope.
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Sample Applications

• Territorial ratemaking or including territory in a GLM analysis.
• The large number of territories typically presents a problem.

• Vehicle symbol analysis

• WC or Bop business class analysisp y

• Repeated observations by policyholder

• Experience rating

• Loss reservingg
• Short introduction to follow
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Summing Up

• Hierarchical models are applicable when one’s data comes grouped in 
one or more important ways.

• A group with a large number of levels might be regarded as a “massively 
categorical value”… 

• Building separate models by level or including one dummy variable per level is often 
impractical or unwise from a credibility point of view.

• Hierarchical models offer a compromise between complete pooling and 
separate models per level.separate models per level.

• This compromise captures the essential idea of credibility theory.

• Therefore hierarchical model enable a practical unification of two 
pillars of actuarial modeling:

• Generalized Linear Models
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• Credibility theory



Other thoughts

• The “credibility weighting” reflected in the calculation of the random 
effects represents a “shrinkage” of group-level parameters (αj, βj) to 
their means (μα, μβ).(μα, μβ)

• The lower the “between variance” (σα
2) the greater amount of 

“shrinkage” or “pooling” there is.  

• There is more shrinkage for groups with fewer observations (n).

• Panel data analysis is a type of hierarchical modeling  this is a natural 
framework for analyzing longitudinal datasets.

• Multiple observations of the same policyholder
L i l d l t i lti l b ti f th AY l i• Loss reserving:  loss development is multiple observations of the same AY claims
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Case Studyy
Hierarchical Poisson Regression



Modeling Claim Frequency

• Personal auto 
dataset.

• 67K observations.

• Build Poisson claim• Build Poisson claim 
frequency models.

• AREA and BODY_TYPE are highly categorical values.
• We can treat these as dummy variables or as random intercepts.
• Note several levels of Body Type have few exposures.
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Model #1:  Standard Poisson Regression

• We build a 4-factor model
• Vehicle Value
• Driver Ageg
• Area (territory)
• Vehicle body type

M l l f AREA• Many levels of AREA, 
BODY_TYPE are not 
statistically significant.

• Note: levels of BODY_TYPE 
with few exposures have 
large GLM parameters.

• Dilemma: should we 
exclude these levels, 
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judgmentally temper them, 
or keep them as-is?



Model #2:  Random Intercepts for Area and Body Type

• Rather than use dummy variables for AREA and BODY_TYPE we can 
introduce “random effects”.

• Methodology equally applicable even with many more levels• Methodology equally applicable even with many more levels.
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Model #3:  Add Vehicle Value Random Slope

• Intuition: Relationship between vehicle value and claim frequency 
might vary by type of vehicle.

• Response: Introduce random slopes for VEH VALUE• Response: Introduce random slopes for VEH_VALUE.
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Model Comparison

• Shrinkage: The hierarchical model estimates (green blue) are less extreme• Shrinkage: The hierarchical model estimates (green, blue) are less extreme 
than the standard GLM estimates.

• Different stories: All models agree for (e.g.) Sedans (10K+ exposures) but tell 
much different stories for (e.g.) Coupes (300 exposures).
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