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What is it?

Estimation of likely outcomes based on historical data
The emphasis is on estimating the parameters as a means to estimating the 
outcomes

As opposed to financial modeling, where the emphasis is on modeling the 
probabilities of various outcomes, given the parameters

The emphasis is on different estimates for different combinations of 
characteristics or for different entities

In financial modeling, the emphasis is on the range of possible outcomes for 
a single entity

Thus, predictive modeling belongs to statistics and data mining
Whereas financial modeling largely belongs to probability theory

Finally, emphasis on predictions, NOT on interpreting model parameters
May “interpret” parameters when building model, but only as a means to 
developing the best model
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What sort of outcomes?

Quantitative (regression models)
The expected length of time to repair an automobile, given

Its make, model, and model year
The nature of the repair
The technician assigned
The day of the week service began

The expected losses for an insured based on that insured’s
Driving record
Age, sex, marital status
Location
Credit Rating
Occupation
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What sort of outcomes?

Categorical (classification models)
Soft assignment

The probability of your home being broken into, depending on
Your location
The life-stage of your household
Whether you have a burglar alarm
Whether you have a garage

The probability that an insured will buy pet health insurance if asked, based on
Age, sex, marital status
Location
Occupation
Household type
Home value
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What sort of outcomes?

Qualitative (classification models)
Hard assignment

Often soft assignment model plus a threshold, but not always
Classic example…to which subspecies does a particular botanical specimen 
belong, based on:

Dimensions
Coloring

Is a claim fraudulent? 
Characteristics of claim
Of doctors and lawyers involved
Of claimant
Of agent or broker
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What tools come from predictive models?

Rating factors
In a linear regression model or a GLM, the model parameters may be 
interpreted more-or-less directly as indicated rating factors in an additive or 
multiplicative rating scheme (depending on the type of model)
The model parameters in a loss ratio model may be interpreted as the amount 
by which the rating factors need to change
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What tools come out of it?

Scoring
In a GLM or linear regression, the model 
scores are added up and a different 
treatment applied to various ranges of 
scores, such as

Tier assignment for rating / underwriting
Adjuster assignment for claims

Farm — Illustration of Scoring

Horses 20
Sheep -10
Cattle (ranch) -30
Cattle (dairy) 20

< 50 acres -20
50-100 acres 0
100-320 acres 10
320-640 0
640+ -30

Wheat -30
Barley 10

Animals

Size of Farm

Crops
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What tools come out of it?

Rules
Other models produce branching rules

Are there horses?
No   Yes  

More than 320 
acres?

No  Yes  

Score is -10 Score is +20

Are there dairy 
cattle?

No  Yes  

Score is -20 Score is 10
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Related types of modeling

“Unsupervised” learning
Categorical modeling where the categories are not determined in advance
Effectively amounts to looking for dense patches, or “clusters”, in an 
appropriate feature space
Classic example is subspecies classification when name and number of 
subspecies is unknown in advance
Geographic use in insurance

Feature space can be one dimensional, e.g., pure premium
Or can be multi-dimensional, e.g., crime rate, percentage of housing units 
occupied by owners, etc.
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Related types of modeling

Cause-and-effect
About interpretation of parameters
Is a certain model of automobile more dangerous than another?

Suppose you attempted to answer this just from accident data or insurance 
data
Think about what you might miss

Well-known that the sign of a coefficient for a predictor can change in a 
regression model as you add more predictors

Is the model correctly specified?
Have you added all the predictors you should have out of a possibly infinite 
number?

Much more difficult to validate than predictions
There are specialized methods, used especially in psychology
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What do other people do with predictive modeling?

Pattern recognition / image processing
Measuring medical trial outcomes
Direct response modeling
Classification of texts and artifacts on stylistic and physical criteria
Categorization of web pages / organization of information
Planning of product location in stores, to maximize impulse purchases
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What good is it in insurance?

Underwriting / pricing … how to rate, whom to write, what information to pull
Claim frequency / claim occurrence model
Claim severity models
Pure premium and loss ratio models
Probability of finding a derogatory if 
— Pull MVR
— Inspect home
— Pull arrest record, etc.

Response models (direct mail, cross-sale) … whom to solicit
Customer retention 
Premium audit … whom to audit
Fraud … which claims to refer
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Process of predictive modeling

Lots of vetting of data for unusual values
Missing values

Explore why they are missing
Look for correlations with other variables
— E.g., other variables with missing values
— Do the missing values come from certain groups?

Distributions of values
Do these change significantly over time?

Were predictors recorded before the effects you are trying to predict? 
If not, could the putative predictor be a result of the effect?

Could something sinister (e.g., a data handling error) explain a powerful model?
80% of the time spent on predictive modeling is on this type of work

Can’t skip, since you will end by modeling flukes if you leave them in the 
data
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Topics

Regression Modeling
Discrete Modeling
Model Validation
Regularization
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Linear regression

Least squares estimation
y = β0+β1x1+…+βnxn

Select the βi to minimize the sum of squared deviations from the data
Corresponds to maximum likelihood estimation assuming that y is conditionally 
normal, given the xi, with variance σ2 independent of the xi

Nice asymptotic properties just given the information about the conditional 
moments in the above bullet, even if y is not conditionally normal
Comparison of actual with predicted values of y is used to estimate both the 
standard error the [normal] distributions from which the values of y are drawn, 
and the standard errors of the parameter estimates
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Linear regression — dummy variables

Categorical predictors
Effectively, use dummy variables to code all the categories but one:

If deductibles are $250, $500, and $1000, with $250 the most common, 
then have 
— X1=1 if deductible is $500 and 0 otherwise
— X2=1 if deductible is $1000 and 0 otherwise
— Parameter gives contrast with base class
For ordinal categorical variables, sometimes best to code
— X1=1 if deductible is >$250
— X2=1 if deductible is > $500
— Parameter gives contrast with adjacent class
— Now dropping a variable from model = combining adjacent bins
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Generalized linear models — exponential family formulation

E(y) = f(β0+β1x1+…+βnxn) 
f any differentiable monotone function

Common choice is the exponential function, which yields a multiplicative model
y has a conditional distribution (given the xi) from the “exponential” family (normal, 
gamma, Poisson, inverse Gaussian, etc.)
Estimate the βi by maximum likelihood
Not the place to give the formulas, but an exponential family has two parameters:

Canonical parameter determines the mean, and depends on the xi

Dispersion parameter affects the variance but not the mean, and does not 
depend on the xi

— Corresponds to the standard error in a linear regression model
— But in general, the variance depends on the canonical parameter (or, 

equivalently, the conditional mean) also
Significance tests and standard errors of parameter estimates depend on the 
dispersion parameter, which should not be estimated by maximum likelihood, but 
(as in the linear regression case) by the sizes of the residuals

MLE of the dispersion parameter can be unstable
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Generalized linear models — and Heteroscedasticity

What is the essential difference from linear regression?
For continuous y, not the functional form of the model
y = f(β0+β1x1+…+βnxn) can be modeled as a linear regression, just take
— f-1(y)= β0+β1x1+…+βnxn

Of course, this gives constant variance [or normal distribution] for f-1(y) 
rather than for y
Distributions other than normal allow the variance to be a function of the 
mean (the predicted value)
It turns out that just as a linear regression model can be viewed as 
minimizing squared-error, without any reference to maximum likelihood, 
a GLM can be viewed the same way
y as a function of x is assumed (at specific values of the xi) to have mean 
µ=f(b0+b1x1+…+βnxn) and variance σ2V(µ), where σ2 is a constant
— Linear regression corresponds to V constant
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Generalized linear models — quasi-likelihood formulation

So the essential difference is how the variance structure is handled
Just as for linear regression, we can dispense with distributions
If we want a specific variance function V(µ), we simply define a quasi-likelihood 
function, as the sum over all observations of:

It’s not so easy to maximize that, since we don’t know σ2, but we can maximize 
the quasi-deviance, which is just -2σ2Q
So for a GLM, we can define what transform of y will have conditional variance 
that only depends on its conditional mean, AND we can specify that varoance 
as a function of the mean

∫
−=

µ

µσ
µ

y

dt
V

tyyQ
)(

);( 2
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Generalized linear model — typical variance functions

V(µ)=1 corresponds to least squares (normal distribution)
V(µ)=µ corresponds to the Poisson distribution, which is strictly only 
applicable to count data, but the quasi-likelihood formulation applies just as 
well to continuous y
V(µ)=µ2 corresponds to conditional gamma models
Other quadratic functions of µ correspond to binomial, negative binomial,
and hyperbolic secant distributions
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Building a model

Continuous predictors
Often break continuous predictors into ranges and treat as categorical or 
ordinal….so that one does not need to assume that dependence is linear
Alternative: Instead of dummy variables like xi=1 if q > 1000, 0 else, use 
x1=q-1000 if q>1000, 0 else

Also, functions of the form x1=1200-q if q<1200, x1=0 otherwise
Often have a separate dummy to flag whether a specific variable is missing

Interactions
For predictors treated as continuous, include product x1x2 as predictor
For categorical variables, include dummy variables for all combinations 
(save base class with base class) of the levels of the two variables

Sometimes combine classes, to avoid too many degrees of freedom in 
the model

Age
66 – 7526 – 6518 – 25

xm3xm2xm1

xf3Basexf1Female
Male

76+
xm4

xf4
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Building a model

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

Bins
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Building a model

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6

Hockey Sticks
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Building a model — Univariate
example of bins vs. hockey sticks

0
1
2
3
4
5
6
7
8
9

0 2 4 6

Bins

Hockey
Sticks

Predictions (univariate)
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Building a model — stepwise

Automated feature selection
Stepwise regression (or GLM)

Add most significant candidate predictor if significant at a pre-set level
Throw out least significant predictor if not significant at a pre-set level
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Building a model — MARS, GAM

MARS
MARS (multivariate adaptive regression splines) searches quite extensively for 
optimal linear regression models involving the “hockey stick” functions

A stepwise regression using these might be called a “poor man’s MARS”

GAM
Similarly, a generalized additive model (GAM) tries to take non-linearity into 
account by replacing βixi with gi(xi), so that 
y = f(β0 + g1(x1) + … + gn(xn))
where the gi are cubic smoothing spline functions

One can try to fit a spline (not necessarily a cubic smoothing spline) for the 
most important predictor variable on a univariate basis and then do this 
recursively for the additional variables
“Poor man’s GAM”, or at least “poor man’s additive model”
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Some contrasts

Supervised vs. unsupervised learning
Hard vs. soft assignment
Two vs. many classes
Equal vs. unequal misclassification costs
Assigning class priors (πJ) vs. using the proportions in the data
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Global vs. local

Unweighted one parameter model

High bias, low variance

Appropriate if low SNR

Nearest neighbor

High variance, low bias

Appropriate if high SNR

Most Global Model Imaginable Most Local Model Imaginable
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A statistical problem in its own right … 
… but also a way of handling the classification problem
If you have populations A and B

Estimate the densities fA(x) and fB(x)

Estimate the prior class probabilities πA and πB

Then assign a new observation with coordinates x to the class J that 
maximizes πJƒJ(x)
The prior probabilities can be taken from the data or from other
knowledge
Estimating the densities is the tough part

Density estimation in classification problems
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Density estimation

1.06 3.96
1.06 4.39
1.09 4.45
1.12 5.04
1.27 5.88
1.30 6.12
1.40 6.32
1.47 6.87
1.57 11.72
1.69 13.68
1.77 15.17
1.82 19.00
1.86

Simplest density estimator is a histogram
Can generalize this by a sliding histogram: Height at any one point 
depends on number of observations within a specified distance
More generally, can use ‘kernel’ functions to take weighted averages, 
giving more weight to nearer points

0
2
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0 to
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2 to
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Sliding Histogram

0
2
4
6
8

0 5 10 15 20

Density estimation — kernels

“Sliding histogram” is a kernel where the kernel drops off from 1 to 0 at a 
specified distance
Common choices of kernel (with kernel radius of r, and object at distance d)

Epanechnikov 1-(d/r)2 minimizes mean square error asymptotically
Tricube (1-(d/r)3)3

Can use a normal distribution, but it does have infinite radius … often 
undesirable

Note that endpoints are a problem. Extrapolation is an extreme problem
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Density estimation — kernels

Comparison of Kernels with Radius 1

0

0.2

0.4
0.6

0.8

1

-1.5 -1 -0.5 0 0.5 1 1.5

Displacement

W
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Sliding Histogram
Kernel

Epanechnikov
kernel

Tricube kernel
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Density estimation — kernels

0

2

4

6

8

10

12

0 5 10 15 20

Sliding
Histogram
Epanechnikov
kernel
Tricube kernel
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Some techniques

Naïve Bayes
K nearest neighbors
Discriminant Analysis (Linear, Quadratic …)
Logistic Regression (various links …)
Trees (e.g., CART, CHAID, C4.5)
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Naïve Bayes

There are a lot of refinements to naïve Bayes, but the basic idea is very 
simple, and is also known as “idiot’s Bayes”:

Assume there are no interactions
Model densities univariately
— Use contingency table for discrete predictor
— For continuous predictor, usually bin the variable to make it discrete, 

but could just as easily use a kernel density estimator
In form, looks like a generalized additive model, except the additive bits 
often much simpler than splines
— But much faster and simpler to fit
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Naïve Bayes

Example
Suppose there is a population of 100 men and 50 women
Of the population, 20 of the women are wearing skirts. The other 130 are 
wearing pants
Of the population, 20 of the men and 30 of the women have hair 
shoulder-length or longer
The goal is to predict gender from the other observations

Naïve Bayes assumes that for each class, the densities are the products of 
the marginals

80%20%

80%20%100%Pants

Total

0%0%0%Skirt

40%60%

24%36%60%

Short HairLong HairTotalMen Short HairLong HairTotalWomen

Pants

Total

16%24%40%Skirt
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Naïve Bayes

Predicted probability of observed person 
being male, assuming class priors in the data

80%20%

80%20%100%Pants

Total

0%0%0%Skirt

Short HairLong HairTotal100
Men

87.0%52.6%Pants

0%0%Skirt

Short HairLong HairProb(Male)

40%60%

24%36%60%

Short HairLong HairTotal50
Women

Pants

Total

16%24%40%Skirt

76.9%35.7%

Short HairLong HairProb(Male)

Pants

0%0%Skirt

Predicted probability of observed person 
being male, assuming equal class priors
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Naïve Bayes

40%60%

40%20%60%

Short HairLong HairTotal50
Women

Pants

Total

0%40%40%Skirt

What naïve Bayes does not take into account is that the second square of data 
could actually look like

This would change the resulting probabilities considerably

For example, with equal priors, 
the probability of someone 
being male given long hair 
and pants would be 50%, 
but naïve Bayes would still 
predict 35.7% 
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Naïve Bayes

Advantages
Easy to do
Very easy to interpret

Just one-way tables put together
Decision boundaries fairly flexible but not completely general

Disadvantages
Sensitive to feature selection

Easy to double count effects
On the other hand, can automate feature selection and make naïve Bayes 
a good method even on problems with more predictors than observations

Does not handle interactions gracefully
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0

1
2

3

4
5

6

0 0.5 1 1.5 2 2.5

Class A
Class B

Discriminant analysis

How to group things?
Naïve approach:

For each class, take the centroid of the training data for that class
Classify new points to the closest centroid

What’s wrong with this?
Define “close”
Normalizing predictor variables won’t help (much)
— Differences in some may be more important than differences in others
— Some may be strongly correlated
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Linear Discriminant Analysis (LDA)

Normal distance works well for spherical clusters
To the extent that classes are not spherical, rescale them
Modeling each class with a multivariate normal does three things:

Centers class density at centroid
Accounts for elliptical distribution
Accounts for dispersion of each class

But … tons of parameters to estimate:
If p predictors and k classes, then
k p-dimensional centroids and k pxp covariance matrices

Simplify:
Assume each class has same covariance matrix
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Linear Discriminant Analysis (LDA)

Estimation

Estimate centroids

For each observation (x,J), with class
centroid CJ, consider x-CJ

Determine the covariance matrix of 
the x-CJ

— Easy enough to do one pair of 
coordinates at a time: Covariance 
is just the average of the product
less the product of the averages

The result is called linear discriminant analysis because the decision 
boundary will be linear (in fact, a hyperplane)

Why?

Because a linear transformation will make the ellipsoids into spheres 
(when we know the boundary is a hyperplane)

etc.

11σ
12σ 22σ
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Linear Discriminant Analysis (LDA) virtues

There are really fewer degrees of freedom than it appears
Decision surface is a hyperplane in predictor space, so only p+1
degrees of freedom for 2 class problem if p is the number of 
predictors
The decision surface for a 2 class problem is the same as that 
resulting from linear regression
— Thus, it is not silly to apply 

linear regression to 2 class 
problems

B

A
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LDA with level curves of densities

A

B
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Quadratic Discriminant Analysis (QDA)

If you have a ton of data, you can try estimating each covariance matrix 
separately
Not only a lot of parameters to estimate

… but also more sensitive than LDA to non-normality
Harder to interpret … decision surface is not linear
Poor method if any class has few representatives, 
no matter how huge the data set 

B

A
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Logistic regression

Generalized Linear Model
Dependent variable is conditionally Bernoulli (0 or 1)

Note that you cannot think of this as “Bernoulli errors”
Various ways of handling more than 2 classes
The modeled probability of success given x1, … , xn is

f(b0+b1x1+b2x2+ … +bnxn)
Note that this always gives a decision boundary linear in the xi

Choices for f(z):
Cumulative normal Φ (also called “probit” regression)
Logistic function: ez/(1+ez) 
Complementary log-log: 1-exp(-exp(z))
Log-log: exp(-exp(-z))
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Logistic regression

Probit

Logit

Cloglog

Loglog

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-6 -3 0 3 6
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Logistic regression

Logistic link 
Use this one unless you have a reason to do otherwise
Can interpret b0+b1x1+b2x2+ … +bnxn as the log of the odds of success
Note: probability of success = odds of success / (1 + odds of success)
Effectively a multiplicative model for the odds
— Interpret the bi

— Allows for “retrospective” or stratified sampling
– Because sampling does not change the relative odds
– So it won’t bias the answer … it just changes the intercept

Logistic does not like to predict pure answers (predictions near 0 or 1)
Probit loves to do this
Logistic preferable if there’s “always a chance” anything might happen

Complementary log-log looks very similar to logistic for rare classes
Not appropriate if successes are common

Log-log not appropriate if failures are common
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Logistic regression

Advantages
Scores interpretable in terms of log odds
Constructed probabilities have chance of making sense

Modeled directly rather than as ratio of two densities
A good “default” tool to use when appropriate, especially combined with feature 
creation and selection

Disadvantages
Invites over-interpretation of parameters
For example, if a 10% rate increase 

Causes lapse rates for customers under age 30 to increase from 15% to 20%
Causes lapse rates for customers 30 and over to increase from 5% to 10%,

Then logistic regression says the older customers are more price sensitive
Their odds of lapse increased by a factor of 19/9
The young customers odds of lapse increased by a factor of 17/12

Doesn’t generalize to 3+ classes as painlessly as LDA
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k nearest neighbors

Score each observation by vote of the nearest k training points
Traditional for k to be odd
Note that is k=1 then the training error will be 0 by definition

This is not necessarily a good thing
Cross-validation will give good estimate of what the error would be
on a test set, assuming independent observations in the training set

This is very similar to kernel density 
estimation

But the neighborhood size is 
determined by the density of 
observations
Within the neighborhood all 
observations count equally

B

A
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k nearest neighbors

Advantages
Very flexible … can model almost any decision boundary
Requires no distributional assumptions

Disadvantages
Computationally painful

Search entire training set for nearest neighbors for every test point
There are ways to speed this up, but still slow

Breaks down with large number of predictors (curse of dimensionality)
Too flexible

Easy to overfit
Of course, can usually cure this by choosing k large enough
Often k=1 is terrible

Need to decide how to scale the axes
Standardizing variables is not necessarily a sensible solution
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Decision trees

Recursively split the data 
Greedy

At each iteration choose split to maximize some measure of significance or 
purity
Continue until reaching some stopping criterion, e.g.,
— Don’t split nodes smaller than a certain size
— Don’t split nodes with 

significance less than 
a certain amount

Prune this back
For a continuous model, 
each box would be labeled with 
a score rather than a letter

BA

A

A

A

B

B

B
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Decision trees (CHAID)

Some common algorithms
CHAID
CART 
C4.5 

CHAID (d categories of dependent variable)
Classify predictors as ordinal or categorical
For each categorical (resp., ordinal) predictor, merge the pair (resp., 
adjacent pair) of categories where the 2 x d contingency table is least 
significant, if it is not significant at a certain level p
— A missing value can be considered adjacent to any value
— Alternate this with testing whether merged categories can be split at 

that significance level. If d=2, can treat categorical predictors as 
ordinal, ordered by the proportion of the first class

— Sum of [(observed – expected)2/expected] is chi-square with (d-1) 
degrees of freedom

This is just like stepwise regression (using chi-square instead of F tests)
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Decision trees (CHAID)

Eventually, one has determined how to merge the categories for that predictor
If there are c of them, now compute the significance level of the c x d 
contingency table, which is chi-square with (c-1)(d-1) degrees of freedom
Bonferroni adjustment: multiply this significance level by a penalty for the 
number of ways the original classes could have been collapsed into c 
classes

Repeat this process for all predictors
Split on the most significant predictor
CHAID as such has a stopping rule but no pruning rule

However, could always allow a generous significance level (to overfit) and 
then prune as per CART
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Regression trees (CHAID)

For a continuous dependent variable, replace the chi-square test with an 
F-test for including dummy variables in a linear regression
Note that this is very similar to selecting the first variable to include in a 
stepwise regression
Additional consideration of Bonferroni adjustment and determining the 
number of ways the split should divide
Main difference from stepwise is one then divides the dataset
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Decision trees (CART)

Consider all binary splits on all predictors (splits of the form x>a for ordinal 
variables)
Various different criteria for determining the best split, will focus on Gini 
criterion:

Minimize expected misclassification cost
Sum of misclassification costs for each child node
— If the left child node has probabilities 90% A, 5% B, and 5% C, and 

takes 30% of the observations
— And the right node has probabilities 20% A, 70% B, and 10% C, and 

takes 70% of the observations
— And the cost of misclassifying an A or C object is 1, but the cost of 

classifying B as A is 2 and B as C is 3, then
— The total misclassification cost for the left node is:

– 30% of 90%*5%+90%*5%+2*90%*5%+3*5%*5%+90%*5%+90%*5%
— Compute for right node similarly and add
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Decision trees (CART)

Grow an extremely overfit model (large tree)
Determine an order in which to prune back

Score each prune as 
— (increase in in-sample misclassification cost) / (decrease in number of 

terminal nodes)
— Note that this can be seen as requiring a minimum usefulness for each 

degree of freedom
Obtain a series of pruned trees, each corresponding to a required 
“usefulness” per node (marginal utility per node of every “prunable subtree” 
[for example the pink nodes on p. 70] must meet the standard)
Use cross-validation to determine which in the series of pruned trees is the 
best

By determining the optimal value of the tuning parameter (required 
usefulness per node)
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Regression trees (CART)

Splitting rule is the binary split that minimizes within class variance
In the pruning step, increase in in-sample squared error replaces increase 
in in-sample misclassification rate
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Training data, test data, and hold-out data

If you fit a model to all the data, left with no way to validate it
A model fit to part of the data can be tested on the rest of the data
If you use test data to compare models that have been built on the training data, 
then you have to some extent fit the test data also
So need a third set, hold-out data, with which to derive an unbiased measure of 
how good the model is
Shortcuts:

Compare models on training data only
— Then can use test data as hold-out data also
Use cross-validation if must model all the data [due to]
— Regulation
— Low SNR

Validating on out-of-sample data gives freedom in developing technique
Don’t need to worry whether nice statistical tests (which require lots of often 
unrealistic assumptions anyway) are available for in-sample data
Just validate!
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Cross-validation

For estimating accuracy
Divide the data into N (N=5 commonly) equal 
parts 
On each 4/5 of the data, fit a model by 
exactly the same process used for the full 
data set
Use, for example, the model that has not 
“seen” slice 1 to score slice 1. Score the 
entire dataset in the way and measure the 
error
This is an estimate of the prediction error

Can also be used to tune a parameter or a 
feature selection

[But then not also for accuracy estimation]



64© 2005 Towers Perrin

S:
Sh

ar
ed

\0
5p

rg
gr

\T
ill-

C
an

1.
pp

t/C
H

O
/3

-0
5

Scoring

Often a two class model produces scores
Observations with scores greater than a certain amount are classified to A; 
the rest to B
The cutoff score can be changed
— E.g., could use the cutoff that gives the lowest misclassification cost

A soft assignment model is a model where these scores can reasonably be 
interpreted as probabilities
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Some terminology

Confusion Matrix

Predicted Class
CBA

32234122,332

2,345214,3243,124

23,445345312

Actual Class

C
B
A
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Some terminology (ROC curve)

Receiver-Operating Characteristic curve (ROC curve):
True positive rate vs. false positive rate
Allows comparison of several types of model each tuned to various false 
positive rates by changing the misclassification costs

Area under the ROC curve is a commonly used comparison (more is better)
As with all tests, comparison should be on test data, not training data
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Some terminology

With scores, can vary number classed as type A continuously. Call this x%
Gain = proportion of those classed as A that are A compared to proportion in 
general population that are A
Gain is >= 1 and is decreasing as one moves to the right (including more 
quantiles in the mailing, for example). Flat line at 1 is worthless model
Often used in response modeling: The “gain” vs. random mailing

Gains Chart

Lift Curve

Lift = percent of class A that falls in the first x% of scores
True positive rate as a function of quantile
If you have the 20% scored most likely to be in class A, then false negative 
rate will be less than 20%, so lift curve is to the right of ROC curve
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Some terminology
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ROC curve comparison
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Some terminology — continuous models

Sort the out-of-sample data by the predicted value
Show the actual dependent variable mean for each decile (or twentieth, or 
whatever the appropriate bucket size is)
Similar to a gains chart except that one shows the mean for each decile, rather 
than for the first, the first two, the first three, etc.

Decile Chart

Lift Curve

Can do these for continuous data also
E.g., the wealthiest 5% have 90% of the money

Except, in this case, it’s the 5% your model thinks are the wealthiest
If it’s a bad model, they might only have 6% of the money
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Some terminology

Decile Chart
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Building a model — regularization

Idea: Compromise between a simple and a complex model by introducing a 
tuning parameter to average them in some way
Use cross-validation to determine the appropriate value of the tuning parameter
Examples:

For discriminant analysis, can directly average QDA and LDA covariance 
matrices
For linear regression (or GLM), can penalize large parameter values
Credibility …can use cross-validation to optimize K
A CART prune
— The tuning parameter is the cost of adding a node
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Building a model — regularization

How to get the right amount of flexibility
Average local covariance estimate with global one (typical actuarial thing to do)
Two types of averages suggested by Friedman:

Average class covariance matrices with grand mean
— ΣJ,Z = ΣJZ + Σ (1-Z)
— Choose Z by whatever produces the best fit
— Ideally in terms of cross-validation
Average the resulting covariance matrices with scalar multiple of identity
— Choose the scalar multiple to have the same trace as ΣJ,Z

— Scaling of predictors suddenly matters
— Be careful with this if you have collinearity, since this assumes there isn’t 

much collinearity
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Building a model — regularization

SHRINKAGE
Ridge Regression

Used to penalize large parameters, using sum of squares of parameter 
sizes as the penalty
Center Y
Center and standardize each Xi (divide by standard deviations), separately 
for each i
Equation to minimize is

— Σi(yi-Σjβjxij)2 subject to Σjβj
2 < Λ

– Equivalent to minimizing Σi(yi-Σjβjxij)2 + λΣjβj
2 with λ >0

One use of ridge regression is to control for multicollinearity
— This is the reason for standardizing the predictor variables
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Building a model — regularization

Ridge Plot
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Building a model — regularization

The Lasso
Unlike ridge, can shrink some parameters all the way to 0
Penalty is sum of absolute parameter values, i.e., minimize

Σi(yi-Σjβjxij)2 subject to a constraint Σj|βj|<Λ
This corresponds to minimizing Σi(yi-Σjβjxij)2 + λΣj|βj| with λ>0

In Bayesian interpretation, corresponds to prior for each βi that is double 
exponential with a density of (σ2/λ)exp(−λ|βi|/2σ2) 

Note that var(βi)=4σ2/λ. Call this τ2

This corresponds to a more diffuse (more tail-heavy) prior than the normal
Again, in “standard” penalized regression, one centers Y and centers and 
standardizes each Xi. 
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Building a model — regularization

Lasso Plot
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Chapman & Hall, 1984
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Hand, David J., Construction and Assessment of Classification Rules, Wiley, 
1997

Hastie, Tibshirani, and Friedman, The Elements of Statistical Learning: Data 
Mining Inference and Prediction, Springer, 2001

Hastie and Tibshirani, Generalized Additive Models, Chapman & Hall, 1990
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