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Abstract

In response to a request for proposal from the Com-
mittee on the Theory of Risk, Shaun Wang has written a
paper that significantly advances, to quote the proposal,
“the development of tools and models that improve the
accuracy of the estimation of aggregate loss distributions
for blocks of insurance risks.”
Dr. Wang’s charge was to “assume a book of business

is the union of disjoint classes of business each of which
has an aggregate distribution. : : :The classes of business
are NOT independent. : : :The problem is how do you
calculate the aggregate distribution for the whole book.”
Dr. Wang’s paper covers a variety of dependency models
and computational methods.
This discussion of his paper delves more deeply into

a particular dependency model—correlation caused by
parameter uncertainty—and then shows how his work
applies to calculating the aggregate loss distribution for
this case with one particular computational method—
Fourier Inversion.

1. BACKGROUND

The collective risk model has long been one of the primary
tools of actuarial science. One can view that model as a computer
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simulation where one first picks a random number of claims and
then sums the random loss amounts for each claim. Simulating
the distribution of losses for the collective risk model can (even
today) be time consuming so, over the years, a number of math-
ematical methods have been developed to shorten the computing
time. Klugman, Panjer, and Willmot [6, Ch. 4], provide an ex-
cellent description of the current computational methods.

The early uses of the collective risk model were mostly theo-
retical illustrations of the role of insurer surplus and profit mar-
gins. Such illustrations are still common today in insurance ed-
ucational readings such as Bowers, Gerber, Jones, Hickman and
Nesbitt [3, Ch. 13].

By the late 1970s, members of the Casualty Actuarial So-
ciety were beginning to use the collective risk model as input
for real world insurance decisions. The early applications of the
collective risk model included retrospective rating, e.g., Meyers
[7], and aggregate stop loss reinsurance, which is described by
Patrik [10]. Bear and Nemlick [2] provide further examples of
the use of the collective risk model in the pricing of reinsurance
contracts.

Some of these early efforts recognized the fact that the param-
eters of the collective risk model were unknown. Patrik and John
[5] introduced parameter uncertainty by treating the parameters
of the claim severity and claim count distributions as random
variables. Heckman and Meyers [4] followed with an efficient
computational algorithm that allows for some particular forms
of parameter uncertainty in the collective risk model.

It is easy and instructive to consider the effect of parameter
uncertainty on the variance of a distribution. Let X be a random
variable that depends on a parameter µ. Then:

Var[X] = Eµ[Var[X ! µ]]! "# $
Process Variance

+Varµ[E[X ! µ]]! "# $
Parameter Variance

: (1.1)
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If there is no parameter uncertainty, the parameter variance will
be zero. Introducing parameter uncertainty will increase the un-
conditional variance.

Suppose X1, : : : ,Xn are identically distributed random vari-
ables that depend on a parameter µ. Let E[X ! µ] and Var[X ! µ]
be their common mean and variance given µ. Assume further that
the Xi’s are conditionally independent given µ. Then:
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Process Variance

+n2 "Varµ[E[X ! µ]]! "# $
Parameter Variance

: (1.2)

In most insurance situations, Eµ[Var[X ! µ]]#Varµ[E[X ! µ]],
and we should expect the process variance to be dominant for
small n. But as n increases, the parameter variance becomes in-
creasingly important. This becomes apparent by looking at the
coefficient of variation:

CV

%
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i=1

Xi

'
=

(
n "Eµ[Var[X ! µ]]+n2 "Varµ[E[X ! µ]]

n "E[X]

$%
n%&

)
Varµ[E[X ! µ]]
E[X]

> 0: (1.3)

More generally, we expect parameter uncertainty to play a minor
role for small insureds and to play a major role for large insureds
or for a reasonably sized insurance company.
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In situations where parameter uncertainty affects several lines
of insurance simultaneously, we expect high losses in one line
to be associated with high losses in another line. Thus parame-
ter uncertainty generates correlation. There are, of course, other
generators of correlation. One example is in property insurance,
where natural disasters cause damage to properties in close prox-
imity.

Meyers and Schenker [9] provided some statistical methods of
quantifying parameter uncertainty using observations spanning
a period of years. However, any statistical method for quanti-
fying parameter uncertainty requires considerable judgment be-
cause:

1. Data is scarce. You get one observation per insured per
year.

2. The source of the historical variability in the parame-
ters is often identifiable (at least after the fact). The user
might not expect that source of variability to be present in
future years. However, other sources of variability may
arise.

2. DYNAMIC FINANCIAL ANALYSIS

The Casualty Actuarial Society coined the term “Dynamic
Financial Analysis” (DFA) in the wake of the efforts to create
a risk-based capital formula for insurers. To do DFA, one must
often create an aggregate loss distribution for an entire insurance
company. Now, for an insurance company, the primary source
of parameter uncertainty is change over time. Thus parameter
uncertainty will be a very important component in any collective
risk model when it is applied to an entire insurance company.

As mentioned above, quantifying parameter uncertainty in-
volves a fair amount of judgment. For example:

' Uncertain inflation will affect all claims simultaneously.
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' Changes in the general economy can affect various lines of
insurance in special ways. For example, directors and officers
liability claims are more likely in a recession.

' Insurance companies write liability insurance at several differ-
ent policy limits. We expect uncertainty in the claim frequency
to affect policy limits in the same way.

The ultimate goal of DFA is to make financial decisions based
on controlling the risk of an entire insurance company. DFA nec-
essarily involves the more general concept of covariance, which
can be driven by mechanisms other than parameter uncertainty.
Practitioners familiar with the collective risk model should make
the effort to express their knowledge in financial language. On
the other hand, as we shall show, the collective risk model—with
parameter uncertainty—can enrich the financial models.

3. PARAMETER UNCERTAINTY AND CORRELATION

For the hth line of insurance let:

¹h =Expected claim severity;

¾2h =Variance of the claim severity distribution;

¸h =Expected claim count; and

¸h+ ch "¸2h =Variance of the claim count distribution.

Following Heckman and Meyers [4], we call ch the contagion
parameter. If the claim count distribution is:

Poisson, then ch = 0;

negative binomial, then ch > 0; and

binomial with n trials, then ch =$1=n.
A good way to view the collective risk model is by a Monte
Carlo simulation.
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Simulation Algorithm #1
The Collective Risk Model Without Parameter Uncertainty

1. For lines of insurance 1 to n, select a random number of
claims, Kh, for each line of insurance h.

2. For each line of insurance h, select random claim
amounts Zhk, for k = 1, : : : ,Kh. Each Zhk has a common
distribution (Zh):

3. Set Xh =
*Kh
k=1Zhk:

4. Set X =
*n
h=1Xh:

The collective risk model describes the distribution of X. In
this section we restrict ourselves to calculating the covariance
structure of X. In the next section we will show how to calculate
the entire distribution of X.

If we assume that Kh is independent of Kg for g *= h, and that
Zh is independent of Kh, we have:

Var[Xh] = EKh[Var[Xh ! Kh]] +VarKh[E[Xh !Kh]]
= ¸h "¾2h +¹2h " (¸h+ ch "¸2h): (3.1)

Also
Cov[Xg,Xh] = 0 for g *= h: (3.2)

We now introduce parameter uncertainty that affects the claim
count distribution for several lines of insurance simultaneously.
We partition the lines of insurance into covariance groups (Gi).
Our next version of the collective risk model is defined as fol-
lows.
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Simulation Algorithm #2
The Collective Risk Model with Parameter Uncertainty in the

Claim Count Distributions

1. For each covariance group i, select ®i > 0 from a distri-
bution with:

E[®i] = 1 and Var[®i] = gi:

gi is called the covariance generator for the covariance
group i.

2. For line of insurance h in covariance group i, select a
random number of claims Khi from a distribution with
mean ®i "¸hi.

3. For each line of insurance h in covariance group i, select
random claim amounts Zhik for k = 1, : : : ,Kh. Each Zhik
has a common distribution (Zhi).

4. Set Xhi =
*Khi
k=1Zhik:

5. Set X'i =
*
h+Gi Xhi:

6. Set X =
*n
i=1X'i:

We have:

Cov[Xdi,Xhi] = E®i[Cov[Xdi,Xhi ! ®i]]
+Cov®i[E[Xdi ! ®i],E[Xhi ! ®i]]:

For d *= h, Xdi and Xhi are conditionally independent. Thus
Cov[Xdi,Xhi ! ®i] = 0 and

Cov[Xdi,Xhi] = Cov®i[®i "¸di "¹di,®i "¸hi "¹hi]
= gi "¸di "¹di "¸hi "¹hi: (3.3)
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Also,

Cov[Xhi,Xhi] = Var[Xhi]

= E®i[Var[Xhi ! ®i]]+Var®i[E[Xhi ! ®i]]
= E®i[®i "¸hi "¾2hi+¹2hi " (®i "¸hi+®2i " chi "¸2hi)]
+Var®i[®i "¸hi "¹hi]

= ¸hi "¾2hi+¹2hi " (¸hi+(1+ gi) " chi "¸2hi)+gi "¸2hi "¹2hi:
(3.4)

And:
Cov[Xdi,Xhj] = 0 for i *= j: (3.5)

We now introduce parameter uncertainty in the severity dis-
tributions. Let ¯ be a positive random variable with E[1=¯] = 1
and Var[1=¯] = b. Following Heckman and Meyers [4], we call
b the mixing parameter. Let X¯hi = Xhi=¯ for all h and i. Then:

Cov[X¯di,X
¯
hj] = E¯[Cov[Xdi=¯,Xhj=¯]]

+Cov¯[E[Xdi=¯],E[Xhj=¯]]

= Cov[Xdi,Xhj] " (1+b) +b "E[Xdi] "E[Xhj]:
(3.6)

From Equations 3.3 to 3.6, we see that the first term of Equation
3.6 will be zero whenever i *= j, and the second term will be
positive whenever b > 0.

To calculate the coefficient of correlation, ½XY, between two
separate lines of insurance with random losses X and Y, we use
Equations 3.3 to 3.6 and the relationship:

½XY =
Cov[X,Y],
Var[X] "Var[Y] : (3.7)

We illustrate the effect of parameter uncertainty on correlation
with an example. We use the illustrative claim severity distribu-
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TABLE 3.1

Claim Count Distribution Parameters

Covariance
Group

Covariance
Generator

Line of
Insurance ¸ c

#1 .01 GL-$1M Varies 0.00
GL-$5M Varies 0.00

#2 .02 AL-$1M Varies 0.01
AL-$5M Varies 0.01

tions for general liability and automobile liability given in Ap-
pendix A. Table 3.1 gives the covariance group and claim count
distribution parameters. The examples use b = 0:01.

Table 3.2 gives the correlation matrices for the claim count
distributions1 and the aggregate loss distributions for each line of
insurance with ¸= 10, 100, and 100,000. Note that as ¸ increases
the coefficients of correlation approach a limiting value. We can
calculate that limiting value by dropping the terms with ¸hi (small
compared with terms with ¸2hi) in Equation 3.4. If c= 0, the
limiting coefficients of correlation are 1.0.2

If we modify the claim severity distribution by a deductible,
with p being the probability of exceeding the deductible, we must
then change the ¸ parameter of a negative binomial claim count
distribution by replacing ¸ with p "¸. The contagion parameter c
remains unchanged.3 We can then apply Equations 3.3 to 3.7 to
the modified claim count and claim severity distributions. Table
3.2 gives the resulting correlation matrices.

These examples show the practical utility of having correla-
tion coefficients that are generated by a model. One should not

1We calculated claim count covariances from Equations 3.3 to 3.6 using ¹hi = 1 and
¾hi = 0.
2Holding c as a constant while varying ¸ uses the interpretation of c as quantifying
parameter uncertainty within a single line of insurance. See Heckman and Meyers [4]
for details.
3This is proven on pp. 266–7 of Klugman et al. [6]. Note that, in our parameterization,
¸= r " ¯ and c= 1=r.
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TABLE 3.2

Illustrated Correlation Matrices

Expected Claim Count = 10
Claim Count Correlations Total Loss Correlations

GL-$1M GL-$5M AL-$1M AL-$5M GL-$1M GL-$5M AL-$1M AL-$5M

GL-$1M 1.00000 0.09091 0.00000 0.00000 1.00000 0.01361 0.00412 0.00354
GL-$5M 0.09091 1.00000 0.00000 0.00000 0.01361 1.00000 0.00355 0.00305
AL-$1M 0.00000 0.00000 1.00000 0.15361 0.00412 0.00355 1.00000 0.00560
AL-$5M 0.00000 0.00000 0.15361 1.00000 0.00354 0.00305 0.00560 1.00000

Expected Claim Count = 1,000
Claim Count Correlations Total Loss Correlations

GL-$1M GL-$5M AL-$1M AL-$5M GL-$1M GL-$5M AL-$1M AL-$5M

GL-$1M 1.00000 0.90909 0.00000 0.00000 1.00000 0.57819 0.18826 0.17271
GL-$5M 0.90909 1.00000 0.00000 0.00000 0.57819 1.00000 0.17671 0.16212
AL-$1M 0.00000 0.00000 1.00000 0.64103 0.18826 0.17671 1.00000 0.32042
AL-$5M 0.00000 0.00000 0.64103 1.00000 0.17271 0.16212 0.32042 1.00000

Expected Claim Count = 100,000
Claim Count Correlations Total Loss Correlations

GL-$1M GL-$5M AL-$1M AL-$5M GL-$1M GL-$5M AL-$1M AL-$5M

GL-$1M 1.00000 0.99900 0.00000 0.00000 1.00000 0.99272 0.34743 0.34674
GL-$5M 0.99900 1.00000 0.00000 0.00000 0.99272 1.00000 0.34705 0.34636
AL-$1M 0.00000 0.00000 1.00000 0.66203 0.34743 0.34705 1.00000 0.73582
AL-$5M 0.00000 0.00000 0.66203 1.00000 0.34674 0.34636 0.73582 1.00000

Limiting Correlations as the Expected Claim Count Approaches Infinity
Claim Count Correlations Total Loss Correlations

GL-$1M GL-$5M AL-$1M AL-$5M GL-$1M GL-$5M AL-$1M AL-$5M

GL-$1M 1.00000 1.00000 0.00000 0.00000 1.00000 1.00000 0.35048 0.35048
GL-$5M 1.00000 1.00000 0.00000 0.00000 1.00000 1.00000 0.35048 0.35048
AL-$1M 0.00000 0.00000 1.00000 0.66225 0.35048 0.35048 1.00000 0.74564
AL-$5M 0.00000 0.00000 0.66225 1.00000 0.35048 0.35048 0.74564 1.00000

Ground Up Expected Count = 1,000 with a $100,000 Deductible
Claim Count Correlations Total Loss Correlations

GL-$1M GL-$5M AL-$1M AL-$5M GL-$1M GL-$5M AL-$1M AL-$5M

GL-$1M 1.00000 0.43740 0.00000 0.00000 1.00000 0.38533 0.12445 0.11282
GL-$5M 0.43740 1.00000 0.00000 0.00000 0.38533 1.00000 0.11355 0.10294
AL-$1M 0.00000 0.00000 1.00000 0.21918 0.12445 0.11355 1.00000 0.20181
AL-$5M 0.00000 0.00000 0.21918 1.00000 0.11282 0.10294 0.20181 1.00000
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use empirical correlation coefficients if they were applied to an
insured with a different exposure, or if a deductible were im-
posed.

4. CALCULATING THE AGGREGATE LOSS DISTRIBUTION BY
FOURIER INVERSION

In this section, we show how to use direct Fourier inversion
to calculate the aggregate loss distribution described by Simu-
lation Algorithm #2. We begin by summarizing the method of
Heckman and Meyers [4] using the more compact notation of
Klugman et al. [6, p. 316].4

Let Z be a random variable representing claim severity. Define
the Fourier transform of Z as:

ÁZ(t)- E[eitZ]:
A fundamental property of Fourier transforms is that:

ÁZ+"""+Z! "# $
K Times

(t) = ÁZ(t)
K ,

where the Z’s are independent.

Let K be a random variable representing claim count. De-
fine the probability generating function (pgf) of a claim count
distribution as:

PK(t)- E[tK]:

Define the aggregate loss

X = Z + " " "+Z! "# $
K Times

:

We then have:

ÁX(t) = E[(ÁZ(t))
K] = PK(ÁZ(t)): (4.1)

4Wang describes a similar process using the Fast Fourier Transform.
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Let X1, : : : ,Xn be independent random variables of aggregate
losses. Then:

ÁX1+"""+Xn(t) =
n+
i=1

ÁXi
(t): (4.2)

Heckman and Meyers [4] provide a way to obtain the distri-
bution of X1 + " " "+Xn and the distribution5 of (X1 + " " "+Xn)=¯
given the Fourier transform ÁX1+"""+Xn(t) and that ¯ has a gamma
distribution.

To summarize, Fourier inversion turns the time-consuming
process of simulating the sum of random variables into the
mathematically complex, but doable, process of multiplying the
Fourier transforms of the random variables and then inverting
this product. Until now, we have been assuming that the claim
count distributions are independent and that the claim severity
distribution is independent of the claim count.

To remove the assumption that the claim count distributions
are independent, Wang uses the multivariate Fourier transform
which is defined by:

ÁX1,:::,Xn
(t1, : : : , tn) = E[e

i(t1X1+"""+tnXn)]

and has the property that:

ÁX1+"""+Xn(t) = ÁX1,:::,Xn(t, : : : , t): (4.3)

When the lines of insurance are correlated, we can then apply
the Heckman/Meyers Fourier inversion formula to Equation 4.3
to obtain the aggregate loss distribution.

We now use Equation 4.3 to calculate the Fourier transform
for the aggregate loss distribution described by Simulation Algo-
rithm #2—the collective risk model with parameter uncertainty

5See Equation 3.6 and the preceding paragraph.
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in the claim count distributions.

ÁX'i
(t) = ÁX1i,:::,Xnii

(t, : : : , t)

(from Equation 4.3)

= E®i[ÁX1i,:::,Xnii
(t, : : : , t) ! ®i]

= E®i

% ni+
h=1

ÁXhi
(t) ! ®i

'
(Equation 4.2 applies since the Xhi’s
are conditionally independent.)

= E®i

% ni+
h=1

PKhi
(ÁZhi(t)) ! ®i

'
: (4.4)

(from Equation 4.1)

Since the covariance groups are independent:

ÁX(t) =
n+
i=1

ÁX'i
(t): (4.5)

To complete the model description, we need to specify:

' the distribution of the ai’s;
' the pgf’s PKhi(t); and
' the Fourier transforms of the severity distributions ÁZhi(t).
We will use a three-point discrete distribution for ai. Let:

®i1 = 1$
(
3gi Pr(®i = ®i1)= 1=6

®i2 = 1 Pr(®i = ®i2)= 2=3 (4.6)

®i3 = 1+
(
3gi Pr(®i = ®i3)= 1=6

This discrete distribution was motivated by an approximation
to Equation 4.4 when ai has a normal distribution. Equation 4.4
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then becomes:

E®i

% ni+
h=1

PKhi
(ÁZhi(t)) ! ®i

'
=

1)
2¼gi

&,
$&

% ni+
h=1

PKhi
(ÁZhi(t)) ! ®i

'

" e$(®i$1)2=2gid®i; (4.7)

by using the Gauss–Hermite three-point quadrature formula:

&,
$&

f(x) " e$x2dx.
,
¼

6
f

-.$
/
3
2

01+ 2,¼
3
f(0)+

,
¼

6
f

-./3
2

01 ;
(4.8)

with the change of variables:

x=
®i$1)
2gi

:

One can use a higher-order formula, obtainable from many
texts on numerical analysis. See, for example, Ralston [11].

Appendix B of Klugman et al. [6] provides the pgf’s for a
wide variety of claim count distributions. We provide two exam-
ples here, translated into this paper’s notation.

For the negative binomial claim count distribution:

PKhi(t) ! ®i = (1$ chi "¸hi "®i " (t$1))
$1=chi :

For the Poisson claim count distribution:

PKhi
(t) ! ®i = e$¸hi"®i"(t$1):

The Fourier transform of a claim severity distribution with
probability density function f(z):

ÁZ(t) =
, &

0
eitxf(x)dx:

This integral does not have a closed form for most of the com-
monly used claim severity distributions. Heckman and Meyers
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[4] get around that difficulty by approximating the cumulative
distribution function (cdf), F(z), with a piecewise linear cdf, for
which the integral does have a closed form.

To summarize this section, we have shown how to calculate
the multivariate Fourier transform of the collective risk model
with correlations generated by parameter uncertainty. We then
used the direct Fourier inversion formulas of Heckman and Mey-
ers to calculate the corresponding aggregate loss distribution.

Note that one could use the Fast Fourier Transform methods
discussed by Wang.

5. AN ILLUSTRATIVE EXAMPLE

We now illustrate the effect of covariance on the aggregate
loss distribution of the hypothetical XYZ Insurance Company.
XYZ writes commercial lines exclusively—workers compensa-
tion, general liability, commercial auto and commercial property.
Table 5.1 provides summary statistics for XYZ’s book of busi-
ness.

Following are some additional remarks about XYZ’s loss dis-
tribution.

' We set the mixing parameter b = 0:01.
' The claim severity distributions are piecewise linear approxi-
mations to mixed exponential distributions. See Appendix A
for details. Also, the standard deviations for the claim sever-
ity distributions reflect the mixing generated by the mixing
parameter, b.

' The claim count distributions are all negative binomial.

' The correlations between the claim count distributions of the
coverages in a given line are driven by the covariance generator
listed with the first coverage of the line.
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TABLE 5.1

XYZ Summary Loss Statistics
Line/Coverage Summary Statistics
Aggregate Summary Statistics

Aggregate Mean 1,004,422,886
Aggregate Standard Deviation 156,034,063
Mixing Parameter 0.010000

Line Name/ Covariance
Liability Limit E[Count] Std[Count] E[Severity] Std[Severity] E[Tot.Loss] Generator

WC-$5M Limit 80,000.00 8,005.00 5,339.89 52,927.43 427,191,200
GL-$5M Limit 200.00 42.61 40,348.87 160,218.51 8,069,774 0.020000
GL-$2M Limit 800.00 163.27 39,892.11 152,516.66 31,913,688
GL-$1M Limit 2,200.00 444.68 36,966.16 124,853.59 81,325,552
GL-$.5M Limit 1,250.00 253.72 31,085.63 87,532.67 38,857,038
AL-$5M Limit 350.00 53.03 12,809.55 99,730.27 4,483,342 0.010000
AL-$2M Limit 1,350.00 194.89 12,626.84 94,724.36 17,046,234
AL-$1M Limit 3,700.00 528.08 11,456.65 76,434.03 42,389,605
AL-$.5M Limit 2,300.00 329.59 9,131.21 50,896.52 21,001,783
APhD 1,100.00 159.44 4,360.00 6,331.53 4,796,000
CP-$50M Limit 2,000.00 667.83 10,999.77 224,488.75 21,999,540 0.100000
CP-$10M Limit 8,000.00 2,666.83 6,999.95 45,887.29 55,999,600
CP-$5M Limit 18,500.00 6,165.08 6,499.98 24,515.84 120,249,630
CP-$2M Limit 10,000.00 3,333.17 6,199.99 13,467.32 61,999,900
CP-$1M Limit 11,000.00 3,666.33 6,100.00 11,066.55 67,100,000

FIGURE 5.1

XYZ Aggregate Loss Distribution
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TABLE 5.2

Comparison of Aggregate Loss Distributions†

With and Without the Covariance Generators
and the Mixing Parameter

WO/Covariance W/Covariance
Aggregate Mean 1,004,422,886 1,004,422,886

Aggregate Std. Dev. 52,698,873 156,034,063

Aggregate Cumulative Probability Limited Pure Premium Ratio

Loss WO/Covariance W/Covariance WO/Covariance W/Covariance

500,000,000 0.00000 0.00000 0.49780 0.49780
600,000,000 0.00000 0.00070 0.59736 0.59734
700,000,000 0.00000 0.01617 0.69692 0.69634
800,000,000 0.00001 0.08782 0.79648 0.79136
900,000,000 0.01954 0.25528 0.89570 0.87477

1,000,000,000 0.47643 0.51146 0.97685 0.93653
1,100,000,000 0.96097 0.74683 0.99909 0.97282
1,200,000,000 0.99970 0.89181 1.00000 0.99004
1,300,000,000 1.00000 0.96115 1.00000 0.99688
1,400,000,000 1.00000 0.98831 1.00000 0.99916
1,500,000,000 1.00000 0.99703 1.00000 0.99981
1,600,000,000 1.00000 0.99935 1.00000 0.99996
1,700,000,000 1.00000 0.99987 1.00000 0.99999
1,800,000,000 1.00000 0.99998 1.00000 1.00000
1,900,000,000 1.00000 1.00000 1.00000 1.00000
2,000,000,000 1.00000 1.00000 1.00000 1.00000

†The cumulative probability is the probability that the aggregate loss amount is less than the stated
loss amount. The limited pure premium is the expected aggregate loss when limited to the stated
loss amount. The limited pure premium ratio is the limited pure premium divided by the expected
aggregate loss.

Appendix B gives the correlation matrices generated by mix-
ing the claim count and claim severity distributions.

Table 5.2 and Figure 5.1 illustrate the significant effect that
correlations have on the aggregate loss distribution of XYZ In-
surance Company.
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6. CONCLUSION

We congratulate Dr. Wang for his fine work in introducing
dependency into the collective risk model. This discussion has
attempted to expand the applicability of his work and illustrate
its importance in Dynamic Financial Analysis.
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APPENDIX A

THE CLAIM SEVERITY DISTRIBUTIONS

The Heckman/Meyers algorithm requires that the cumula-
tive distribution functions for the claim severity distributions be
piecewise linear. Users of the algorithm usually have an analytic
model for claim severity, so some approximation is necessary.
This appendix gives the analytic models used in this paper and
their piecewise linear approximations. The claim severity distri-
butions are merely illustrative and the reader should note that we
did not derive the claim severity distributions from any propri-
etary data available to us.

This paper uses the mixed exponential claim severity model
for all lines of insurance. The cumulative distribution function
(cdf) is given by:

F(x) = 1$
4&
i=1

wi " e$x=bi : (A.1)

The limited average severity (LAS) is given by:

L(x) =
4&
i=1

wi "bi " (1$ e$x=bi): (A.2)

A piecewise linear cdf approximates each mixed exponential
cdf. For the specified values x0,x2, : : : ,x2n, the piecewise linear
cdf has the same value as its corresponding mixed exponential
cdf, and the piecewise linear LAS has the same value as its corre-
sponding mixed exponential LAS. We accomplish this matching
of the LAS values by setting:

x2n$1 =
L(x2n)$L(x2n$2)$ x2n " (1$F(x2n))+ x2n$2 " (1$F(x2n$2))

F(x2n)$F(x2n$2)
(A.3)



AGGREGATION OF CORRELATED RISK PORTFOLIOS 801

TABLE A.1

Mixed Exponential Parameters

Line Names b1 b2 b3 b4 w1 w2 w3 w4

WC 1,000 10,000 100,000 500,000 0.940 0.040 0.015 0.005
GL 1,000 10,000 100,000 500,000 0.350 0.500 0.100 0.050
AL 1,000 2,500 10,000 500,000 0.360 0.500 0.120 0.020
APhD 1,000 5,000 10,000 15,000 0.360 0.500 0.120 0.020
CP-$50M Limit 2,000 5,000 20,000 5,000,000 0.360 0.500 0.139 0.001
CP-$10M Limit 2,000 5,000 20,000 1,000,000 0.360 0.500 0.139 0.001
CP-$5M Limit 2,000 5,000 20,000 500,000 0.360 0.500 0.139 0.001
CP-$2M Limit 2,000 5,000 20,000 200,000 0.360 0.500 0.139 0.001
CP-$1M Limit 2,000 5,000 20,000 100,000 0.360 0.500 0.139 0.001

and

F(x2n$1) = F(x2n)$ (F(x2n)$F(x2n$2))
x2n$1$ x2n$2
x2n$ x2n$2

:

(A.4)

Table A.1 gives the parameters of the mixed exponential dis-
tributions used in this paper. Table A.2 gives the piecewise lin-
ear approximations for two of these distributions. The values
x0,x2, : : : are the same for all of the piecewise linear distributions
used in this paper.
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TABLE A.2

Piecewise Linear Approximations To Mixed Exponential
Distributions

WC-$5M Limit w’s Means GL-$5M Limit w’s Means
Exp #1 0.940 1,000 Exp #1 0.350 1,000
Exp #2 0.040 10,000 Exp #2 0.500 10,000
Exp #3 0.015 100,000 Exp #3 0.100 100,000
Exp #4 0.005 500,000 Exp #4 0.050 500,000

Loss Amount cdf LAS Loss Amount cdf LAS

0.00 0.000000 0.00 0.00 0.000000 0.00
49.15 0.045700 48.02 49.21 0.019500 48.73
100.00 0.089867 95.43 100.00 0.038392 98.05
149.19 0.131200 139.18 149.37 0.056200 145.08
200.00 0.171217 182.31 200.00 0.073565 192.43
342.56 0.276533 292.95 343.62 0.120000 322.15
500.00 0.371892 399.35 500.00 0.162648 456.43
729.42 0.494340 529.40 733.42 0.219840 645.21

1,000.00 0.598159 652.18 1,000.00 0.269918 846.51
1,419.20 0.727210 793.58 1,443.94 0.339720 1,155.13
2,000.00 0.820353 924.97 2,000.00 0.395447 1,506.79
2,883.28 0.911960 1,043.19 3,256.69 0.485113 2,210.19
5,000.00 0.950186 1,189.09 5,000.00 0.549751 3,051.45
6,797.29 0.960808 1,269.07 7,275.66 0.618840 3,997.45
10,000.00 0.966769 1,385.05 10,000.00 0.676551 4,957.25
14,264.10 0.972925 1,513.63 14,236.37 0.749097 6,173.83
20,000.00 0.977502 1,655.80 20,000.00 0.802420 7,466.28
30,790.44 0.983013 1,868.83 30,030.69 0.861207 9,153.31
50,000.00 0.986108 2,165.42 50,000.00 0.890736 11,630.07
72,261.57 0.988482 2,448.25 71,743.39 0.908547 13,812.20
100,000.00 0.990386 2,741.34 100,000.00 0.922253 16,202.71
142,933.77 0.992801 3,102.25 143,357.97 0.939641 19,196.72
200,000.00 0.994618 3,461.20 200,000.00 0.952951 22,238.65
306,605.45 0.996837 3,916.67 311,738.74 0.970510 26,514.86
500,000.00 0.998060 4,410.19 500,000.00 0.980932 31,085.63
700,063.34 0.998817 4,722.62 702,893.51 0.988239 34,213.12

1,000,000.00 0.999323 5,001.59 1,000,000.00 0.993229 36,966.16
1,343,154.66 0.999707 5,168.02 1,343,292.63 0.997074 38,630.66
2,000,000.00 0.999908 5,294.21 2,000,000.00 0.999084 39,892.11
2,493,216.63 0.999985 5,320.55 2,492,457.58 0.999848 40,155.10
5,000,000.00 1.000000 5,339.89 5,000,000.00 0.999998 40,348.87
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