
AUTHOR’S RESPONSE TO DISCUSSIONS OF PAPER
PUBLISHED IN VOLUME LXXXIII
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1. INTRODUCTION

Having had the pleasure of seeing my paper in the Pro-
ceedings, I am even more pleased now that Klaus Schmidt and
Michael Hamer have deigned to discuss it. But even with their
discussions, most of the subject of statistically modeling loss
triangles remains terra incognita; and I hope that actuaries and
academics will continue to explore it.

2. BACKGROUND

Since I wrote the paper late in 1994, I have learned more
about statistical modeling. I recommend for interested readers to
examine my 1997 Forum paper, “Conjoint Prediction of Paid and
Incurred Losses,” especially its Appendices A and C. Neverthe-
less, I stand by the conclusions of the earlier paper:

This paper will argue that the linear modeling and the
least squares estimation found in the literature to date
have overlooked an important condition of the linear
model. In particular, the models for development fac-
tors regress random variables against other random
variables. Stochastic regressors violate the standard
linear model. Moreover, the model assumes that er-
rors are uncorrelated, but stochastic regressors violate
this assumption as well. This paper will show that what
actuaries are really seeking is found in a general lin-
ear model; i.e., a model with nonstochastic regressors
but with an error matrix that allows for correlation. [2,
p. 436]
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[The use of stochastic regressors] is the fundamental
problem with the CL [Chain Ladder] method. Rather
than try to rehabilitate it, this paper introduces a differ-
ent model that honors all the conditions of the Gauss–
Markov theorem. [2, p. 441]

A theory becomes very attractive when it unifies partial
explanations. Such is the case with loss covariance.
CL, prior hypothesis, or BF [Bornhuetter–Ferguson]—
which to choose? The answer will lie on a continuum
dependent on the variance matrix of the incremental
losses. [2, p. 447]

Generalized least squares is a better method of loss
prediction than the chain ladder and the other loss de-
velopment methods. Even when linear models are im-
posed on loss development methods, they incorporate
stochastic regressors, and the estimates are not guaran-
teed to be either best or unbiased. The confidence in-
tervals derived therefrom are not trustworthy. The fault
lies in trying to make the level on one variable affect
the level of the next, whereas the statistical idea is that
the departure of one variable from its mean affects the
departure of the next from its mean. This is the idea
of covariance, and it is accommodated in the general
linear model and generalized least squares estimation.
[2, p. 456]

The problem of stochastic regressors quells my enthusiasm
for empirically testing chain-ladder statistical models (as, for ex-
ample, Gary Venter [6] recommends). The technique of instru-
mental variables [4, p. 577 and 5, p. 198] solves this problem;
but the obvious instrument for a lagged loss is its exposure.
And when exposure becomes a regressor, the lagged loss often
lacks significance, as Glen Barnett and Ben Zehnwirth have
discovered [1, p. 10]. So I am hopeful that actuaries will
find their way back to the no-frills “additive model” [2, pp. 442,
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449] and thence begin to consider non-trivial covariance struc-
tures.1

3. AUTHOR’S COMMENTS ON ORIGINAL PAPER

Before responding to the discussions I will point out two flaws
of the paper. The first flaw concerns pages 450f. and Exhibit
3. I derived an estimate of ¯, reweighted the observations, and
derived a second estimate of ¯. I remarked, “The estimate for
¯ changes negligibly (no change within the first ten decimal
places).” [2, p. 451] Such a negligible change should have clued
me that the estimates of ¯ were identical, the difference owing to
computational precision. If one regresses Y against X with error
variances ¾, the estimate is:!

i

xiyi
¾ii!

i

xixi
¾ii

:

Therefore, the estimate is invariant to a scale change of the vari-
ances. Now the second model applied scale factors according to
age. But each element of ˆ̄ depends on observations of the same
age, which have been affected by the same scale factor. Thus the
estimate is unchanged.2

The second flaw concerns the degrees of freedom in the esti-
mate of ¾2. There were thirty-six observations, eight parameters
in ¯, and two parameters in the variance matrix. I claimed there
to be 36!8!2 = 26 degrees of freedom [2, p. 453]. But the
two parameters that had been estimated in the variance matrix
are not like those of ¯. There is no theoretically right way of ac-
counting for the variance parameters, and twenty-eight degrees
of freedom is just as acceptable as twenty-six.

1My session “Regression Models and Loss Reserving” at the 1999 Casualty Loss Reserve
Seminar presents this broad subject with theory and examples.
2I am grateful to William A. Niemczyk for pointing this out to me.
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4. AUTHOR’S COMMENTS ON DISCUSSIONS

Drs. Schmidt and Hamer have confined their discussions to
the Gauss–Markov theorem and to the best linear unbiased pre-
dictor. This is natural, since the Gauss–Markov theorem is the
most mathematical topic of the paper and is new material to most
actuaries (at least in its matrix form). In several of my papers I
have complained that we actuaries know too little about statis-
tical modeling and the matrix algebra that it utilizes. I myself
learned what little I know by a time-consuming study of materi-
als outside the actuarial syllabus, particularly [4]. And I believe
that even the new actuarial syllabus does not adequately cover
this topic. However, I wish that these discussions had gotten be-
yond the Gauss–Markov theorem and treated the undesirability
of stochastic regressors and the distinction between loss covari-
ance and loss development.

Dr. Schmidt’s finish, “We thus obtain the predictor proposed
by Halliwell by a direct approach which avoids conditioning,”
provides the basis for my two-fold response. First, as to con-
ditioning, my treatment of the predictor in Appendix C does
not depend on Bayes’ theorem and a loss distribution. In fact,
I wrote that e is “not necessarily normal” [2, pp. 480, 473].
However, perhaps I invited Dr. Schmidt’s criticism when I used
conditional-expectation notation [2, pp. 445, 482f] and said that
the unknown elements “are affected by the known elements
in a Bayesian sense, through the variance matrix.” [2, p. 444]
My Appendix B demonstrated that if e is multivariate normal,
the predictor can be derived by Bayes’ theorem; but I did not
say that conditional probability was the rationale of the predic-
tor.

And second, Drs. Schmidt and Hamer have made my argu-
ment rigorous, and shown that one can bypass the estimation of
¯ on the way to estimating Y2 (the “direct approach”). I con-
cur with their assertions that the proof in my Appendix C was
not strict, and that it confined itself “to predictors which can be
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written as y2(
ˆ̄ ) for some admissible estimator ˆ̄ .” I had realized

these things when I wrote my paper on conjoint prediction [3].
There I formulated the partitioned model (p observations and q
predictions):"#Y1(p"1): : : : : : :

Y2(q"1)

$%=
"#X1(p"k): : : : : : :

X2(q"k)

$%¯(k"1) +
"#e1: :
e2

$% , where

Var

"#e1: :
e2

$%=
"#S11(p"p) S12(p"q)
: : : : : : : : : : : : : : : : :

S21(q"p) S22(q"q)

$%.........

And I showed [3, p. 328] that the best linear unbiased predictor
of Y2 is:

Ŷ2 = (S21S
!1
11 + (X2!S21S!111 X1)(X#1S!111 X1)!1X#1S!111 )Y1

This agrees with Dr. Schmidt’s Theorem 4.3, whose proof Dr.
Hamer has provided. This formulation is direct because the esti-
mator Ŷ2 does not involve ˆ̄ . However, if X2 = Ik and e2 is a zero
matrix (and hence S21 and S22 are zero matrices), then Y2 = ¯,
and:

ˆ̄ = Ŷ2 = (S21S
!1
11 + (X2!S21S!111 X1)(X#1S!111 X1)!1X#1S!111 )Y1

= (0S!111 + (Ik !0S!111 X1)(X#1S!111 X1)!1X#1S!111 )Y1
= (X#1S

!1
11 X1)

!1X#1S
!1
11Y1

So the estimation of ¯ is a special case of the estimation of Y2
[3, p. 331], which Dr. Hamer calls Case 1 of his Theorem 4.1.3

That really is all that I need to say about the Gauss–Markov
theorem and best linear unbiased prediction. The task now, as

3Dr. Hamer devotes his Appendix to deriving the best linear unbiased estimator (BLUE)
of F1Y1 +F2Y2 +A¯. Though correct, the form of this derivation is overly complex. I
have shown [3, p. 335f] that the estimator is a linear operator; hence, the BLUE of this
expression is F1Ŷ1 +F2Ŷ2 +A

ˆ̄ = F1Y1 +F2Ŷ2 +A
ˆ̄ .
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I see it, is to get actuaries to understand that this theory is not
just a mathematical nicety. Though perhaps not a Copernican
revolution, it is revolutionary nonetheless. As it makes inroads,
we will see less of development factors and loss adjustments and
more of modeling and exposure adjustments.
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APPENDIX A

As an appendix, I wish to comment on the optimization prob-
lem of Dr. Schmidt’s fifth section, and on Dr. Hamer’s general-
ization of it. Though this problem has occasioned some interest-
ing mathematics, I see the problem as a sidelight, as only loosely
related to the Gauss–Markov theorem.

Dr. Schmidt wishes to find the admissible estimator ˆ̄ that
minimizes:

E[(Y!Xˆ̄ )#S!1(Y!Xˆ̄ )]:
Estimator ˆ̄ is admissible if and only if it is a linear function of Y1
and it is unbiased. In his third section he shows that admissible
estimators are of the form B(k"p)Y1 for BX1 = Ik, and Var[ ˆ̄ ] =
Var[BY1] = BVar[Y1]B

# =BS11B
#.

As I had done [2, p. 480f], he factors S!1 as W#W, where:

W=

&
A(p"p) 0(p"q)
C(q"p) D(q"q)

'
,

such that

A#A= S!111 ,

D#D= (S22!S21S!111 S12)!1, and

C =!DS21S!111 :
Now:

W(Y!Xˆ̄ ) =
&
A(p"p) 0(p"q)
C(q"p) D(q"q)

'&
Y1!X1 ˆ̄
Y2!X2 ˆ̄

'

=

&
A(Y1!X1 ˆ̄ )

C(Y1!X1 ˆ̄ )+D(Y2!X2 ˆ̄ )

'
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=

&
A(Y1!X1 ˆ̄ )

DY2!DX2 ˆ̄ +DD!1C(Y1!X1 ˆ̄ )

'

=

&
A(Y1!X1 ˆ̄ )

D(Y2!X2 ˆ̄ +D!1C(Y1!X1 ˆ̄ ))

'

=

&
A(Y1!X1 ˆ̄ )
D(Y2!y2( ˆ̄ ))

'

Therefore:

(Y!Xˆ̄ )#S!1(Y!Xˆ̄ )

= (Y!Xˆ̄ )#W#W(Y!Xˆ̄ )

= (W(Y!Xˆ̄))#(W(Y!Xˆ̄ ))

= [(Y1!X1 ˆ̄ )#A# (Y2!y2( ˆ̄ ))#D#]
&
A(Y1!X1 ˆ̄ )
D(Y2!y2( ˆ̄ ))

'

= (Y1!X1 ˆ̄ )#A#A(Y1!X1 ˆ̄ )

+ (Y2!y2( ˆ̄ ))#D#D(Y2! y2( ˆ̄ ))

= (Y1!X1 ˆ̄ )#S!111 (Y1!X1 ˆ̄ )

+ (Y2!y2( ˆ̄ ))#D#D(Y2! y2( ˆ̄ ))

And we have Dr. Schmidt’s Lemma 5.1:

E[(Y!Xˆ̄ )#S!1(Y!Xˆ̄ )] = E[(Y1!X1 ˆ̄ )#S!111 (Y1!X1 ˆ̄ )]
+E[(Y2! y2( ˆ̄ ))#D#D(Y2!y2( ˆ̄ ))]

To prove his Theorem 5.2 we have to review the trace func-
tion. The trace of a square matrix Q is defined as the sum of
its diagonal elements: tr(Q(n"n)) =

!n
i=1qii. Some theorems that
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should be obvious are:

tr(®Q) = ® tr(Q)

tr(Q#) = tr(Q)

tr(Q1 +Q2) = tr(Q1)+ tr(Q2)

tr(In) = n

If Q is (1"1), then tr(Q) = q11 = Q. (For our purposes we may
ignore the distinction between a scalar and a one-element ma-
trix.) And if Q is a random matrix:

tr(E[Q]) =
n(
i=1

E[qii]

= E

&
n(
i=1

qii

'
= E[tr(Q)]

But a theorem that is not obvious is that if A is (m"n) and B is
(n"m), then the traces of AB and BA are equal. The proof is:

tr(AB) =
m(
i=1

[AB]ii

=
m(
i=1

)* n(
j=1

aijbji

+,
=

n(
j=1

-
m(
i=1

bjiaij

.

=
n(
j=1

[BA]jj = tr(BA)

With this knowledge of the trace we can prove Theorem 5.2.
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We reduce the first term on the right side of Lemma 5.1,
mindful of the fact that the expressions within the expectation
operators are (1"1) matrices:

E[(Y1!X1 ˆ̄ )#S!111 (Y1!X1 ˆ̄ )]

= E[tr((Y1!X1 ˆ̄ )#S!111 (Y1!X1 ˆ̄ ))]

= E[tr(S!111 (Y1!X1 ˆ̄ )(Y1!X1 ˆ̄ )#)]

= tr(E[S!111 (Y1!X1 ˆ̄ )(Y1!X1 ˆ̄ )#])

= tr(S!111 E[(Y1!X1 ˆ̄ )(Y1!X1 ˆ̄ )#])
= tr(S!111 E[(Y1!X1BY1)(Y1!X1BY1)#])
= tr(S!111 E[((Ip!X1B)Y1)((Ip!X1B)Y1)#])

But because ˆ̄ is admissible, BX1 = Ik and:

E[(Ip!X1B)Y1] = (Ip!X1B)E[Y1]
= (Ip!X1B)X1¯
=X1¯!X1BX1¯
=X1¯!X1Ik¯
= 0

So:

E[((Ip!X1B)Y1)((Ip!X1B)Y1)#]
= Var[(Ip!X1B)Y1]
= (Ip!X1B)Var[Y1](Ip!X1B)#

= (Ip!X1B)S11(Ip!X1B)#
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Therefore:

E[(Y1!X1 ˆ̄ )#S!111 (Y1!X1 ˆ̄ )]

= tr(S!111 E[((Ip!X1B)Y1)((Ip!X1B)Y1)#])

= tr(S!111 (Ip!X1B)S11(Ip!X1B)#)

= tr(S!111 (S11!S11B#X#1!X1BS11 +X1BS11B#X#1))

= tr(Ip!B#X#1!S!111 X1BS11 +S!111 X1Var[ ˆ̄ ]X#)

= tr(Ip)! tr(B#X#1)! tr(S!111 X1BS11)+ tr(S!111 X1Var[ ˆ̄ ]X#)

But

tr(Ip) = p,

tr(B#X#1) = tr(X1B),

tr(S!111 X1BS11) = tr(X1BS11S
!1
11 )

= tr(X1B) = tr(BX1) = tr(Ik) = k, and

tr(S!111 X1Var[ ˆ̄ ]X
#
1) = tr(A

#AX1Var[ ˆ̄ ]X
#
1)

= tr(AX1Var[ ˆ̄ ]X
#
1A

#)

= tr((AX1)Var[
ˆ̄ ](AX1)

#):

So we arrive at the second equation of Theorem 5.2:

E[(Y1!X1 ˆ̄ )#S!111 (Y1!X1 ˆ̄ )]

= tr(Ip)! tr(X1B)! tr(S!111 X1BS11) + tr(S!111 X1Var[ ˆ̄ ]X#)

= p!2k+ tr((AX1)Var[ ˆ̄ ](AX1)#)
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Then we reduce the second term:

E[(Y2!y2( ˆ̄ ))#D#D(Y2!y2( ˆ̄ ))]
= E[tr((Y2! y2( ˆ̄ ))#D#D(Y2!y2( ˆ̄ )))]
= E[tr(D#D(Y2!y2( ˆ̄ ))(Y2! y2( ˆ̄ ))#)]
= tr(E[D#D(Y2!y2( ˆ̄ ))(Y2! y2( ˆ̄ ))#])
= tr(D#DE[(Y2!y2( ˆ̄ ))(Y2! y2( ˆ̄ ))#])
= tr(D#DVar[Y2! y2( ˆ̄ )])
= tr(DVar[Y2!y2( ˆ̄ )]D#)

The next-to-last step follows from the fact that y2(
ˆ̄ ) is an ad-

missible predictor of Y2 (as Dr. Schmidt states in his fourth sec-
tion); hence, E[Y2! y2( ˆ̄ )] = 0. But according to Lemma 4.1,
Y2!y2( ˆ̄ ) = D!1h( ˆ̄ ) and:

Var[h( ˆ̄ )] = (CX1 +DX2)Var[
ˆ̄ ](CX1 +DX2)

#+Iq

So by substitution we arrive at the third equation of Theorem
5.2:

E[(Y2!y2( ˆ̄ ))#D#D(Y2!y2( ˆ̄ ))]
= tr(DVar[Y2!y2( ˆ̄ )]D#)
= tr(DVar[D!1h( ˆ̄ )]D#)

= tr(Var[DD!1h( ˆ̄ )])

= tr(Var[h( ˆ̄ )])

= q+tr((CX1 +DX2)Var[
ˆ̄ ](CX1 +DX2)

#)

Dr. Schmidt denotes the Gauss–Markov estimator

(X#1S
!1
11 X1)

!1X#1S
!1
11Y1
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as ¯$. Adapting my notation to his, I can restate the last formula
of my Appendix A [2, p. 474] as:

Var[ ˆ̄ ]!Var[¯$] = %BA!1! (X#1S!111 X1)!1X#1A#&
"%BA!1! (X#1S!111 X1)!1X#1A#&# ' 0,

where, as above, A#A= S!111 and BX1 = Ik. And equality obtains
if and only if:

BA!1! (X#1S!111 X1)!1X#1A# = 0
BA!1 = (X#1S

!1
11 X1)

!1X#1A
#

B= (X#1S
!1
11 X1)

!1X#1A
#A

= (X#1S
!1
11 X1)

!1X#1S
!1
11

Therefore, Var[ ˆ̄ ]!Var[¯$] is non-negative definite (or, as Dr.
Schmidt calls it, positive semidefinite).4

Winding up the optimization problem, we have:

E[(Y!Xˆ̄)#S!1(Y!Xˆ̄ )]!E[(Y!X¯$)#S!1(Y!X¯$)]
= E[(Y1!X1 ˆ̄ )#S!111 (Y1!X1 ˆ̄ )]
!E[(Y1!X1¯$)#S!111 (Y1!X1¯$)]
+E[(Y2!y2( ˆ̄ ))#D#D(Y2! y2( ˆ̄ ))]
!E[(Y2!y2(¯$))#D#D(Y2!y2(¯$))]

= tr((AX1)(Var[ ˆ̄ ]!Var[¯$])(AX1)#)
+ tr((CX1!DX2)(Var[ ˆ̄ ]!Var[¯$])(CX1!DX2)#)

4See [3, pp. 306–309] for an overview of non-negative definite matrices.



778 LOSS PREDICTION BY GENERALIZED LEAST SQUARES

The arguments of the trace functions are non-negative definite
matrices, whose diagonal elements must be non-negative. There-
fore, the traces are non-negative, and:

E[(Y!Xˆ̄ )#S!1(Y!Xˆ̄ )]!E[(Y!X¯$)#S!1(Y!X¯$)]' 0

E[(Y!X¯$)#S!1(Y!X¯$)]( E[(Y!Xˆ̄ )#S!1(Y!Xˆ̄)]
¯$ minimizes the expected quadratic loss, though it may not be
unique among all admissible estimators of ¯.

This problem has led Dr. Hamer to define the “generalized
Schmidt best (GSB)” estimator as the admissible (i.e., linear-
in-Y1 and unbiased) estimator P

$ that minimizes E[(Y2!P)#W#
)W(Y2!P)] over all admissible P, regardless of W.5 He proves
in his Theorem 5.1 that P$ is GSB if and only if it is the best
linear unbiased predictor Ŷ2. Therefore, GSB and “uniformly best
(UB)” are equivalent. Now the set of admissible estimators in
Dr. Schmidt’s problem is a subset of the set of those in Dr.
Hamer’s definition; hence, Ŷ will dominate X¯$ in the optimiza-
tion of E[(Y!P)#W#W(Y!P)].

In his Section 6 Dr. Hamer proves that X¯$ is best if and only
if X1 is square. I wish to present here another proof. The relevant
formulas are:

Ŷ =

&
Ŷ1
Ŷ2

'

=

&
Y1

(S21S
!1
11 + (X2!S21S!111 X1)(X#1S!111 X1)!1X#1S!111 )Y1

'

=

&
Ip

S21S
!1
11 + (X2!S21S!111 X1)(X#1S!111 X1)!1X#1S!111

'
Y1

5I’ve changed his notation, but not his meaning.
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X¯$ =
&
X1
X2

'
(X#1S

!1
11 X1)

!1X#1S
!1
11Y1

=

&
X1(X

#
1S
!1
11 X1)

!1X#1S
!1
11

X2(X
#
1S
!1
11 X1)

!1X#1S
!1
11

'
Y1

The two estimators are identical (i.e., equal, regardless of the
value of Y1) if and only if X1(X

#
1S
!1
11 X1)

!1X#1S
!1
11 = Ip and

X2(X
#
1S
!1
11 X1)

!1X#1S
!1
11

= S21S
!1
11 + (X2!S21S!111 X1)(X#1S!111 X1)!1X#1S!111 :

However, if X1(X
#
1S
!1
11 X1)

!1X#1S
!1
11 = Ip:

X2(X
#
1S
!1
11 X1)

!1X#1S
!1
11

= S21S
!1
11 +X2(X

#
1S
!1
11 X1)

!1X#1S
!1
11 !S21S!111 Ip

= S21S
!1
11 +X2(X

#
1S
!1
11 X1)

!1X#1S
!1
11

!S21S!111 X1(X#1S!111 X1)!1X#1S!111
= S21S

!1
11 + (X2!S21S!111 X1)(X#1S!111 X1)!1X#1S!111

Therefore, the two estimators are identical if and only if
X1(X

#
1S
!1
11 X1)

!1X#1S
!1
11 = Ip.

Now if X1(X
#
1S
!1
11 X1)

!1X#1S
!1
11 = Ip:

p= tr(Ip)

= tr(X1(X
#
1S
!1
11 X1)

!1X#1S
!1
11 )

= tr((X#1S
!1
11 X1)

!1X#1S
!1
11 X1)

= tr(Ik)

= k
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And if p= k, then since the rank of X1 is k (guaranteeing that
X#1S

!1
11 X1 has an inverse), X1 has an inverse. And:

X1(X
#
1S
!1
11 X1)

!1X#1S
!1
11 = X1(X1)

!1(S!111 )
!1(X#1)

!1X#1S
!1
11

= Ip(S
!1
11 )

!1IpS
!1
11

= (S!111 )
!1S!111

= Ip

So X¯$ is best if and only if X1 is square, in which case the
observations constitute a system of simultaneous equations that
has the unique solution ¯$ =X!11 Y1.


