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Abstract

The paper by Halliwell [1] and the Discussion of Hal-
liwell’s paper by Dr. Schmidt both consider the form of
“best” linear unbiased estimators for unknown quanti-
ties based on observable values. This paper proposes a
general definition of “best” called Uniformly Best (UB)
to distinguish it from previous definitions and provides
various equivalent forms for the definition. It shows the
existence and uniqueness of such UB linear unbiased
estimators under fairly general conditions, provides an
alternative formulation of the definition of UB for unbi-
ased estimators, and discusses how Dr. Schmidt’s pro-
posed optimization problem relates to the proposed UB
definition.
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1. THE STRUCTURE OF THE VARIABLES

We follow the notation used by Halliwell and Schmidt. An
n-dimensional random vector Y is vertically partitioned into a
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p-dimensioned vector Y1 of observable outcomes and an n!p
dimensioned vector Y2 of unobservable outcomes. It is assumed
that Y takes the form

Y = X¯0 + e,

where e is an n-dimensional random vector of “error” terms
with zero mean and (n" n) dimensional non-singular variance-
covariance matrix S (thus E[eeT] = S where eT represents the
transpose of e, and S is positive definite), X is a given (n" r)
“design” matrix, and ¯0 is an unknown parameter vector of di-
mension r.

The matrix X and vector e can also be partitioned so that we
may write

Y1 = X1¯0 + e1 and Y2 = X2¯0 + e2,

where X1 is a (p" r) matrix and X2 is a (n!p" r) matrix, and
we assume that X1 is of full rank r.

2. A PROPOSED DEFINITION OF “BEST”—THE OBJECTIVE
FUNCTION

Halliwell provides a definition of “best” in Appendix A of [1],
where he considers linear unbiased estimators ¯ for the unknown
vector ¯0. We use this as a basis for proposing a more general
definition of a “best” estimator P of a “target” quantity T. We
call this definition Uniformly Best to distinguish it from other
definitions of “best” used in [1–3].

Firstly, we provide a definition of a non-negative definite ma-
trix:

DEFINITION 2:1 Non-Negative Definite. An (n"n) matrix M is
non-negative definite if ®TM®# 0 for any n-dimensional vector ®.

Halliwell provides an extensive review of non-negative def-
inite matrices in Appendix A of [2]. Perhaps the most relevant
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characteristic for our purposes is that any non-negative definite
matrix M can be written in the form WTW for some matrix W,
and conversely that any matrix of the formWTW is non-negative
definite.

We use the concept of non-negative definite in our proposed
definition of “best” as follows:

DEFINITION 2:2 Uniformly “Best” (UB) Estimator. A estimator
P$ of a target quantity T is uniformly “best” (UB) if, for any other
admissible estimator P, the matrix %Var(T!P)!Var(T!P$)& is
non-negative definite.

For an n-dimensional random vector z, the upper-case Var(z)
is the (n"n) dimensional variance-covariance matrix of z where

Var(z) = E[(z!E[z])(z!E[z])T]:
Elsewhere, we will use the lower-case var(x) to denote the vari-
ance of a scalar random variable x.

To assist in understanding the nature of a UB estimator, we
provide the following “equivalence” result:

LEMMA 2:1 Suppose we consider estimators P that belong to
some given admissible set J . The following statements are equiv-
alent:

(a) There exists an estimator P$ in J that is the UB estimator
of T.

(b) For any admissible P belonging to J , the matrix %Var(T!P)
!Var(T!P$)& is non-negative definite.

(c) P$ minimizes ®TVar(T!P)® over all admissible P for any
® of appropriate dimension.

(d) P$ minimizes var(®T(T!P)) over all admissible P for any
® of appropriate dimension.

Proof (a) and (b) are equivalent from Definition 2.2.
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From Definition 2.1 and (b), we have

®T[Var(T!P)!Var(T!P$)]®# 0
for any suitable ® and for any P belonging to J . Then

®TVar(T!P)®# ®TVar(T!P$)®
for any P belonging to J , and so (c) follows. To show (d), we
have

®TVar(T!P)®= ®TE[(T!P!E[T!P])(T!P!E[T!P])T]®
=E[®T(T!P!E[T!P])(T!P!E[T!P])T®]
= var(®T(T!P)):

The definition of UB given in (d) provides us with an objective
function that we show below is easy to work with, and is perhaps
the easiest to conceptualize. ®T(T!P) can be interpreted as the
“length” of the projection of the stochastic vector representing
the difference between the target T and the estimator P onto any
fixed vector ®. The UB estimator P$ minimizes the variance of
this projection and does so for any given ®.

The UB criterion is potentially quite difficult to meet. Ex-
panding out var(®T(T!P)) we have:

var(®T(T!P)) =
!!

®i®j cov(Ti!Pi,Tj !Pj):
The UB estimator P$ must minimize this double sum of products
for any possible choice of ®i. However, UB estimators do exist
for suitable admissible sets and targets, as shown below.

3. CONSTRAINTS ON ADMISSIBLE ESTIMATORS AND TARGETS

The definition of UB does not put any particular constraints
on the admissible sets of estimators or on the form of the “target”
quantities. However, it may be necessary to do so to ensure the
existence of UB estimators.

(a) Constraints on Admissible Sets Of Estimators. Following
Halliwell and Schmidt, we wish to consider estimators P that are
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linear in Y1 and unbiased estimators of their “targets” T, so we
define the set J of linear unbiased estimators as follows:

DEFINITION 3:1 The Admissible Set J = J(Y1,T). An estimator
P belongs to J if it is

' linear in Y1 and hence of the form P =QY1 where Q is a (n"p)
matrix;

' unbiased, so that E[P] = E[T].

(b) Constraints on “Targets”. We also need to define the
“target” quantity T that is being estimated. For the Gauss–
Markov theorem it is ¯0, but elsewhere in [1] and in Schmidt’s
paper Y2 and Y are also considered. To encompass all these pos-
sibilities, we consider a general form

T = F1Y1 +F2Y2 +A¯0,

where F1, F2 and A are variables. Since T is a vector of dimension
n, F1 is an (n"p) matrix, F2 is an (n"n!p) matrix, and A is
an (n" r) matrix.

4. EXISTENCE OF A UB LINEAR UNBIASED ESTIMATOR FOR T

The following theorem shows that there are many situations
in which a UB solution not only exists but is unique.

THEOREM 4:1 If T = F1Y1 +F2Y2 +A¯0 and P belongs to the ad-
missible set J , a unique UB linear unbiased estimator P$ =Q$Y1
exists, and

P$ = F1Y1 +F2y2(¯
$) +A¯$,

where

y2(¯
$) = X2¯

$+ S21S
!1
11 (Y1!X1¯$) and

¯$ = (XT1 S
!1
11 X1)

!1XT1 S
!1
11 Y1:
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Proof A proof of this theorem is presented in the Appendix.

Note the appearance of the Gauss–Markov estimator ¯$ and
the predictor y2(¯

$) discussed by Halliwell and Schmidt.

Theorem 4.1 has several interesting special cases.

CASE 1 The UB estimator for ¯0

We set

F1 = F2 = 0 and A=

"
I(r)

0

#
where I(r) is an (r" r) identity matrix. Then

Q$ =
"
¯$

0

#
as required by the Gauss–Markov Theorem, and the definition
of UB is consistent with the Gauss–Markov notion of “best”.

CASE 2 The UB estimator for Y2

We set

F1 = A= 0 and F2 =

"
0

I(n!p)

#
,

where I(n!p) is an (n!p"n!p) identity matrix. Then

Q$ =
"

0

y2(¯
$)

#
,

the form of the “best” predictor suggested by Halliwell.

CASE 3 The UB estimator for Y1

We set

F2 = A= 0 and F1 =

"
I(p)

0

#
:
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Then

Q$ =
"
Y1

0

#
:

Case 3 seems trivial, for of course the difference between an
estimator Y1 and target Y1 will have zero variance. However, this
result still “fits” our process, because the estimator Y1 is certainly
linear in Y1 and unbiased.

CASE 4 The UB estimator for Y

We set

A= 0, F1 =

"
I(p)

0

#
and F2 =

"
0

I(n!p)

#
:

Then

Q$ =
"

Y1

y2(¯
$)

#
:

The UB estimator for Y is thus a linear combination of the UB
estimators for Y1 and Y2. This last result will be used in Section 6.

5. A FURTHER CHARACTERIZATION OF UB

In his Discussion, Schmidt proposes a related optimization
problem in which the objective function to be minimized is
E[(Y!X¯)TS!1(Y!X¯)].
We generalize Schmidt’s objective function by replacing S!1

with any non-negative definite matrix H, and use this to de-
fine another type of estimator, which we will call Generalized
Schmidt Best.

DEFINITION 5:1 Generalized Schmidt Best (GSB) Estimator. An
estimator P$ of a target quantity T is GSB if it minimizes

E[(T!P)TH(T!P)]
over all admissible estimators P for any (n" n) non-negative def-
inite matrix H.
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How does a GSB estimator relate to a UB estimator? Rather
surprisingly, the answer is that when the admissible set consists
of unbiased estimators, if one exists, then they both exist and are
the same.

THEOREM 5:1 If the admissible estimators P of a general target
T are all unbiased, an estimator P$ is UB if and only if it is GSB.

Proof From our discussion of non-negative matrices, we
know we can write H =WWT for some (n"n) matrix W. Now
let zi be a vector whose ith component is 1 and whose other
components are all zero.

(i) Suppose a UB estimator P$ exists. For any other unbiased
estimator P and any H =WWT,

E[(T!P)TWWT(T!P)]
= trace%E[WT(T!P)(T!P)TW]&
= trace%WTVar(T!P)W&, since E[T!P] = 0
=§zTi W

TVar(T!P)Wzi, where the sum is over i

=§®Ti Var(T!P)®i for ®i =Wzi

#§®Ti Var(T!P$)®I, since P$ is UB

= E[(T!P$)TWWT(T!P$)]:
Thus P$ is also GSB.

(ii) Suppose a GSB estimator P$ exists but P$ is not UB. This
means, for some ®# and for some admissible P, we must
have

®#TVar(T!P$)®# > ®#TVar(T!P)®#:
We can construct the matrix W# = %®#,®# : : : ,®#) so that
®# =W#zi for any i. Then

zTi W
#TVar(T!P$)W#zi > z

T
i W

#TVar(T!P)W#zi

for any zi:
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Thus

E[(T!P$)TW#W#T(T!P$)]
> E[(T!P)TW#W#T(T!P)],

which contradicts the assumption that P$ is GSB. Thus P$
is also UB.

This proof does not require that the admissible estimators be
linear in Y1, nor does it impose any constraint on the form of
the “target” T. But it is likely that a “best” solution will not
always exist unless there are further restrictions on the admissible
estimator set and the target because the UB and GSB conditions
are so strong. When T is linear in Y1, Y2 and ¯0 and the set J
consists of linear unbiased estimators, Theorem 4.1 tells us that
a UB estimator does exist, and then, from Theorem 5.1, the GSB
estimator will be the same as a UB estimator.

More generally, we can use Theorem 5.1 to state an extended
“equivalence” result.

LEMMA 5:1 If the admissible set only contains unbiased estima-
tors of a general “target” T, the following statements are equiva-
lent (but not necessarily true):

(a) There exists a P$ that is the UB estimator of T for all ad-
missible estimators P.

(b) For any unbiased P, the matrix %Var(T!P)!Var(T!P$)&
is non-negative definite.

(c) P$ minimizes ®TVar(T!P)® over all admissible P for any
® of appropriate dimension.

(d) P$ minimizes var(®T(T!P)) over all admissible P for any
® of appropriate dimension.

(e) P$ minimizes E[(T!P)TH(T!P)] over all admissible P
for any non-negative definite matrix H of appropriate di-
mension.



LOSS PREDICTION BY GENERALIZED LEAST SQUARES 757

If we expand the objective function in (e), we get

E[(T!P)TH(T!P)] =
!!

hij cov(Ti!Pi,Tj !Pj),
and the UB estimator P$ minimizes this double sum over all
possible choices of hij provided the hij belong to a non-negative
definite matrix. This is more general than (d), which corresponds
to the case where hij = ®i®j. (Note: we can think of any non-
negative definite matrix as a possible variance-covariance matrix
if we allow the possibility that some of the variances may be zero.
In this context, (d) corresponds to the case where all correlations
are either +1 or !1, and (e) generalizes this to correlations in
between.)

6. RELATIONSHIP BETWEEN “BEST” AND SCHMIDT’S
OPTIMIZATION PROBLEM

In his Discussion and in [3], Schmidt suggests an optimization
problem as a way of justifying the form of the “best” estimators
for Y1 and Y2. Schmidt shows that his optimization problem can
be decomposed into two parts, one involving only Y1 and the
other involving only Y2. Further, he shows that the solution to the
initial optimization problem is achieved by ¯ = ¯$, the Gauss–
Markov estimator for ¯0, and ¯

$ minimizes each of the parts
separately. In view of this optimization, Schmidt proposes that
the solutions to the separate optimization problems of the parts
are “best” estimators for Y1 and Y2, respectively.

The objective function for his optimization problem is a spe-
cial case of the GSB objective function when H = S!1 and the
target T = Y. In addition, however, Schmidt’s optimization prob-
lem requires that the admissible estimators belong to a set K,
where

K = %P : P = X¯ where ¯ = BY1 and BX1 = I(r)&:
This constraint means that the estimators in K are linear unbiased
estimators of Y, but also the estimators BY1 are also unbiased
estimators of ¯0.
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Although Schmidt’s optimization looks like the GSB objec-
tive function and K is a subset of J , the solution to Schmidt’s
optimization is not in general a UB estimator for Y. This is be-
cause K does not include all linear unbiased estimators of Y, and
in general (except in the special circumstance detailed below) the
UB linear unbiased estimator of Y is not in K.

THEOREM 6:1 Unless X1 is square, the UB linear unbiased esti-
mator for Y will not belong to K.

Proof From Theorem 4.1, the UB estimator of Y among all
unbiased linear estimators is

P$ =
"

Y1

y2(¯
$)

#
and it is unique. If P$ belonged to K, we would require X1B$ =
I(p) as well as B$X1 = I(r), where I(p) and I(r) are (p"p) and
(n"n) identity matrices, respectively. However,

r = trace(I(r)) = trace(B$X1)

= trace(X1B
$),

= trace(I(p)) = p:

since trace(AB) = trace(BA) for any matrices A and B,

This is a contradiction unless r = p, in which case X1 and B are
square.

The solution to Schmidt’s optimization for a “target” Y is the
vector "

X1¯
$

X2¯
$

#
which in general is quite different to the UB estimator

P$ =
"

Y1

y2(¯
$)

#
:
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Nevertheless, Schmidt’s analysis does produce the UB estima-
tor for Y2. To get the “best” estimator for Y2, Schmidt minimizes
E[(Y2! y2(¯))TDTD(Y2! y2(¯))] for a particular matrix D related
to S!1, over possible ¯ belonging to the set L$ = %¯ : ¯ = BY1
and BX1 = I(r)&. In this case, L$ contains ¯$, and the correspond-
ing estimator y2(¯

$) belongs to J and is UB. Because of this, we
know that y2(¯

$) will be a solution to Schmidt’s optimization for
any matrix D.

The “best” estimator for Y1 derived by Schmidt’s analysis is
X1¯

$, which compares to the UB estimator Y1. Using the argu-
ments of Theorem 6.1, it can be shown that L$ does not contain
a ¯ such that Y1 = X1¯ unless X1 is square.

If the above restrictions on the admissible estimators in
Schmidt’s optimization are removed, we know from Lemma 5.1
that the resulting solution(s) will be UB. In these circumstances,
Schmidt’s optimization problem may then be generalized by re-
placing S!1 in the objective function with any non-negative def-
inite matrix of appropriate dimension.

7. SUMMARY

We have proposed a general definition of “best” that we have
termed Uniform Best (UB) and that is consistent with the Gauss–
Markov Theorem. We have also provided a number of equivalent
forms of the UB definition. We have then shown that for a “tar-
get” T linear in Y1 and Y2 there is always a unique UB linear
unbiased estimator of the form QY1. We have also shown that a
generalization of the optimization problem proposed by Schmidt
provides yet another characterization of UB. Finally, we have
shown that the admissibility conditions imposed by Schmidt on
the set of estimators in his optimization problem generally pre-
vent the solution to his problem from being UB, although his
“best” and the UB linear unbiased estimators for Y2 are the same.
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APPENDIX

PROOF OF THEOREM 4.1

Consider two linear unbiased estimators P and P$ for T. Then

E[P] = E[QY1] =QX1¯0 = E[T] = E[P
$] =Q$X1¯0:

Since this must hold for any ¯0, we have (Q
$ !Q)X1 = 0.

Then, for any ®,

var(®T(T!P)) = var(®T(T!P$)+®T(P$ !P))
= var(®T(T!P$))+ var(®T(P$ !P))
+2cov(®T(T!P$),®T(P$ !P)):

Now

cov(®T(T!P$),®T(P$ !P))
= E[®T(T!P$)®T(P$ !P)]
= E[®T(T!P$)(P$ !P)T®]
= E[®T((F1!Q$)Y1 +F2Y2)YT1 (Q$ !Q)T®]
= ®T%(F1!Q$)E[Y1YT1 ]+F2E[Y2YT1 ]&(Q$ !Q)T®
= ®T%(F1!Q$)S11 +F2S21&(Q$ !Q)T®:

Suppose (F1!Q$)S11 +F2S21 is of the form GXT1 , so that

Q$ = F1 +F2S21S
!1
11 !GXT1 S!111 :

Then

cov(®T(T!P$),®T(P$ !P)) = ®TGXT1 (Q$ !Q)T®
= 0, since (Q$ !Q)X1 = 0:
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So, for any admissible P,

var(®T(T!P)) = var(®T(T!P$))+ var(®T(P$ !P))
# var(®T(T!P$)):

Since P$ =Q$Y1 minimizes var(®T(T!P)), by Lemma 2.1, it is
UB.

We now solve for the form of G. The unbiased property of
estimators P =QY1 for T requires that

E[T] = F1X1¯0 +F2X2¯0 +A¯0 = E[P] =QX1¯0

and, since this holds for any ¯0, we have

F1X1 +F2X2 +A=QX1:

Then we have

Q$ = F1X1 +F2S21S
!1
11 X1!GXT1 S!111 X1 = F1X1 +F2X2 +A,

and so

G = %F2(S21S!111 X1!X2)!A&(XT1 S!111 X1)!1:
Substituting this back into the expression for Q$ gives

Q$ = F1 +F2S21S
!1
11 !%F2(S21S!111 X1!X2)!A&B$,

where
B$ = (XT1 S

!1
11 X1)

!1XT1 S
!1
11 :

Rearranging, we get

Q$ = F1 +F2%X2B$+ S21S!111 (I!X1B$)&+AB$:
Finally, multiplying through by Y1 gives

P$ = F1Y1 +F2y2(¯
$) +A¯$,

where

y2(¯
$) = X2¯

$+ S21S
!1
11 (Y1!X1¯$) and

¯$ = B$Y1 = (X
T
1 S

!1
11 X1)

!1XT1 S
!1
11 Y1:
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So far we have shown the existence of a “best” estimator. Con-
sider another admissible estimator P$$ =Q$$Y1. Because P$ min-
imizes var(®T(T!P)), we have from above that

var(®T(T!P$$)) = var(®T(T!P$))+ var(®T(P$ !P$$)):
If P$$ also minimizes var(®T(T!P)), then

var(®T(T!P$$)) = var(®T(T!P$)),
and so

var(®T(P$ !P$$)) = 0 for any ®:

Substituting (P$ !P$$) = (Q$ !Q$$)Y1 into this equation gives
var(®T(P$ !P$$)) = var(®T(Q$ !Q$$)Y1)

= ®T(Q$ !Q$$)S11(Q$ !Q$$)T®= 0:
S11, the variance-covariance matrix of Y1, is positive definite, so
this implies

®T(Q$ !Q$$) = 0 for any ®:

Since Q$ and Q$$ are independent of ®, we must have Q$ =Q$$,
and so the “best” estimator P$ =Q$Y1 is also unique.


