
DISCUSSION OF PAPER PUBLISHED IN
VOLUME LXXXIII

LOSS PREDICTION BY GENERALIZED LEAST SQUARES

LEIGH J. HALLIWELL

DISCUSSION BY KLAUS D. SCHMIDT

Abstract

In a recent paper on loss reserving, Halliwell suggests
predicting outstanding claims by the method of general-
ized least squares applied to a linear model. An example
is the linear model given by

E[Zi,k] = ¹+®i+ °k,

where Zi,k is the total claim amount of all claims which
occur in year i and are settled in year i+ k. The predic-
tor proposed by Halliwell is known in econometrics but
it is perhaps not well-known to actuaries. The present
discussion completes and simplifies the argument used
by Halliwell to justify the predictor; in particular, it is
shown that there is no need to consider conditional dis-
tributions.

1. LOSS RESERVING

For i,k ! "0,1, : : : ,n#, let Zi,k denote the total claim amount of
all claims which occur in year i and are settled in year i+ k. We
assume that the incremental claims Zi,k are observable for i+ k $
n and that they are non-observable for i+ k > n. The observable
incremental claims are represented by the run-off triangle (Table
1).

The non-observable incremental claims are to be predicted
from the observable ones. Whether or not certain predictors are
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TABLE 1

Occurrence Development Year
Year 0 1 : : : k : : : n% i : : : n% 1 n

0 Z0,0 Z0,1 : : : Z0,k : : : Z0,n%i : : : Z0,n%1 Z0,n
1 Z1,0 Z1,1 : : : Z1,k : : : Z1,n%i : : : Z1,n%1
...

...
...

...
...

i Zi,0 Zi,1 : : : Zi,k : : : Zi,n%i
...

...
...

...

n% k Zn%k,0 Zn%k,1 : : : Zn%k,k
...

...
...

n% 1 Zn%1,0 Zn%1,1
n Zn,0

preferable to others depends on the stochastic mechanism gener-
ating the data. It is thus necessary to first formulate a stochastic
model and to fix the properties the predictors should have.

For example, we may assume that the incremental claims sat-
isfy the linear model given by

E[Zi,k] = ¹+®i+ °k,

with real parameters ¹,®0,®1, : : : ,®n,°0,°1, : : : ,°n such that!n
i=0®i = 0 =

!n
k=0 °k. This means that the expected incremental

claims are determined by an overall mean ¹ and corrections ®i
and °k depending on the occurrence year i and the development
year k, respectively.

2. THE LINEAR MODEL WITH MISSING OBSERVATIONS

The model considered in the previous section is a special case
of the linear model considered by Halliwell [2]:

Let Y be an (m&1) random vector satisfying

E[Y] =X¯



738 LOSS PREDICTION BY GENERALIZED LEAST SQUARES

and
Var[Y] = S

for some known (m& k) design matrix X, some unknown (k&1)
parameter vector ¯, and some known (m&m) matrix S which is
assumed to be positive definite.

We assume that some but not all coordinates of Y are observ-
able. Without loss of generality, we may and do assume that the
first p coordinates of Y are observable while the last q :=m%p
coordinates of Y are non-observable. We may thus write

Y=

"
Y1
Y2

#
,

where Y1 consists of the observable coordinates of Y, and Y2
consists of the non-observable coordinates of Y. Accordingly,
we partition the design matrix X into

X=

"
X1
X2

#
:

We assume that
Rank(X1) = k $ p:

Then X has full rank and X'X is invertible.

Following Halliwell, we partition S into

S=

"
S11 S12
S21 S22

#
,

where

S11 := Cov[Y1,Y1] = Var[Y1]

S12 := Cov[Y1,Y2]

S21 := Cov[Y2,Y1]

S22 := Cov[Y2,Y2] = Var[Y2]:
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Then S11 and S22 are positive definite, and we also have S
'
21 =

S12. Moreover, S22%S21S%111 S12 is positive definite. Then S11 and
S22%S21S%111 S12 are invertible, and there exist invertible matrices
A and D satisfying

A'A= S%111
and

D'D= (S22%S21S%111 S12)%1:
Define

C :=%DS21S%111
and let

W :=

"
A 0

C D

#
:

Then we have
W'W= S%1:

In the following sections, we study the problem of estimating
¯ and of predicting Y2 by estimators or predictors based on Y1.

3. ESTIMATION

Let us first consider the problem of estimating ¯.

A random vector ˆ̄ with values in Rk is

– a linear estimator (of ¯) if it satisfies ˆ̄ = BY1 for some ma-
trix B,

– an unbiased estimator (of ¯) if it satisfies E[ ˆ̄ ] = ¯, and

– an admissible estimator (of ¯) if it is linear and unbiased.

A linear estimator ˆ̄ = BY1 of ¯ is unbiased if and only if
BX1 = Ik.

A particular admissible estimator of ¯ is the Gauss–Markov
estimator ¯(, which is defined as

¯( := (X'1S
%1
11X1)

%1X'1S
%1
11Y1:
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Among all admissible estimators of ¯, the Gauss–Markov esti-
mator is distinguished due to the Gauss–Markov Theorem:

THEOREM 3:1 The Gauss–Markov estimator ¯( satisfies

Var[¯(] = (X'1S
%1
11X1)

%1:

Moreover, for each admissible estimator ˆ̄ , the matrix

Var[ ˆ̄ ]%Var[¯(]
is positive semidefinite.

In a sense, the Gauss–Markov Theorem asserts that the
Gauss–Markov estimator has minimal variance among all ad-
missible estimators of ¯. Since

E[(¯% ˆ̄ )'(¯% ˆ̄ )] = E[tr((¯% ˆ̄ )'(¯% ˆ̄ ))]
= E[tr((¯% ˆ̄ )(¯% ˆ̄ )')]
= tr(E[(¯% ˆ̄ )(¯% ˆ̄ )'])
= tr(Var[ ˆ̄ ]):

we see that the Gauss–Markov estimator also minimizes the ex-
pected quadratic estimation error over all admissible estimators
of ¯.

4. PREDICTION

Let us now turn to the problem of predicting Y2.

A random vector Ŷ2 with values in R
q is

– a linear predictor (of Y2) if it satisfies Ŷ2 =QY1 for some
matrix Q,

– an unbiased predictor (of Y2) if it satisfies E[Ŷ2] = E[Y2], and

– an admissible predictor (of Y2) if it is linear and unbiased.
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A linear predictor Ŷ2 =QY1 of Y2 is unbiased if and only if
QX1 =X2.

For an admissible estimator ˆ̄ , define

Y2( ˆ̄ ) :=X2 ˆ̄ %D%1C(Y1%X1 ˆ̄ )
and

h( ˆ̄ ) :=%(CX1 +DX2)( ˆ̄ %¯)+ (Ce1 +De2),
where e1 :=Y1%X1¯ and e2 :=Y2%X2¯. Then Y2( ˆ̄ ) is an ad-
missible predictor of Y2.

Following Halliwell, we have the following

LEMMA 4:1 The identities

Y2 =Y2( ˆ̄ ) +D
%1h( ˆ̄ )

as well as
E[h( ˆ̄ )] = 0

and

Var[h( ˆ̄ )] = (CX1 +DX2)Var[ ˆ̄ ](CX1 +DX2)
'+ Iq

hold for each admissible estimator ˆ̄ ; in particular, the matrix

Var[h( ˆ̄ )]%Var[h(¯()]
is positive semidefinite.

From the last assertion of Lemma 4.1, which is a conse-
quence of the Gauss–Markov theorem, Halliwell concludes that
the Gauss–Markov predictor Y2(¯

() is the best unbiased linear
predictor of Y2. This conclusion, however, is not justified in his
paper. A partial justification is given by the following

LEMMA 4:2 For each admissible estimator ˆ̄ , the matrix

Var[Y2%Y2( ˆ̄ )]%Var[Y2%Y2(¯()]
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is positive semidefinite.

The proof of this lemma is that since Y2( ˆ̄ ) is an unbiased
predictor of Y2, we have

Var[Y2%Y2( ˆ̄ )] = E[(Y2%Y2( ˆ̄ ))(Y2%Y2( ˆ̄ ))']
= E[(D%1h( ˆ̄ ))(D%1h( ˆ̄ ))']

=D%1E[h( ˆ̄ )(h( ˆ̄ ))'](D%1)'

=D%1Var[h( ˆ̄ )](D%1)':

Now the assertion follows from Lemma 4.1.

We may even push the discussion a bit further: Why should
we confine ourselves to predictors which can be written as Y2( ˆ̄ )
for some admissible estimator ˆ̄ ? There may be other unbiased
linear predictors Ŷ2 for which

Var[Y2%Y2(¯()]%Var[Y2% Ŷ2]
and hence

Var[Y2%Y2( ˆ̄ )]%Var[Y2% Ŷ2]
is positive semidefinite. The following result improves Lemma
4.2:

THEOREM 4:3 For each admissible predictor Ŷ2, the matrix

Var[Y2% Ŷ2]%Var[Y2%Y2(¯()]
is positive semidefinite.

A proof of this theorem can also be presented. Consider a
matrix Q satisfying

Ŷ2 =QY1

and hence QX1 =X2. Letting

Q( := S21S
%1
11 + (X2%S21S%111X1)(X'1S%111X1)%1X'1S%111 ,
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we obtain

Y2(¯
() =X2¯

( %D%1C(Y1%X1¯()
=X2¯

(+S21S
%1
11 (Y1%X1¯()

= S21S
%1
11Y1 + (X2%S21S%111X1)¯(

= S21S
%1
11Y1 + (X2%S21S%111X1)(X'1S%111X1)%1X'1S%111Y1

=Q(Y1:

Since Q(X1 =X2 =QX1, we have

Cov[Y2%Y2(¯(),Y2(¯()% Ŷ2]
= Cov[Y2%Q(Y1,Q(Y1%QY1]
= (S21%Q(S11)(Q( %Q)'
=%(X2%S21S%111X1)(X'1S%111X1)%1X'1(Q( %Q)'

=%(X2%S21S%111X1)(X'1S%111X1)%1(Q(X1%QX1)'
= 0,

and hence

Var[Y2% Ŷ2] = Var[(Y2%Y2(¯())+ (Y2(¯()% Ŷ2)]
= Var[Y2%Y2(¯()]+Var[Y2(¯()% Ŷ2]:

The assertion follows.

Theorem 4.3 asserts that the Gauss–Markov predictor min-
imizes the variance of the prediction error over all admissible
predictors of Y2. Since

E[(Y2% Ŷ2)'(Y2% Ŷ2)] = tr(Var[Y2% Ŷ2]),
we see that the Gauss–Markov predictor also minimizes the ex-
pected quadratic prediction error over all admissible predictors
of Y2.
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5. A RELATED OPTIMIZATION PROBLEM

To complete the discussion of the predictor proposed by Hal-
liwell, we consider the following optimization problem:

Minimize E[(Y%X ˆ̄ )'S%1(Y%X ˆ̄ )]
over all admissible estimators ˆ̄ of ¯:

We thus aim at minimizing an objective function in which
there is no discrimination between the observable and the non-
observable part of Y; this distinction, however, is present in the
definition of an admissible estimator.

Because of S%1 =W'W and the structure of W, it is easy to
see that the objective function of the optimization problem can
be decomposed into an approximation part and a prediction part:

LEMMA 5:1 The identity

E[(Y%X ˆ̄ )'S%1(Y%X ˆ̄ )]
= E[(Y1%X1 ˆ̄ )'S%111 (Y1%X1 ˆ̄ )]
+E[(Y2%Y2( ˆ̄ ))'D'D(Y2%Y2( ˆ̄ ))]

holds for each admissible estimator ˆ̄ .

Moreover, using similar arguments as before, the three expec-
tations occurring in Lemma 5.1 can be represented as follows:

THEOREM 5:2 The identities

E[(Y%X ˆ̄ )'S%1(Y%X ˆ̄ )]
= (p+ q)% 2k+tr((WX)Var[ ˆ̄ ](WX)')

as well as

E[(Y1%X1 ˆ̄ )'S%111 (Y1%X1 ˆ̄ )]
= p% 2k+tr((AX1)Var[ ˆ̄ ](AX1)')
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and

E[(Y2%Y2( ˆ̄ ))'D'D(Y2%Y2( ˆ̄ ))]
= q+tr((CX1 +DX2)Var[ ˆ̄ ](CX1 +DX2)

')

hold for each admissible estimator ˆ̄ .

Because of Theorem 5.2, each of the three expectations occur-
ring in Lemma 5.1 is minimized by the Gauss–Markov estimator
¯(. We have thus again justified the restriction to predictors of
Y2, which can be written as Y2( ˆ̄ ) for some admissible estima-
tor ˆ̄ .

The technical details concerning the proofs of the results of
this section can be found in Schmidt [4].

6. CONDITIONING

Following the example of Y having a multivariate normal dis-
tribution, Halliwell uses arguments related to the conditional dis-
tribution of Y2 with respect to Y1; in particular, he claims that
Y2(¯

() is the conditional expectation E(Y2 )Y1) of Y2 with re-
spect to Y1. This is not true in general; without particular as-
sumptions on the distribution of Y, the conditional expectation
E(Y2 )Y1) may fail to be linear in Y1, and the unbiased linear
predictor of Y2 based on Y1 minimizing the expected quadratic
loss may fail to be the conditional expectation E(Y2 )Y1).
Moreover, since the identities of Lemma 4.1 hold for each

admissible estimator ˆ̄ (and not only for the Gauss–Markov es-
timator ¯(), Halliwell’s arguments [2, p. 482] suggest that each
admissible estimator ˆ̄ satisfies

E(Y2 )Y1) =X2 ˆ̄ %D%1C(Y1%X1 ˆ̄ )
and

Var(Y2 )Y1) =D%1Var[h( ˆ̄ )](D%1)':
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Again, this cannot be true since in both cases the left hand side
depends only on Y1, whereas the right hand side also varies with
the matrix B defining the admissible estimator ˆ̄ = BY1.

More generally, when only unconditional moments of the dis-
tribution of the random vector Y are specified, it is impossible
to obtain any conclusions concerning the conditional distribution
of its non-observable part Y2 with respect to its observable part
Y1.

REMARKS

Traditional least squares theory aims at minimizing the
quadratic loss

(Y%X ˆ̄ )'S%1(Y%X ˆ̄ ),
where all coordinates of Y are observable. It also involves con-
siderations concerning the variance of ˆ̄ , and it usually handles
prediction as a separate problem which has to be solved after
estimating ¯.

In Section 5 of the present paper, we proposed instead to
minimize the expected quadratic loss

E[(Y%X ˆ̄ )'S%1(Y%X ˆ̄ )],
where some but not all of the coordinates of Y are observable
and the admissible estimators of ¯ are unbiased and linear in the
observable part Y1 of Y. This approach has several advantages:

– The expected quadratic loss can be expressed in terms of var[ ˆ̄ ]
such that minimization of the expected quadratic loss and min-
imization of var[ ˆ̄ ] turns out to be the same problem (see The-
orem 5.2).

– The expected quadratic loss can be decomposed in a canonical
way into an approximation part and a prediction part such that
the expected quadratic loss and its two components are si-
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multaneously minimized by the Gauss–Markov estimator (see
Lemma 5.1).

– Inserting the Gauss–Markov estimator in the prediction part of
the expected quadratic loss provides an unbiased linear pre-
dictor for the non-observable part Y2 of Y.

We thus obtain the predictor proposed by Halliwell [2] by a
direct approach which avoids conditioning. This predictor was
first proposed by Goldberger [1] (see also Rao and Toutenburg
[3; Theorem 6.2]).
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