DISCUSSION OF PAPER PUBLISHED IN VOLUME LXXXIII

LOSS PREDICTION BY GENERALIZED LEAST SQUARES

LEIGH J. HALLIWELL

DISCUSSION BY KLAUS D. SCHMIDT

Abstract

In a recent paper on loss reserving, Halliwell suggests predicting outstanding claims by the method of generalized least squares applied to a linear model. An example is the linear model given by

$$E[Z_{i,k}] = \mu + \alpha_i + \gamma_k,$$

where $Z_{i,k}$ is the total claim amount of all claims which occur in year i and are settled in year i + k. The predictor proposed by Halliwell is known in econometrics but it is perhaps not well-known to actuaries. The present discussion completes and simplifies the argument used by Halliwell to justify the predictor; in particular, it is shown that there is no need to consider conditional distributions.

1. LOSS RESERVING

For $i, k \in \{0, 1, ..., n\}$, let $Z_{i,k}$ denote the total claim amount of all claims which occur in year *i* and are settled in year i + k. We assume that the *incremental claims* $Z_{i,k}$ are observable for $i + k \le n$ and that they are non-observable for i + k > n. The observable incremental claims are represented by the *run-off triangle* (Table 1).

The non-observable incremental claims are to be predicted from the observable ones. Whether or not certain predictors are

TABLE 1

Occurrence	Development Year								
Year	0	1		k		n-i		n-1	n
0	Z _{0,0}	$Z_{0,1}$		$Z_{0,k}$		$Z_{0,n-i}$		$Z_{0,n-1}$	$Z_{0,n}$
1	$Z_{1,0}$	$Z_{1,1}$		$Z_{1,k}$		$Z_{1,n-i}$		$Z_{1,n-1}$	
÷	÷	÷		÷		÷			
i	$Z_{i,0}$	$Z_{i,1}$		$Z_{i,k}$		$Z_{i,n-i}$			
:	÷	÷		÷					
n-k	$Z_{n-k,0}$	$Z_{n-k,1}$		$Z_{n-k,k}$					
÷	÷	÷							
n-1	$Z_{n-1,0}$	$Z_{n-1,1}$							
n	$Z_{n,0}$								

preferable to others depends on the stochastic mechanism generating the data. It is thus necessary to first formulate a stochastic model and to fix the properties the predictors should have.

For example, we may assume that the incremental claims satisfy the *linear model* given by

$$E[Z_{i,k}] = \mu + \alpha_i + \gamma_k,$$

with real parameters $\mu, \alpha_0, \alpha_1, \dots, \alpha_n, \gamma_0, \gamma_1, \dots, \gamma_n$ such that $\sum_{i=0}^{n} \alpha_i = 0 = \sum_{k=0}^{n} \gamma_k$. This means that the expected incremental claims are determined by an overall mean μ and corrections α_i and γ_k depending on the *occurrence year i* and the *development year k*, respectively.

2. THE LINEAR MODEL WITH MISSING OBSERVATIONS

The model considered in the previous section is a special case of the linear model considered by Halliwell [2]:

Let **Y** be an $(m \times 1)$ random vector satisfying

$$E[\mathbf{Y}] = \mathbf{X}\boldsymbol{\beta}$$

and

$Var[\mathbf{Y}] = \mathbf{S}$

for some known $(m \times k)$ design matrix **X**, some unknown $(k \times 1)$ parameter vector β , and some known $(m \times m)$ matrix **S** which is assumed to be positive definite.

We assume that some but not all coordinates of **Y** are observable. Without loss of generality, we may and do assume that the first *p* coordinates of **Y** are observable while the last q := m - pcoordinates of **Y** are non-observable. We may thus write

$$\mathbf{Y} = \begin{pmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{pmatrix},$$

where \mathbf{Y}_1 consists of the observable coordinates of \mathbf{Y} , and \mathbf{Y}_2 consists of the non-observable coordinates of \mathbf{Y} . Accordingly, we partition the design matrix \mathbf{X} into

$$\mathbf{X} = \begin{pmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{pmatrix}.$$

We assume that

$$\operatorname{Rank}(\mathbf{X}_1) = k \le p.$$

Then **X** has full rank and $\mathbf{X}'\mathbf{X}$ is invertible.

Following Halliwell, we partition S into

$$\mathbf{S} = \begin{pmatrix} \mathbf{S}_{11} & \mathbf{S}_{12} \\ \mathbf{S}_{21} & \mathbf{S}_{22} \end{pmatrix},$$

where

$$\mathbf{S}_{11} := \operatorname{Cov}[\mathbf{Y}_1, \mathbf{Y}_1] = \operatorname{Var}[\mathbf{Y}_1]$$
$$\mathbf{S}_{12} := \operatorname{Cov}[\mathbf{Y}_1, \mathbf{Y}_2]$$
$$\mathbf{S}_{21} := \operatorname{Cov}[\mathbf{Y}_2, \mathbf{Y}_1]$$
$$\mathbf{S}_{22} := \operatorname{Cov}[\mathbf{Y}_2, \mathbf{Y}_2] = \operatorname{Var}[\mathbf{Y}_2].$$

738

Then S_{11} and S_{22} are positive definite, and we also have $S'_{21} = S_{12}$. Moreover, $S_{22} - S_{21}S_{11}^{-1}S_{12}$ is positive definite. Then S_{11} and $S_{22} - S_{21}S_{11}^{-1}S_{12}$ are invertible, and there exist invertible matrices **A** and **D** satisfying

 $A'A = S_{11}^{-1}$

and

$$\mathbf{D}'\mathbf{D} = (\mathbf{S}_{22} - \mathbf{S}_{21}\mathbf{S}_{11}^{-1}\mathbf{S}_{12})^{-1}.$$

Define

$$\mathbf{C} := -\mathbf{D}\mathbf{S}_{21}\mathbf{S}_{11}^{-1}$$

and let

$$\mathbf{W} := \begin{pmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{C} & \mathbf{D} \end{pmatrix}.$$

Then we have

$$\mathbf{W}'\mathbf{W} = \mathbf{S}^{-1}$$

In the following sections, we study the problem of estimating β and of predicting \mathbf{Y}_2 by estimators or predictors based on \mathbf{Y}_1 .

3. ESTIMATION

Let us first consider the problem of estimating β .

A random vector $\hat{\boldsymbol{\beta}}$ with values in \mathbf{R}^k is

- a *linear estimator* (of β) if it satisfies $\hat{\beta} = \mathbf{B}\mathbf{Y}_1$ for some matrix **B**,

– an unbiased estimator (of β) if it satisfies $E[\hat{\beta}] = \beta$, and

- an *admissible estimator* (of β) if it is linear and unbiased.

A linear estimator $\hat{\boldsymbol{\beta}} = \mathbf{B}\mathbf{Y}_1$ of $\boldsymbol{\beta}$ is unbiased if and only if $\mathbf{B}\mathbf{X}_1 = \mathbf{I}_k$.

A particular admissible estimator of β is the *Gauss–Markov* estimator β^* , which is defined as

$$\boldsymbol{\beta}^* := (\mathbf{X}_1' \mathbf{S}_{11}^{-1} \mathbf{X}_1)^{-1} \mathbf{X}_1' \mathbf{S}_{11}^{-1} \mathbf{Y}_1.$$

LOSS PREDICTION BY GENERALIZED LEAST SQUARES

Among all admissible estimators of β , the Gauss–Markov estimator is distinguished due to the *Gauss–Markov Theorem*:

THEOREM 3.1 The Gauss–Markov estimator β^* satisfies

$$Var[\beta^*] = (\mathbf{X}_1' \mathbf{S}_{11}^{-1} \mathbf{X}_1)^{-1}$$

Moreover, for each admissible estimator $\hat{\beta}$, the matrix

$$\operatorname{Var}[\beta] - \operatorname{Var}[\beta^*]$$

is positive semidefinite.

740

In a sense, the Gauss–Markov Theorem asserts that the Gauss–Markov estimator has minimal variance among all admissible estimators of β . Since

$$E[(\beta - \hat{\beta})'(\beta - \hat{\beta})] = E[tr((\beta - \hat{\beta})'(\beta - \hat{\beta}))]$$
$$= E[tr((\beta - \hat{\beta})(\beta - \hat{\beta})')]$$
$$= tr(E[(\beta - \hat{\beta})(\beta - \hat{\beta})'])$$
$$= tr(Var[\hat{\beta}]).$$

we see that the Gauss–Markov estimator also minimizes the *expected quadratic estimation error* over all admissible estimators of β .

4. PREDICTION

Let us now turn to the problem of predicting \mathbf{Y}_2 .

A random vector $\hat{\mathbf{Y}}_2$ with values in \mathbf{R}^q is

- a *linear predictor* (of \mathbf{Y}_2) if it satisfies $\hat{\mathbf{Y}}_2 = \mathbf{Q}\mathbf{Y}_1$ for some matrix \mathbf{Q} ,
- an *unbiased predictor* (of \mathbf{Y}_2) if it satisfies $E[\hat{\mathbf{Y}}_2] = E[\mathbf{Y}_2]$, and
- an *admissible predictor* (of \mathbf{Y}_2) if it is linear and unbiased.

A linear predictor $\hat{\mathbf{Y}}_2 = \mathbf{Q}\mathbf{Y}_1$ of \mathbf{Y}_2 is unbiased if and only if $\mathbf{Q}\mathbf{X}_1 = \mathbf{X}_2$.

For an admissible estimator $\hat{\beta}$, define

$$\mathbf{Y}_{2}(\hat{\boldsymbol{\beta}}) := \mathbf{X}_{2}\hat{\boldsymbol{\beta}} - \mathbf{D}^{-1}\mathbf{C}(\mathbf{Y}_{1} - \mathbf{X}_{1}\hat{\boldsymbol{\beta}})$$

and

$$\mathbf{h}(\hat{\boldsymbol{\beta}}) := -(\mathbf{C}\mathbf{X}_1 + \mathbf{D}\mathbf{X}_2)(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) + (\mathbf{C}\mathbf{e}_1 + \mathbf{D}\mathbf{e}_2),$$

where $\mathbf{e}_1 := \mathbf{Y}_1 - \mathbf{X}_1 \boldsymbol{\beta}$ and $\mathbf{e}_2 := \mathbf{Y}_2 - \mathbf{X}_2 \boldsymbol{\beta}$. Then $\mathbf{Y}_2(\hat{\boldsymbol{\beta}})$ is an admissible predictor of \mathbf{Y}_2 .

Following Halliwell, we have the following

LEMMA 4.1 The identities

$$\mathbf{Y}_2 = \mathbf{Y}_2(\hat{\boldsymbol{\beta}}) + \mathbf{D}^{-1}\mathbf{h}(\hat{\boldsymbol{\beta}})$$

as well as

$$E[\mathbf{h}(\boldsymbol{\beta})] = \mathbf{0}$$

and

$$\operatorname{Var}[\mathbf{\hat{h}}(\hat{\boldsymbol{\beta}})] = (\mathbf{C}\mathbf{X}_1 + \mathbf{D}\mathbf{X}_2)\operatorname{Var}[\hat{\boldsymbol{\beta}}](\mathbf{C}\mathbf{X}_1 + \mathbf{D}\mathbf{X}_2)' + \mathbf{I}_q$$

hold for each admissible estimator $\hat{\beta}$; in particular, the matrix

$$\operatorname{Var}[\mathbf{h}(\boldsymbol{\beta})] - \operatorname{Var}[\mathbf{h}(\boldsymbol{\beta}^*)]$$

is positive semidefinite.

From the last assertion of Lemma 4.1, which is a consequence of the Gauss–Markov theorem, Halliwell concludes that the *Gauss–Markov predictor* $\mathbf{Y}_2(\boldsymbol{\beta}^*)$ is the best unbiased linear predictor of \mathbf{Y}_2 . This conclusion, however, is not justified in his paper. A partial justification is given by the following

LEMMA 4.2 For each admissible estimator $\hat{\beta}$, the matrix

$$\operatorname{Var}[\mathbf{Y}_2 - \mathbf{Y}_2(\boldsymbol{\beta})] - \operatorname{Var}[\mathbf{Y}_2 - \mathbf{Y}_2(\boldsymbol{\beta}^*)]$$

is positive semidefinite.

742

The proof of this lemma is that since $\mathbf{Y}_2(\hat{\boldsymbol{\beta}})$ is an unbiased predictor of \mathbf{Y}_2 , we have

$$\operatorname{Var}[\mathbf{Y}_{2} - \mathbf{Y}_{2}(\hat{\boldsymbol{\beta}})] = E[(\mathbf{Y}_{2} - \mathbf{Y}_{2}(\hat{\boldsymbol{\beta}}))(\mathbf{Y}_{2} - \mathbf{Y}_{2}(\hat{\boldsymbol{\beta}}))']$$
$$= E[(\mathbf{D}^{-1}\mathbf{h}(\hat{\boldsymbol{\beta}}))(\mathbf{D}^{-1}\mathbf{h}(\hat{\boldsymbol{\beta}}))']$$
$$= \mathbf{D}^{-1}E[\mathbf{h}(\hat{\boldsymbol{\beta}})(\mathbf{h}(\hat{\boldsymbol{\beta}}))'](\mathbf{D}^{-1})'$$
$$= \mathbf{D}^{-1}\operatorname{Var}[\mathbf{h}(\hat{\boldsymbol{\beta}})](\mathbf{D}^{-1})'.$$

Now the assertion follows from Lemma 4.1.

We may even push the discussion a bit further: Why should we confine ourselves to predictors which can be written as $Y_2(\hat{\beta})$ for some admissible estimator $\hat{\beta}$? There may be other unbiased linear predictors \hat{Y}_2 for which

$$\operatorname{Var}[\mathbf{Y}_2 - \mathbf{Y}_2(\boldsymbol{\beta}^*)] - \operatorname{Var}[\mathbf{Y}_2 - \mathbf{Y}_2]$$

and hence

$$\operatorname{Var}[\mathbf{Y}_2 - \mathbf{Y}_2(\hat{\boldsymbol{\beta}})] - \operatorname{Var}[\mathbf{Y}_2 - \hat{\mathbf{Y}}_2]$$

is positive semidefinite. The following result improves Lemma 4.2:

THEOREM 4.3 For each admissible predictor $\hat{\mathbf{Y}}_2$, the matrix

$$\operatorname{Var}[\mathbf{Y}_2 - \mathbf{Y}_2] - \operatorname{Var}[\mathbf{Y}_2 - \mathbf{Y}_2(\boldsymbol{\beta}^*)]$$

is positive semidefinite.

A proof of this theorem can also be presented. Consider a matrix ${\bf Q}$ satisfying

$$\hat{\mathbf{Y}}_2 = \mathbf{Q}\mathbf{Y}_1$$

and hence $\mathbf{Q}\mathbf{X}_1 = \mathbf{X}_2$. Letting

$$\mathbf{Q}^* := \mathbf{S}_{21}\mathbf{S}_{11}^{-1} + (\mathbf{X}_2 - \mathbf{S}_{21}\mathbf{S}_{11}^{-1}\mathbf{X}_1)(\mathbf{X}_1'\mathbf{S}_{11}^{-1}\mathbf{X}_1)^{-1}\mathbf{X}_1'\mathbf{S}_{11}^{-1}$$

we obtain

$$\begin{split} \mathbf{Y}_{2}(\boldsymbol{\beta}^{*}) &= \mathbf{X}_{2}\boldsymbol{\beta}^{*} - \mathbf{D}^{-1}\mathbf{C}(\mathbf{Y}_{1} - \mathbf{X}_{1}\boldsymbol{\beta}^{*}) \\ &= \mathbf{X}_{2}\boldsymbol{\beta}^{*} + \mathbf{S}_{21}\mathbf{S}_{11}^{-1}(\mathbf{Y}_{1} - \mathbf{X}_{1}\boldsymbol{\beta}^{*}) \\ &= \mathbf{S}_{21}\mathbf{S}_{11}^{-1}\mathbf{Y}_{1} + (\mathbf{X}_{2} - \mathbf{S}_{21}\mathbf{S}_{11}^{-1}\mathbf{X}_{1})\boldsymbol{\beta}^{*} \\ &= \mathbf{S}_{21}\mathbf{S}_{11}^{-1}\mathbf{Y}_{1} + (\mathbf{X}_{2} - \mathbf{S}_{21}\mathbf{S}_{11}^{-1}\mathbf{X}_{1})(\mathbf{X}_{1}'\mathbf{S}_{11}^{-1}\mathbf{X}_{1})^{-1}\mathbf{X}_{1}'\mathbf{S}_{11}^{-1}\mathbf{Y}_{1} \\ &= \mathbf{Q}^{*}\mathbf{Y}_{1}. \end{split}$$

Since $\mathbf{Q}^* \mathbf{X}_1 = \mathbf{X}_2 = \mathbf{Q} \mathbf{X}_1$, we have

$$Cov[\mathbf{Y}_{2} - \mathbf{Y}_{2}(\boldsymbol{\beta}^{*}), \mathbf{Y}_{2}(\boldsymbol{\beta}^{*}) - \hat{\mathbf{Y}}_{2}]$$

= Cov[$\mathbf{Y}_{2} - \mathbf{Q}^{*}\mathbf{Y}_{1}, \mathbf{Q}^{*}\mathbf{Y}_{1} - \mathbf{Q}\mathbf{Y}_{1}]$
= $(\mathbf{S}_{21} - \mathbf{Q}^{*}\mathbf{S}_{11})(\mathbf{Q}^{*} - \mathbf{Q})'$
= $-(\mathbf{X}_{2} - \mathbf{S}_{21}\mathbf{S}_{11}^{-1}\mathbf{X}_{1})(\mathbf{X}_{1}'\mathbf{S}_{11}^{-1}\mathbf{X}_{1})^{-1}\mathbf{X}_{1}'(\mathbf{Q}^{*} - \mathbf{Q})'$
= $-(\mathbf{X}_{2} - \mathbf{S}_{21}\mathbf{S}_{11}^{-1}\mathbf{X}_{1})(\mathbf{X}_{1}'\mathbf{S}_{11}^{-1}\mathbf{X}_{1})^{-1}(\mathbf{Q}^{*}\mathbf{X}_{1} - \mathbf{Q}\mathbf{X}_{1})'$
= $\mathbf{0},$

and hence

$$\operatorname{Var}[\mathbf{Y}_{2} - \hat{\mathbf{Y}}_{2}] = \operatorname{Var}[(\mathbf{Y}_{2} - \mathbf{Y}_{2}(\boldsymbol{\beta}^{*})) + (\mathbf{Y}_{2}(\boldsymbol{\beta}^{*}) - \hat{\mathbf{Y}}_{2})]$$
$$= \operatorname{Var}[\mathbf{Y}_{2} - \mathbf{Y}_{2}(\boldsymbol{\beta}^{*})] + \operatorname{Var}[\mathbf{Y}_{2}(\boldsymbol{\beta}^{*}) - \hat{\mathbf{Y}}_{2}].$$

The assertion follows.

Theorem 4.3 asserts that the Gauss–Markov predictor minimizes the variance of the prediction error over all admissible predictors of \mathbf{Y}_2 . Since

$$E[(\mathbf{Y}_2 - \hat{\mathbf{Y}}_2)'(\mathbf{Y}_2 - \hat{\mathbf{Y}}_2)] = \operatorname{tr}(\operatorname{Var}[\mathbf{Y}_2 - \hat{\mathbf{Y}}_2]),$$

we see that the Gauss–Markov predictor also minimizes the *expected quadratic prediction error* over all admissible predictors of \mathbf{Y}_2 .

LOSS PREDICTION BY GENERALIZED LEAST SQUARES

5. A RELATED OPTIMIZATION PROBLEM

To complete the discussion of the predictor proposed by Halliwell, we consider the following optimization problem:

Minimize
$$E[(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})'\mathbf{S}^{-1}(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})]$$

over all admissible estimators β of β .

We thus aim at minimizing an objective function in which there is no discrimination between the observable and the nonobservable part of \mathbf{Y} ; this distinction, however, is present in the definition of an admissible estimator.

Because of $S^{-1} = W'W$ and the structure of W, it is easy to see that the objective function of the optimization problem can be decomposed into an approximation part and a prediction part:

LEMMA 5.1 The identity

$$E[(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})'\mathbf{S}^{-1}(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})]$$

= $E[(\mathbf{Y}_1 - \mathbf{X}_1\hat{\boldsymbol{\beta}})'\mathbf{S}_{11}^{-1}(\mathbf{Y}_1 - \mathbf{X}_1\hat{\boldsymbol{\beta}})]$
+ $E[(\mathbf{Y}_2 - \mathbf{Y}_2(\hat{\boldsymbol{\beta}}))'\mathbf{D}'\mathbf{D}(\mathbf{Y}_2 - \mathbf{Y}_2(\hat{\boldsymbol{\beta}}))]$

holds for each admissible estimator $\hat{\boldsymbol{\beta}}$.

Moreover, using similar arguments as before, the three expectations occurring in Lemma 5.1 can be represented as follows:

as well as

$$E[(\mathbf{Y}_1 - \mathbf{X}_1 \hat{\boldsymbol{\beta}})' \mathbf{S}_{11}^{-1} (\mathbf{Y}_1 - \mathbf{X}_1 \hat{\boldsymbol{\beta}})]$$

= $p - 2k + \operatorname{tr}((\mathbf{A}\mathbf{X}_1) \operatorname{Var}[\hat{\boldsymbol{\beta}}](\mathbf{A}\mathbf{X}_1)')$

744

and

$$E[(\mathbf{Y}_2 - \mathbf{Y}_2(\hat{\boldsymbol{\beta}}))'\mathbf{D}'\mathbf{D}(\mathbf{Y}_2 - \mathbf{Y}_2(\hat{\boldsymbol{\beta}}))]$$

= $q + \operatorname{tr}((\mathbf{C}\mathbf{X}_1 + \mathbf{D}\mathbf{X}_2)\operatorname{Var}[\hat{\boldsymbol{\beta}}](\mathbf{C}\mathbf{X}_1 + \mathbf{D}\mathbf{X}_2)')$

hold for each admissible estimator $\hat{\boldsymbol{\beta}}$.

Because of Theorem 5.2, each of the three expectations occurring in Lemma 5.1 is minimized by the Gauss–Markov estimator β^* . We have thus again justified the restriction to predictors of \mathbf{Y}_2 , which can be written as $\mathbf{Y}_2(\hat{\boldsymbol{\beta}})$ for some admissible estimator $\hat{\boldsymbol{\beta}}$.

The technical details concerning the proofs of the results of this section can be found in Schmidt [4].

6. CONDITIONING

Following the example of **Y** having a multivariate normal distribution, Halliwell uses arguments related to the conditional distribution of \mathbf{Y}_2 with respect to \mathbf{Y}_1 ; in particular, he claims that $\mathbf{Y}_2(\boldsymbol{\beta}^*)$ is the conditional expectation $E(\mathbf{Y}_2 | \mathbf{Y}_1)$ of \mathbf{Y}_2 with respect to \mathbf{Y}_1 . This is not true in general; without particular assumptions on the distribution of **Y**, the conditional expectation $E(\mathbf{Y}_2 | \mathbf{Y}_1)$ may fail to be linear in \mathbf{Y}_1 , and the unbiased linear predictor of \mathbf{Y}_2 based on \mathbf{Y}_1 minimizing the expected quadratic loss may fail to be the conditional expectation $E(\mathbf{Y}_2 | \mathbf{Y}_1)$.

Moreover, since the identities of Lemma 4.1 hold for each admissible estimator $\hat{\beta}$ (and not only for the Gauss–Markov estimator β^*), Halliwell's arguments [2, p. 482] suggest that each admissible estimator $\hat{\beta}$ satisfies

$$E(\mathbf{Y}_2 \mid \mathbf{Y}_1) = \mathbf{X}_2 \hat{\boldsymbol{\beta}} - \mathbf{D}^{-1} \mathbf{C} (\mathbf{Y}_1 - \mathbf{X}_1 \hat{\boldsymbol{\beta}})$$

and

$$\operatorname{Var}(\mathbf{Y}_2 \mid \mathbf{Y}_1) = \mathbf{D}^{-1} \operatorname{Var}[\mathbf{h}(\hat{\boldsymbol{\beta}})](\mathbf{D}^{-1})'.$$

Again, this cannot be true since in both cases the left hand side depends only on \mathbf{Y}_1 , whereas the right hand side also varies with the matrix **B** defining the admissible estimator $\hat{\boldsymbol{\beta}} = \mathbf{B}\mathbf{Y}_1$.

More generally, when only unconditional moments of the distribution of the random vector \mathbf{Y} are specified, it is impossible to obtain any conclusions concerning the conditional distribution of its non-observable part \mathbf{Y}_2 with respect to its observable part \mathbf{Y}_1 .

REMARKS

Traditional least squares theory aims at minimizing the *quadratic loss*

$$(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})'\mathbf{S}^{-1}(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}),$$

where all coordinates of **Y** are observable. It also involves considerations concerning the variance of $\hat{\beta}$, and it usually handles prediction as a separate problem which has to be solved after estimating β .

In Section 5 of the present paper, we proposed instead to minimize the *expected quadratic loss*

$$E[(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})'\mathbf{S}^{-1}(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})],$$

where some but not all of the coordinates of \mathbf{Y} are observable and the admissible estimators of $\boldsymbol{\beta}$ are unbiased and linear in the observable part \mathbf{Y}_1 of \mathbf{Y} . This approach has several advantages:

- The expected quadratic loss can be expressed in terms of $var[\beta]$ such that minimization of the expected quadratic loss and minimization of $var[\hat{\beta}]$ turns out to be the same problem (see Theorem 5.2).
- The expected quadratic loss can be decomposed in a canonical way into an approximation part and a prediction part such that the expected quadratic loss and its two components are si-

multaneously minimized by the Gauss–Markov estimator (see Lemma 5.1).

747

– Inserting the Gauss–Markov estimator in the prediction part of the expected quadratic loss provides an unbiased linear predictor for the non-observable part \mathbf{Y}_2 of \mathbf{Y} .

We thus obtain the predictor proposed by Halliwell [2] by a direct approach which avoids conditioning. This predictor was first proposed by Goldberger [1] (see also Rao and Toutenburg [3; Theorem 6.2]).

ACKNOWLEDGEMENT

I would like to thank Michael D. Hamer who provided Theorem 4.3 and its proof.

REFERENCES

- [1] Goldberger, Arthur S., "Best Linear Unbiased Prediction in the Generalized Linear Regression Model," *Journal of the American Statistical Association* 57, 1962, pp. 369–375.
- [2] Halliwell, Leigh J., "Loss Prediction by Generalized Least Squares," *PCAS* LXXXIII, 1996, pp. 436–489.
- [3] Rao, C. R., and H. Toutenburg, *Linear Models: Least Squares and Alternatives*, Berlin–Heidelberg–New York, Springer, 1995.
- [4] Schmidt, Klaus D., "Prediction in the Linear Model: A Direct Approach," *Metrika* 48, 1998, pp. 141–147.