A STUDY OF CHANGES IN FREQUENCY AND SEVERITY IN RESPONSE TO CHANGES IN STATUTORY WORKERS COMPENSATION BENEFIT LEVELS

WARD BROOKS

Abstract

Traditionally, workers compensation insurance ratemaking in California assumed that the utilization of benefits was independent of changes in statutory benefit levels. This assumption was retained for many years in the face of growing evidence that changes in statutory benefits indirectly affected the utilization of those benefits. Because the overall level of benefit utilization is a function of many factors, however, it was difficult to isolate which changes in utilization resulted from changes in statutory benefits and which resulted from changes in economic or social variables, randomness, or other factors. This paper explores and attempts to quantify the causal link between changes in statutory benefit levels and changes in the utilization of workers compensation benefits.

ACKNOWLEDGEMENT

The author would like to thank Mr. Dave Bellusci, Mr. William Kahley, and the members and attendees of the Actuarial Committee of the Workers' Compensation Insurance Rating Bureau of California for their guidance, and Mr. Liam O'Connor for his assistance, which was invaluable on this project.

1. INTRODUCTION

Historically the Workers' Compensation Insurance Rating Bureau of California (the Bureau) has assumed frequency will not

⁸⁰

change in response to benefit level changes and severity will change by exactly the change in benefits.¹ If benefits are increased 10%, we expect no change in frequency and a 10% increase in severity, all other things being equal. However, if benefits are increased 10% and frequency increases 1% in response, then we say we have observed a 1% change in *frequency benefit utilization*, again, all other things being equal. If severity increases 12%, perhaps because durations have increased as workers stay on claim longer, then we say we have observed a 2% change in *severity benefit utilization*.

If we chronically over- or underestimate changes in frequency or severity by failing to recognize changes in utilization, then this error will be reflected in the residual trend component of the ratemaking process. We should be able to increase the accuracy of the ratemaking process by quantifying changes in benefit utilization and incorporating them into our on-leveling procedure, thereby removing them from the residual trend. The accuracy of both our on-leveling and trend procedures will be improved as well as our understanding of the workers compensation system.

Some changes are administrative rather than statutory. When we refer to statutory benefit levels, we mean both those promulgated by statute and those effected administratively.² Each

¹For the purposes of this paper, a change in *benefit utilization* means an indirect effect of the benefit change. That is, a change in frequency or severity that is related to the change in benefit level but not measured by the direct effect. The direct effect is measured by the Bureau's benefit level change estimate. Note that this definition is broader than that used for utilization in other contexts. For an overview of workers compensation ratemaking, including the role of benefit change estimates and their potential indirect effects, the reader should consult Feldblum [1]. In particular, Sections 5.C and 10 will be helpful to the reader not familiar with the issue of the indirect effects of benefit changes.

²As an example of an administrative change, in 1997 California's Division of Industrial Relations (DIR) revised the official Permanent Disability Rating Schedule (PDRS). The PDRS is used to evaluate an injured worker's loss of functional work capacity and culminates in the assignment of a permanent disability rating. The injured worker's weekly indemnity benefit is based on this permanent disability rating according to a schedule promulgated in California statute. The estimated impact of the DIR's revisions became controversial, highlighting the fact that these estimated cost impacts are just that, *estimates*. Sometimes they are revised ex post facto, as more information becomes available.

year the Bureau evaluates the expected impact of legislative and administrative changes on the cost of benefits. For the more common changes, the Bureau uses a model to estimate the impact. For the less common changes, the Bureau typically conducts a special study. In both cases, the estimated impact is used in the Bureau's pure premium ratemaking to adjust historical accident year indemnity losses to a current or prospective level. This estimated impact is for direct effects only.³ It assumes there will be no change in benefit utilization. In economics parlance, it assumes that the utilization of benefits is inelastic.

Finally, we note that benefit utilization is internal to the workers compensation system. Changes in costs that result from changes in statutory benefits are a matter of public policy. California legislators and the administrators of the California workers compensation system routinely solicit the Bureau's estimated cost impacts for proposed changes. Public policy decision making will be enhanced if actuaries can estimate both the expected direct and indirect fiscal impacts of proposed changes in benefits.

2. HISTORY

In 1996 the Bureau's Governing Committee directed the Bureau to conduct a study to determine an appropriate loading in pure premium rates for changes in benefit utilization. The Bureau had commissioned two prior studies: Meyer [2] in 1991 and Appel [3] in 1992. Based on these studies, the Bureau incorporated into its pure premium ratemaking an adjustment to losses to reflect expected changes in utilization resulting from benefit level changes. The California Commissioner of Insurance, however, questioned the accuracy and method of incorporation of this utilization adjustment in his October 13, 1995 decision (Ruling

³For indemnity costs, this is no longer true. An earlier version of this paper was accepted by the California Department of Insurance as the basis for an adjustment to losses to reflect expected changes in utilization resulting from benefit level changes. This adjustment has been incorporated in the Bureau's filing for pure premium rates effective January 1, 1998.

No. 287). The Commissioner directed that a more in-depth study of utilization be undertaken before such an adjustment would be acceptable in pure premium ratemaking. This paper documents the findings of that study.

3. METHODOLOGY

The goal of this study is to quantify changes in frequency and severity that occur in response to changes in benefit levels. The model design selected assumes that the indirect effects of benefit changes are a function of the direct effects. That is, changes in benefit utilization are assumed to be a function of the Bureau's estimated changes in benefit levels. We will attempt to quantify this relationship using multivariate regression supplemented by nonparametric techniques where appropriate. Following is an outline of the methodology we will use to investigate indemnity frequency utilization. We will discuss medical frequency utilization along the way. Severity utilization will be discussed in a later section.

We will start by surveying graphically the candidate dependent and independent variables. We will look at the level of each variable over time and its annual percentage changes. We will then look at the correlations among variables. Here we are looking for combinations of the independent variables that are highly correlated with the dependent variable but not highly correlated with each other. We want to avoid highly correlated independent variables in a regression to avoid multicollinearity with its attendant risk of unstable and distorted least-squares estimates. It will happen that we will encounter a group of highly correlated independent variables that we wish to retain in the model. We will apply a special transformation, principal components extraction, to retain the explanatory variance while removing the multicollinearity. We will discuss this further at that time.⁴

⁴Readers wanting a review or more information on analysis of variance, multicollinearity, transformations, analysis of residuals, and other topics in regression analysis should see Miller [4].

The first correlations we will consider are the standard Pearson Product Moment Correlations. (These are the familiar correlations obtained using the appropriate function in Lotus or Excel.) The Pearson Product Moment Correlation between two variables assumes each is drawn from a normally distributed population. The significance of the Pearson correlation is only as strong as this assumption is valid. Because of this, we will also look at a nonparametric statistic, the Spearman Rank Correlation Coefficient. This statistic relies on much weaker assumptions. Intuitively, we will be most comfortable when these two measures of correlation are in agreement. Before proceeding, let us consider the common interpretation when these statistics are not in agreement.

If there is a significant correlation indicated by the nonparametric statistic but not the parametric statistic, then we propose that a correlation exists, but that it cannot be precisely measured. If there is a significant correlation indicated by the parametric statistic but not the nonparametric statistic, then we propose that the parametric statistic is erroneous, probably because of a violation of the underlying assumptions, though sometimes because of an outlier.⁵

Following this examination of the variables (Exhibits 1 through 4), a series of candidate regression models will be postulated. Each will be regressed and we will diagnose each model (Exhibit 5). We will first look to see if the coefficients make sense. We will compare the models' relative performance, adjusted for degrees of freedom. We will test each model for bias and the normality of its residuals. For the better models we will look more closely at performance and the appropriateness of the model's specification (Exhibit 6).

Following this, for the best models we will look at projected performance in practice (Exhibits 7 through 10, and 12). We will

⁵Readers interested in more information on nonparametric statistics should see Ferguson [5] or Siegel [6].

do some sensitivity testing on our most novel variable (Exhibit 11). Finally, we will present the best model with confidence intervals for our point estimates. The best model will be presented along with three other models as a form of sensitivity testing of our economic variables (Exhibit 13).

Before proceeding to the main analysis, a technical aside is in order. During the following discussion the reader might wonder if a transformation of the data relating to workers compensation reporting bases was considered. It was. But to cut down on the volume of analysis to be presented and discussed, we will deal with this issue here, summarily.

Reporting Bases

In California, workers compensation rate level indications are based on calendar-accident year data while classification relativities are based on policy year data. Variables that are collected outside of the workers compensation system—economic variables, for example—are generally on a calendar year basis. Therefore, variables of interest may be on different reporting bases. Because there is a timing difference between variables with different reporting bases, the correlations between variables can be affected. This is essentially the same issue as whether there is a lagged correlation between two variables; here the lag would be due to the timing difference of the reporting bases.

To eliminate this lag, we explored transforming calendar year variables into policy year variables. For example, suppose premiums are written and losses occur uniformly over a year. (We used more exact distributions for our transformations.) Also, suppose real gross state product increased 0.01% in 1982 and 4.93% in 1983. Then policy year 1982 real gross state product increased 2.47% [(0.0001 + 0.0493)/2]. It turned out, however, that matching variables' reporting bases delivered inferior results. This implies that a slight lag exists between the calendar year events

and their policy year manifestation.⁶ That is, there is a higher correlation between a calendar year 1982 economic event and a policy year 1982 (not transformed) event, with an implicit sixmonth lag, than between the calendar year event and the policy year event transformed to match average dates of occurrence.

The policy year variables used in this paper are developed from the Bureau's Unit Statistical Reporting (USR) system. Incurred claim counts and exposures are defined per the California Workers' Compensation Uniform Statistical Reporting Plan. Frequencies are developed from the USR data in Appendix A; severities are developed in Appendix I. The benefit level variables, which are used to adjust historical losses to a current or projected benefit level, are calendar-accident year.

4. THE VARIABLES

We begin the analysis of indemnity frequency utilization by reviewing all available candidate variables. We preface this section by noting the importance of accounting for all significant factors that affect indemnity frequency. In the end, we would like to have accounted for as much variation as possible and we would like the variation unaccounted for to be purely random noise. We do not want any significant factors to be omitted from the final regression model. If they are omitted, then the model is misspecified. This misspecification may bias the estimates or lead to erroneous conclusions about the confidence we have in the estimates.

The variables considered in the analysis are presented graphically in Exhibit 1. The top graph of each part of Exhibit 1 displays the value of each variable over time. The bottom graph shows the annual percentage change in the original variable. A tabular presentation of the variables and their annual percentage

⁶The average date of occurrence for both calendar year and accident year variables is about July 1st. The average date of occurrence of a policy year variable is December 31st.

changes is presented in Exhibit 2. Following is a discussion of each variable.

Indemnity Claim Frequency

This is the dependent variable—our first target.

All frequencies are policy year claims per million dollars of reported payroll, adjusted to a 1987 wage level. Claim counts were taken from the Bureau's USR system at third report level. Payrolls were adjusted to a 1987 wage level using average wages developed from the California Statistical Abstract (Appendix A).

Part 1 of Exhibit 1 shows the history of indemnity claim frequency from policy year 1961 through 1994.

Medical-Only Claim Frequency

Medical-only claim frequency has exhibited a persistent longterm downward trend for over three decades (Exhibit 1, Part 2). This trend is counter-intuitive, as we would expect indemnity and medical-only claim frequencies to move together. There is a wide range of speculation regarding the causes of this trend. Suspect causes include changes in medical-only reporting patterns, the decreasing hazardousness of the California insured mix of business, or an increasing tendency for all claims to have an indemnity component. In any case, since medical-only claims represent less than 5% of workers compensation costs and there is a lack of consensus about this long-term trend's causation, no attempt was made to model medical-only utilization.

Total Claim Frequency

Total claim frequency (Exhibit 1, Part 3) was not analyzed. Total claim frequency is dominated by medical-only claims, which in policy year 1992 outnumbered indemnity claims by roughly two-to-one.

Indemnity Benefit Level

This is the key independent variable. The coefficient on this variable will measure frequency benefit utilization. If benefit level estimates are accurate and unbiased, then our a priori expectation is that the coefficient on this variable will be zero if no utilization effect is present. Absent a utilization effect, a change in benefit level will produce no change in frequency. If the coefficient was 0.3 and significant, then in response to a 10% benefit level increase we would expect a 3% ($0.3 \times 10\%$) increase in frequency. The null hypothesis is that this coefficient equals zero. If we can reject this hypothesis, then we can conclude a utilization effect is present and that the coefficient measures it as a function of the benefit level change.

Because the indemnity benefit level variable is key, it is critical that it be as accurate as possible and, perhaps more importantly, be unbiased. The process for quantifying the cost impact of benefit level changes was discussed earlier. Clearly, if the process is biased, we could inadvertently capture this bias in our model and falsely conclude there is a utilization effect where there is only systematic bias in our estimates of legislative changes. Some preliminary analysis suggested that historical benefit level estimates were indeed biased, and the Bureau revised its law amendment evaluation models to remove the bias.⁷

⁷What was this bias? It was related to the Bureau's prior use of an average wage level intended to reflect the insured population. This has been replaced by an average wage level intended to reflect the expected insured *claimant* population, based on the Bureau's Individual Case Report data. This change addressed the fact that the average wage and wage distribution of the population of insured workers and the population of insured claimants are different. The latter is a subset of the former. The author has experimented with projecting the distribution of *insured* wages by fitting insured claimant wage distributions for successively higher levels of permanent partial disability. The underlying assumption here-though unproven-is that a primary cause of the difference between the insured and claimant wage distributions is self-selection and that the effect of selfselection diminishes with the seriousness of injury. Further improvements in the procedure to evaluate legislative changes may be possible by quantifying the relationship between the insured and claimant wage distributions as a function of benefit levels. Also, we note that the Bureau's evaluation methodology and the tables underlying the calculations were substantially the same throughout the period under study, so no bias was introduced by a change in methodology.

The calendar year indemnity benefit level history, revised to correct the bias discussed above, is presented in Exhibit 1, Part 4 and developed in Appendix B.

Medical Benefit Level

The medical benefit level index captures changes in California's Official Medical Fee Schedule and an index of hospital inflation costs. Unlike indemnity benefit level changes, however, a great many other factors affect medical costs in addition to the costs of medical procedures and hospital costs. Examples include the advent of managed care and the development of new technologies, such as magnetic resonance imaging and new arthroscopic surgery techniques. Indeed, these other factors are widely believed to have dominated changes in medical costs over the last several decades. For the task at hand, it may be impossible to isolate utilization effects out of this larger body of factors.

The calendar year medical benefit level history is presented in Exhibit 1, Part 5 and developed in Appendix B.

Total Benefit Level

The total benefit level combines the indemnity and medical benefit levels, weighted by their respective partial pure premiums. The calendar year total benefit level history is presented in Exhibit 1, Part 6 and developed in Appendix B.

Economic Variables

The general state of the economy is important in workers compensation. As an economy nears capacity, employees work longer hours, less skilled workers are pulled into the production cycle and the opportunity cost of safety measures may increase. As a result, claim frequency per worker varies with the economic cycle. We considered three economic variables in our analysis: aggregate employment, real gross state product, and the unemployment rate. The economic variables are shown graphically in Exhibit 1, Parts 7 through 9. Each variable is specific to California, and its development is presented in Appendix C. These variables, which are broad measures of the robustness of the state's economy and labor market, serve to quantify changes in utilization that are a natural consequence of the economic cycle.

We note that the importance of economic influences in workers compensation systems is an on-going area of research. In this paper, we assume a priori that economic variables should be considered in the model.

Hazardousness Indices

The prior utilization studies commissioned by the Bureau examined only a subset of classifications. Only 50 classes were analyzed over a 22-year period in the 1992 study. Unfortunately, the selected classes may not be representative of the mix of business throughout the experience period. Changes in the mix of business may explain some of the changes in the overall utilization level over time. So, as California shifted from a predominantly manufacturing economy to a service economy over the last several decades, the level of hazardousness shifted concurrently. In 1970, for example, manufacturing classifications accounted for 16.9% of total workers compensation payroll; in 1990, 13.6%. The clerical standard classification 8810 grew from 20.7% of payroll in 1970 to 28.5% in 1990. To capture this phenomenon, we examined the entire insured population of classifications.

Additionally, two indices were developed to measure changes in the hazardousness of the insured California workers compensation population from policy year to policy year. The first index, the indemnity frequency hazardousness index, captures changes in frequency attributable to changes in the mix of business. The second index, the pure premium hazardousness index, captures changes in frequency and severity attributable to changes in the mix of business. These indices are developed in Appendix D. These indices capture the subtle, long-term transformation of the California economy's level of hazardousness (Exhibit 1, Parts 10 and 11). Both illustrate the growing dominance of the service sector in the California economy. Because manufacturing is both more highly cyclical and more hazardous, the insured population's hazardousness fluctuates with the state's economic cycles. Throughout the period studied, the indemnity pure premium index fell sharply with the onset of recessions. This relationship may change in the future if the relative frequency and severity of claims among economic sectors changes.

Annual changes in these indices, however, were not highly correlated with annual changes in indemnity frequency (Exhibit 4, Parts 7 and 8). Indeed, indemnity frequency persistently increased over the period studied in spite of the decreasing hazardousness of the insured population. This does not mean the hazardousness indices are invalid or inaccurate. The hazardousness indices capture a long-term trend, while we are looking at annual changes. Further, the divergent trends in hazardousness due to changes in the mix of business and in indemnity frequency merely suggest there are other factors that are pushing indemnity frequency from different directions. In any complex system there may be a variety of forces that push in different directions at the same time. Though annual changes in the hazardousness indices did not prove relevant in the final model, we have included them here for their relevance to the utilization phenomenon and to introduce the concept of a metric for changes in mix of business.

Litigation Rates

Discretion makes benefit utilization possible and litigiousness is commonly considered a proxy for discretion in the workers compensation system. Benefit utilization exists because workers can exercise some discretion in the filing of workers compensation claims. In a textbook world, benefit utilization might not exist. No one would use workers compensation instead of vacation time, health insurance or unemployment insurance. Highly

paid workers would not opt to use sick pay and health insurance benefits instead of workers compensation benefits.⁸ But in the real world, many workers are presented with the choice to utilize their workers compensation benefit, or not, and this discretionary act is anecdotally correlated with litigation. To examine this, a variable measuring litigiousness was developed.

From 1972 to 1992 (except 1990) the California Workers' Compensation Institute (CWCI) collected information on the number of Applications for Adjudication filed with the Workers' Compensation Appeals Board (Appendix E). The CWCI ratioed the number of applications to the total number of claims to arrive at a litigation rate. This litigation rate might serve as a proxy for litigiousness. The denominator of this ratio, however, includes medical-only claims, which are rarely litigated. A ratio to indemnity claims would be a better measure. The litigation rate history, adjusted to an indemnity claim basis, is presented in Exhibit 1, Part 12. When the litigation rate is adjusted to an indemnity claim basis, the marked upward trend in the litigation rate disappears and the rate is fairly flat.

This result was surprising. The phenomenon of medical-only claims decreasing as a share of total claims is the obvious mathematical "cause" of the flattening of the litigation rate. When earlier years are adjusted to account for the lesser share of indemnity claims to total, the litigation rate for indemnity claims soars. The level of litigation suggested by this data is much higher than for other states. Some of this magnitude may be due to peculiarities associated with the survey method or California's adjudication process. Nevertheless, this data suggest the level of litigiousness in California not only is high, but also has been so for several decades. Still more surprising, changes in the litigation rate proved to be negatively correlated with changes in

⁸The higher a worker's income over the maximum benefit, the lower the percentage of pre-injury income workers compensation benefits replace. The benefit, therefore, decreases as a worker's income increases, and at some point may actually present an additional burden.

indemnity frequency, a result counter to our a priori expectation. This raised uncertainty as to whether this variable is accurately measuring litigiousness or some other phenomenon. Because of this uncertainty, this variable was dropped from consideration in the analysis.

Ratio of Cumulative Injuries to Total Indemnity Claims

This is the ratio of incurred claims coded as cumulative injury as defined by the Unit Statistical Reporting system to total incurred indemnity claims for each policy year.⁹ Note that this ratio does not necessarily rise or fall with changes in the frequency or absolute number of cumulative injury or total indemnity claims. Cumulative injuries never comprised more than 10% of indemnity claims. Therefore, it is not appreciably correlated with indemnity frequency by definition. This variable is probably a more direct measure of changes in the discretionary element than litigiousness because cumulative injury claims have a higher degree of discretion available. For example, if you have an accident on the job, a nasty cut say, you are more likely to be seen and sent to the human resources department to fill out a form. But initiating a carpal tunnel or stress claim is much more within a worker's sole control. Note that in the presence of a benefit level variable we expect the ratio to capture discretion unrelated to changes in benefit levels.

The ratio of cumulative injuries to total indemnity claims is presented in Exhibit 1, Part 13 and developed in Appendix F.

Principal Components of Economic Variables

The economic variables are highly correlated among themselves. The Pearson Product Moment Correlation between annual changes in real gross state product (rGSP) and aggregate employment (AggE) is 0.655; between rGSP and the unemployment rate

⁹This variable was suggested by Mr. James J. Gebhard, FCAS, MAAA, following the failure of the litigiousness proxy.

(Unemp), -0.892; between AggE and Unemp, -0.677. If regression is to be used, these correlations are too high to use more than one variable without risking multicollinearity—that is, the linear dependence of the independent variables. If independent variables in a model are linearly dependent, then least squares estimates tend to be unstable and may be far from their expected values. To extract any additional explanatory information lost by using only one economic variable while not introducing multicollinearity, the principal components of the economic variables were formed. Principal components are the uncorrelated linear combinations of the subject variables that maximize variability.¹⁰

The first and second principal components of two sets of economic variables were formed. The first set was annual changes in rGSP and AggE. The second set was annual changes in rGSP, AggE and Unemp. The principal components are presented in Exhibit 1, Parts 14 through 17. Their development is presented in Appendix G.

Self-Insurance Share Index

A complicating issue in virtually all analyses of the California workers compensation market is the changing composition of the insured population. The data collected by the Bureau represents only the insured population. When an employer exits the insured market by self-insuring, his experience under self-insurance is lost to the Bureau while his insured history cannot be isolated from the Bureau's historical experience. The reverse is true when an employer returns to the insured market from self-insurance. Clearly, the comings and goings of employers has the potential to distort the insured experience. This is particularly true when large groups of employers with unique experience come and go en masse.

¹⁰For more information on principal components see Chapter 8 of Johnson [7]. This is also a good general reference for multivariate regression.

This problem is neither unique to this analysis, nor to California. In fact, the potential exists for changes in the self-insured population to affect aggregate pure premium ratemaking. As an example, if a group of risks with poorer experience than the aggregate begins to exit the insured market over a period of time, an improving loss ratio will be picked up by the residual trend procedure. Not knowing that the improvement is due to a change in the mix of insureds, the trend might be forecast to continue beyond the time the insured population has stabilized. To address this problem, a variable was developed to measure changes in the self-insured market.

The self-insurance share index was developed to capture annual changes in self-insurance costs as a share of total California workers compensation costs. This variable is developed from information reported by the state and federal governments and the Bureau and compiled by the Social Security Administration. This variable is presented in Exhibit 1, Part 18; the development is presented in Appendix H. This variable captures only changes in the net volume of the self-insured market. Qualitative changes are not captured (i.e., whether the experience of the self-insured market is improving or deteriorating, absolutely or relatively).

There is no appreciable correlation between annual changes in the self-insurance share index and indemnity frequency (Exhibit 3 and Exhibit 4, Part 15). On this basis, we conclude that change in the level of self-insurance is not a candidate independent variable nor likely to affect the analysis.

5. THE MODELS

We first examined the correlations among the variables. The Pearson Product Moment Correlations among the variables' annual changes and the significance of these correlations are summarized in Exhibit 3. In all cases, the analysis was conducted on the least common denominator of years for a given set of subject variables. Note that the analysis was on the annual

changes in these variables—not their absolute levels. For example, the annual change in the unemployment rate is an independent variable—not the unemployment rate itself. Further references to variables will mean their annual percentage changes unless otherwise stated.

The candidate variables were tested for normality (using Kolmogorov–Smirnov). All variables except the changes in indemnity and total benefit levels, which are clearly skewed, passed tests for normality. Note that interpretation of the significance of the Pearson Product Moment Correlation between two variables assumes both to be distributed normally and that our key independent variable is not.

Exhibit 4 presents a graph of each candidate independent variable against indemnity frequency as well as the regression of indemnity frequency on the independent variable and the Spearman Rank Correlation Coefficients. The normality assumption is not required of the Spearman Rank Correlation Coefficient. For the benefit level changes, Exhibit 4 also presents regressions with a dummy variable. The dummy variable is 1 for years with an indemnity benefit change and 0 otherwise. Introduction of the dummy variable did not improve the amount of variation explained by benefit changes alone. Note, however, that the nonparametric Spearman Rank Correlation is strong and highly significant.

We examined these variables to select candidates for multivariate regression. As discussed above, candidates should be reasonably correlated with frequency but not highly correlated with other variables in the model. From a review of the information in Exhibits 3 and 4, and other exploratory analysis, we chose models with the following structure.

Y-Intercept

Models with or without a constant term.

Benefit Level

Calendar year indemnity benefit level changes, total benefit level changes, or indemnity and medical benefit level changes separately. The coefficient on the benefit level variable measures frequency utilization. We will conclude there is no utilization effect if this variable is not significantly different from zero.

Economic Variable

We considered models with the following economic variables:

- 1. Real gross state product (rGSP);
- 2. Aggregate employment (AggE);
- 3. Real gross state product and aggregate employment (for comparison purposes only);
- 4. The first principal component of rGSP and AggE;
- 5. The first and second principal components of rGSP and AggE;
- 6. The first principal component of rGSP, AggE and the unemployment rate (Unemp);
- 7. The first and second principal components of rGSP, AggE and Unemp.

Ratio of Cumulative Injury Claims to Total Indemnity Claims

Models with or without the cumulative injury index.

A simple multivariate linear structure was selected, as no strong nonlinear or lagged patterns were present. We next performed multivariate regressions using Manugistic's STATGRAPHICS Plus (1995) statistical software. Kalmia's WinSTAT, Version 3.1 (1995) was also used for certain diagnostic tests and to confirm results obtained using STATGRAPHICS Plus.

6. THE RESULTS

Eighty-four multivariate regressions are possible with the selected variables. A summary of selected statistics for these eighty-four models is presented in Exhibit 5. Part 1 of Exhibit 5 summarizes all models using the indemnity benefit level; Part 2 summarizes all models using the total benefit level; Part 3, the indemnity and medical benefit levels separately. For the better models (as judged by R^2 adjusted for degrees of freedom), the indemnity benefit level consistently outperforms both the total and component benefit level models. This is not surprising, because, as discussed above, the medical benefit level measures only a narrow component of medical benefit costs and the connection between changes in medical costs and indemnity benefit utilization is tenuous.

The models are ordered by adjusted R^2 on each part of Exhibit 5. The mean residual error is presented for each model. This indicates whether or not the model is biased. We want a model whose mean residual error is very close to zero. The normality of the residual errors for each model was tested using the Kolmogorov-Smirnov and Shapiro–Wilks tests. A low *p*-value on these tests means we can conclude the residuals are not distributed normally. The primary concern is that the residuals are skew. A low *p*-value on the skewness test would indicate a model's residuals are more skew than the normal distribution's. A low *p*-value on the kurtosis test would indicate a model's residuals are not as kurtotic as a normal distribution. A few models fail (p < 0.10) both the Shapiro-Wilks and kurtosis tests-but neither the Kolmogorov-Smirnov nor skewness tests. These models' residuals are more highly kurtotic than a normal distribution's. This is not bad—it means the actual data are more tightly distributed about the fitted line than if they were normally distributed.

The seven models with the highest adjusted R^2 include the cumulative injury index variable and a constant term. The regression output for these seven models is presented in Exhibit

6. All seven models are significant based on an analysis of variance. The model with the highest adjusted R^2 explains 91.4% of the variance in annual changes in indemnity claim frequency. However, the second principal component of this model is not significant at a 90% or higher confidence level. The model excluding this term (with the second highest adjusted R^2) explains 88.7% of the variance and all terms are significant at a 95% confidence level. This model, Model 2, includes the indemnity benefit level, a constant term, the first principal component of rGSP, AggE and Unemp, and the cumulative injury index.

Three other models have terms that are all significant at a 95% confidence level, each differing in the choice of economic variable. The fifth model includes the first principal component of rGSP and AggE. The sixth model includes AggE. The seventh model includes rGSP. These models explain 86.1%, 84.2% and 82.9% of the variance, respectively, as compared to the second model, which explains 88.7%. Exhibits 7 through 10 present a graphical analysis of each of the four models (Models 2, 5, 6 and 7).

The graph on Part 1 of Exhibits 7 through 10 shows the actual and fitted annual percentage changes. Part 2 of each exhibit demonstrates application of the model to predict annual frequency changes presuming we have past or estimated frequency information. That is, Part 2 is analogous to the graph on Part 1, but with a one, two or three period projection interval. For example, in the first graph of Part 2 of Exhibit 7, if we are projecting policy year 1997 we must know or have estimated the indemnity frequency for policy year 1996 and the benefit level changes and economic variable changes for 1997. The second graph, again projecting policy year 1997, assumes we have the frequency for policy year 1995 and the benefit level and economic variable changes for 1996 and 1997. These graphs illustrate how the fitted models would perform in practice. Part 3 of Exhibits 7 through 10 parallels Part 2, but for the level of indemnity claim frequency-not the annual changes in it.

These results are promising. A large portion of the annual variation in indemnity frequency is explained. The overall models are highly significant (based on an analysis of variance) and all the variables in the models are significant at a 95% level of confidence. The estimates of the coefficient on the indemnity benefit level range from 0.221 to 0.321, with the estimate for the most powerful model squarely inside this range at 0.262. So our best estimates using a variety of economic variables fall within a fairly narrow range.

One weakness of these results is the limited time frame of observation. Only sixteen years of data were available concurrently for the included variables. This limitation was imposed by the cumulative injury index, which was available beginning with policy year 1977. A key concern here is the number of economic cycles over which the economic variables were observed. With economic variables we would like to include several economic cycles to have greater confidence in our findings. To examine what impact this limitation may have had, we look now to the same models, but exclude the cumulative injury index.

Models Excluding the Ratio of Cumulative Injuries to Total Indemnity Claims

Thirty years of data are available for models including the indemnity benefit level, a constant term and the economic variables presented in Exhibits 7 through 10. Selected results for these regressions appear on Exhibit 5, Part 1 and the regression output is included in Exhibit 11. Although the models explain only 18.8% to 20.3% of the total variation (adjusted for the degrees of freedom), all four are significant at the 95% confidence level based on an analysis of variance. The coefficients on the indemnity benefit level range from 0.287 to 0.330. This range overlaps considerably the range of the models that include the cumulative injury index. Additionally, these coefficients are significant at the 90% confidence level in two models and the 95% confidence level in the other two.

Clearly, the introduction of the cumulative injury index does not significantly affect the estimated indemnity benefit level coefficient. The estimates would be only a few points higher without this variable. The cumulative injury index does, however, explain over 60% of the variance and allows us to be confident our utilization estimates are not distorted due to a misspecified model with a large portion of unaccounted-for variance.

Interpretation of the Negative Constant Term

The constant term in the final model is statistically significant. It is also negative, implying that, all other things equal, indemnity frequency will fall 3.58% per year. Why might this be?

Note that the coefficient on the first principal component of the three economic variables is negative. It happens here that a negative first principal component corresponds to an expanding economy while a positive first principal component corresponds to a recessionary economy.

Consider the median value of the first principal component over the fifteen-year fitting range. This value corresponds to 1989 and is -4.7881 (Exhibit 2, Part 2). In 1989 California's real gross state product grew 3.8%, aggregate employment grew 3.6% and the unemployment rate fell to 5.1% from 5.3% the prior year. The increase in frequency for 1989 due to the state of the economy is about 1.03% [-0.214998×-4.7881]. Indeed, 1989 seems representative of what we might expect for long-term economic growth.

But long-term, frequency, which is a rate and not an absolute number, cannot increase without bound. If it did, at some point our model would project every insured to file a claim on average! If our future were a series of 1989s without end, we would project annual increases of 1.03% in frequency, without end. Clearly the model would be misspecified. To balance

the economic variable, the model must have some offset for the long-term level of economic growth. This offset is reflected in the constant term.

The situation with the indemnity benefit level is similar. In California, statutory benefit levels are not indexed to inflation. To maintain the real (inflation adjusted) value of indemnity benefits, periodic increases must be made. Over the years, we expect some portion of benefit level increases reflect adjustments to maintain purchasing power. But these adjustments have been made sporadically. In the intervening years, the *real* purchasing power of indemnity benefits is decreasing. It is being deflated by inflation. If frequency is sensitive to changes in *real* benefit levels, then we expect frequency to decline on average during the years when real benefit levels are falling (i.e., in years when benefit level changes are less than inflation). This phenomenon is reflected in the constant term.

Finally, as discussed above in the development of the hazardousness indices, the mix of business in California has been changing over the last several decades. Although annual changes in hazardousness did not predict annual changes in indemnity frequency, this does not mean the long-term trend in hazardousness is absent from our model. Both the average and median change in indemnity frequency as measured by the indemnity frequency hazardousness index are about -0.75% per year over 1978–1992. This long-term trend is reflected in the constant term.

Returning to our fitted models, Exhibit 12 presents additional performance information for the seven models in Exhibit 6. The average absolute error and adjusted R^2 are presented for the fitted model and the projection interval models. The relative performance of the projection interval models is consistent with the performance of the original models. The accuracy of the models

does not deteriorate excessively with the increasing projection interval.

These results indicate that we can be highly confident that an indemnity frequency benefit utilization response exists and is statistically significant. Our estimates of this response are remarkably stable over different time periods, a variety of economic variables, and the inclusion or exclusion of a variable to capture changes in the non-benefit-related discretionary element in the workers compensation system.

7. APPLICATION

Exhibit 13 presents the indemnity frequency benefit utilization point estimates and confidence intervals for the four models in Exhibits 7 through 10. The best estimate of indemnity frequency benefit utilization, Model 2's estimate, is from Exhibit 7. The model indicates that indemnity frequency would increase 2.6% in response to a 10% increase in the indemnity benefit level. The model is linear and might be interpreted also as implying that a 10% decrease in the indemnity benefit level would produce a 2.6% decrease in indemnity frequency. However, no benefit level decreases were included in the parameterization of the models, so any conclusions about the utilization response to benefit level decreases would be extrapolating beyond the data, with its attendant risks.

We should stress that the Bureau's goal here was quantifying the utilization effect—*not* forecasting the future level of indemnity frequency. Although the models developed here can be used to project future levels of indemnity frequency (and we tested their performance to do so), the Bureau's first concern was with the benefit level coefficient to estimate expected utilization effects. We examined whole models under the theory that our confidence would be higher if both the whole and its parts were sound and because a regression approach is always sounder when most of the variance is explained by the model.

8. SEVERITY

Two analyses parallel to the above analysis of indemnity frequency were performed for indemnity severity—one using calendar year benefit level changes and one using policy year benefit level changes. Exhibit 14 graphically presents indemnity severity and real indemnity severity (adjusted to a 1982-84 level using the California Consumer Price Index). Exhibit 15 tabulates the value of each variable and its annual percentage changes. Exhibit 16 shows the Pearson Product Moment Correlations among the variables. Exhibit 17 shows a graph of the indemnity benefit level against indemnity severity and real indemnity severity as well as the regression of the severities on the indemnity benefit level and the Spearman Rank Correlation Coefficients.

Note that while the Pearson Product Moment Correlations appear respectable, the nonparametric correlations are small and insignificant. Nor do the graphs reveal any relationship between changes in severities and changes in indemnity benefit levels. The lack of any nonparametric correlation suggests that the parametric statistics are spurious. This is bolstered by our visual inspection.

Because we can find no correlation with our target independent variable—benefit level changes—our analysis stops here. This does not mean, however, that we could not build a model for changes in severity that are a function of economic or other factors. Since we are reasonably confident that our approach will not work here, today, with this data, we have tried to do no more. We do not imply more could not be done. Remember, our goal was to quantify changes in utilization as a function of changes in benefit levels—not to create a model for severity.

This situation highlights a common trap in regression analyses. Had we not looked at the dependent variable and target independent variable graphically and used a nonparametric test, it might have seemed appropriate to cobble together a model with a deceptively satisfying R^2 . In fact, one can be put together. Would the model have passed an analysis of variance or would the t-statistics on the individual parameters have been significant? Perhaps. Would we have examined the mean residual error for bias or tested the residuals for normality? Hopefully.

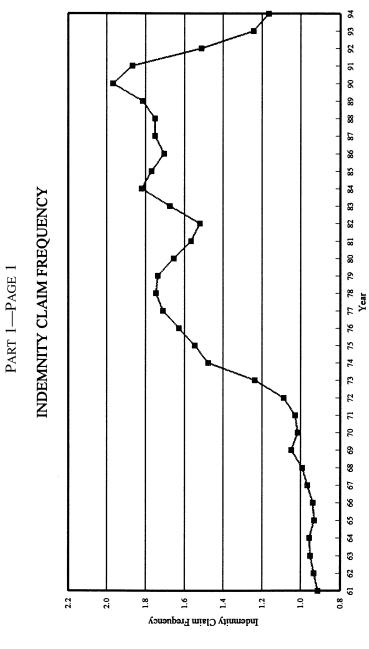
To summarize, we found no relationship between changes in calendar year indemnity benefit levels and changes in indemnity severities. As discussed earlier in the text, we also looked at the policy year transformation of the indemnity benefit levels to confirm that the results were not a result of a poor matching between the dependent and independent variables.¹¹ Using policy year changes, we were able to develop models with high adjusted R^2 , though they were very skew and, for the better models, the coefficients on the benefit level changes were not significantly different from zero. We also explored adding the self-insurance share index. This variable never reached statistical significance in any of the regressions.

9. CONCLUSION

We found no evidence of a benefit utilization effect for either medical costs or indemnity severity. The lack of correlation for medical costs did not surprise us. The delivery of medical benefits in the California workers compensation market has been in a state of flux for some time and will likely continue to be so in the near future. Because of this, isolating medical benefit utilization will likely be very challenging, if even possible, at present.

We were surprised to find no correlation between changes in indemnity severity, real or nominal, and changes in indemnity benefit levels. We had been conditioned by anecdotal evidence to expect a relationship. But we found none. A difference in statistical approach and rigor may be involved. We remind the reader of the importance of the visual inspection and nonparametric tests in rejecting the seemingly significant parametric findings. Also,

¹¹These results were presented at the March 31, 1997 Actuarial Committee meeting of the Workers' Compensation Insurance Rating Bureau of California. They are not reproduced here but are available from the author or the Bureau.

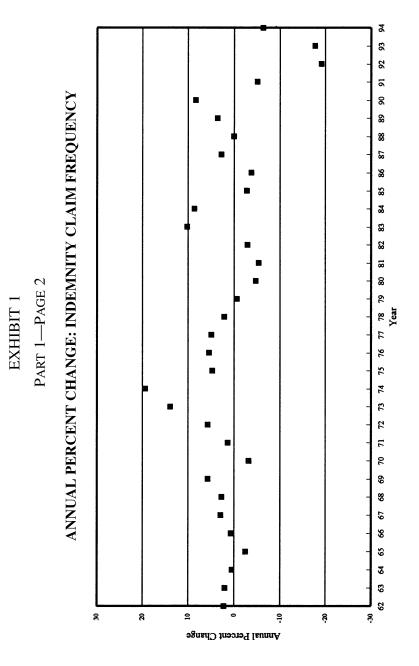

the experimental design assumed that indirect effects could be modeled on the direct effects. Perhaps there is a relationship, but it is just too complex for a linear model. Or perhaps there was simply too much noise in California over this period of time. Our findings are, of course, temporal and local and we do not imply a relationship might not exist in the future or in other states. Nevertheless, seeing how we cannot support a severity utilization effect may be as important to our understanding as finding one, though perhaps not as gratifying.

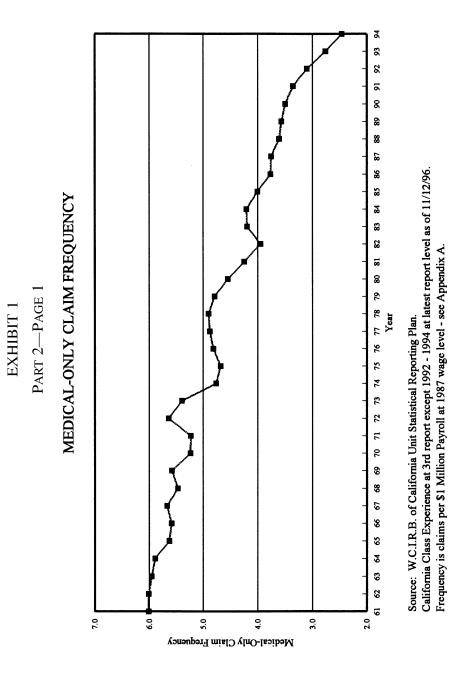
We have developed two metrics which measure changes in hazardousness due to changes in mix of business—the indemnity frequency hazardousness index and the indemnity pure premium hazardousness index. As discussed above, although annual changes in hazardousness did not predict annual changes in indemnity frequency, this does not mean the long-term trend in hazardousness is absent from our model. This long-term trend is reflected in the constant term, and our metric has allowed us to quantify this trend. The hazardousness index may have other applications and may yet prove to be a significant variable in a model of a future, more stable economy and workers compensation system.

We have succeeded in developing a sound model of indemnity claim frequency. We can be highly confident that an indemnity frequency benefit utilization response exists and is statistically significant. This response is remarkably stable over different time periods, a variety of economic variables, and the inclusion or exclusion of a variable that captures changes in the non-benefitrelated discretionary element in the workers compensation system. Our estimate of the utilization response to changes in indemnity benefit levels does not differ significantly from those of prior studies, yet the model has improved on the accuracy of the estimate and the level of confidence in the pure premium ratemaking adjustment. While there is still much to be learned, we are pleased to have made one solid step forward to a better understanding of workers compensation benefit utilization.

REFERENCES

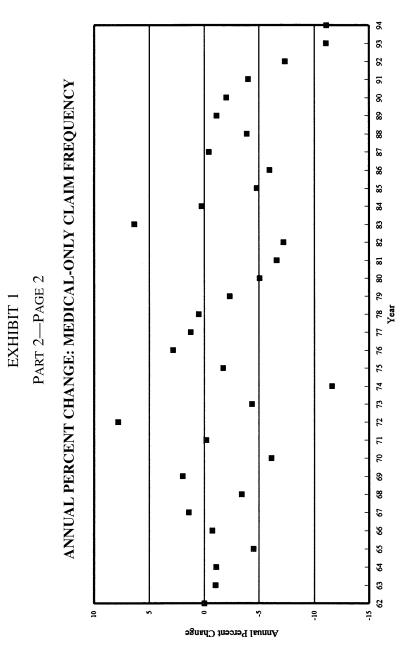
- Feldblum, Sholom, "Workers Compensation Ratemaking," Casualty Actuarial Society Part 6 Study Note, September 1993.
- [2] Meyer, Robert E., "A Study of Workers' Compensation Benefit Utilization," submitted to the Workers' Compensation Insurance Rating Bureau of California, October 1991.
- [3] Appel, David, and David Durbin, "Impact of Economic Conditions on Workers' Compensation Benefit Utilization," Report to the Workers' Compensation Insurance Rating Bureau, August 1992.
- [4] Miller, Robert B., and Dean W. Wichern, Intermediate Business Statistics: Analysis of Variance, Regression, and Time Series, New York: Holt, Rinehart and Winston, 1977.
- [5] Ferguson, George, *Nonparametric Trend Analysis*, Montreal: McGill University Press, 1965. Available from UMI Books on Demand, Ann Arbor, Michigan.
- [6] Siegel, Sidney, and John N. Castellan, Jr., Nonparametric Statistics for the Behavioral Sciences, Second Edition, Boston: McGraw Hill, 1988.
- [7] Johnson, Richard A., and Dean W. Wichern, *Applied Multivariate Statistical Analysis*, Third Edition, Englewood Cliffs, New Jersey: Prentice Hall, 1992.

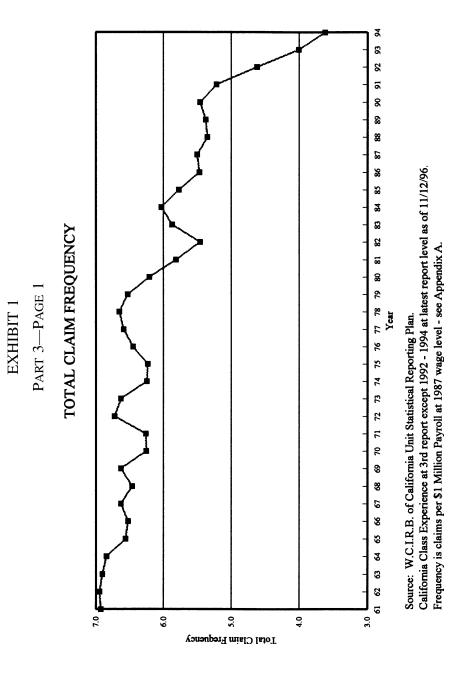



Source: W.C.I.R.B. of California Unit Statistical Reporting Plan. California Class Experience at 3rd report except 1992 - 1994 at latest report level as of 11/12/96. Frequency is claims per \$1 Million Payroll at 1987 wage level - see Appendix A.

108

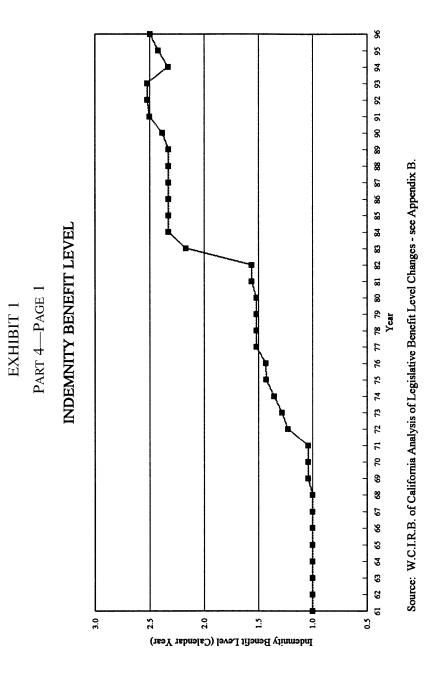
EXHIBIT 1


-

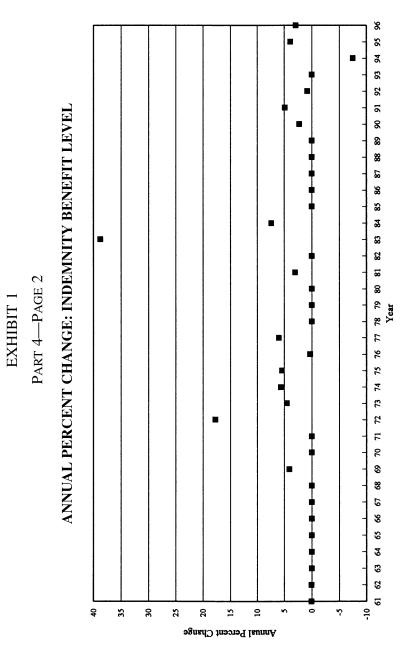


110

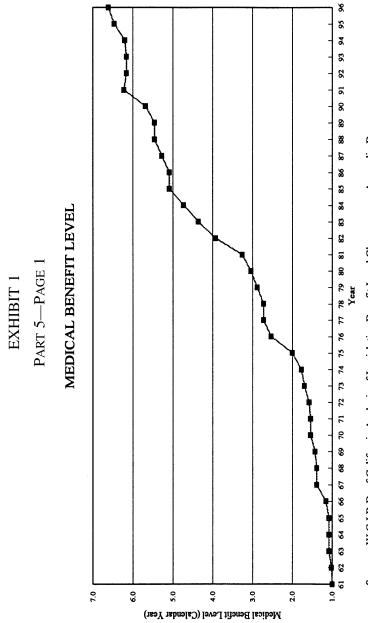
- |



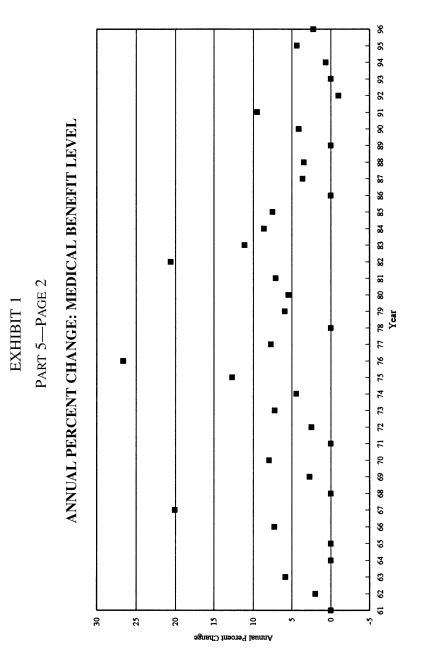
- |



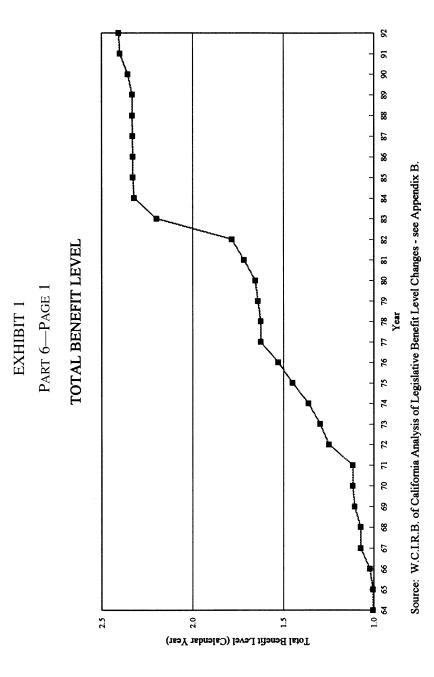
- |

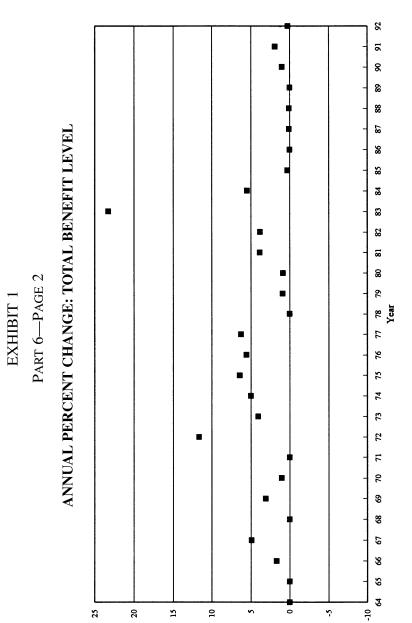

113

- |

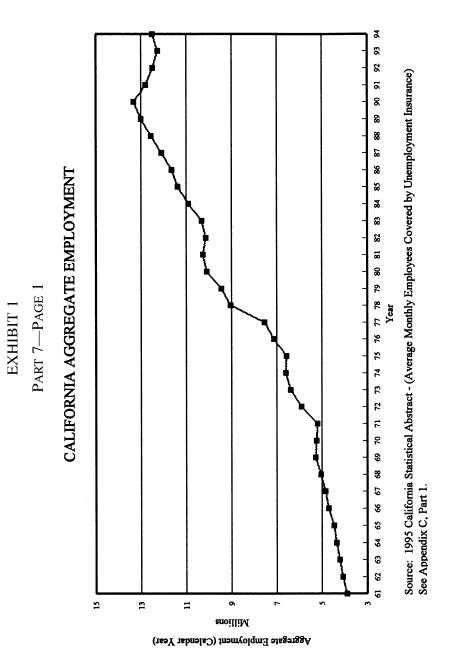


-

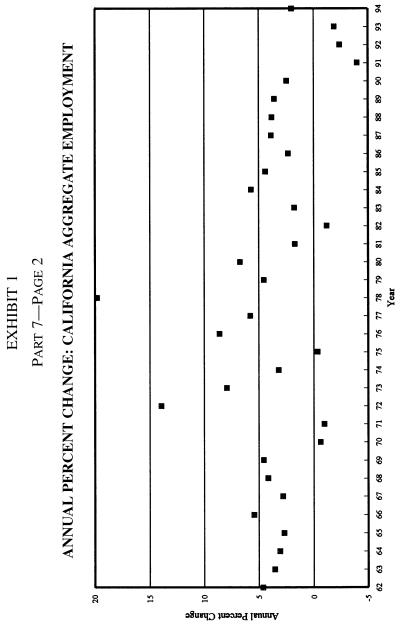


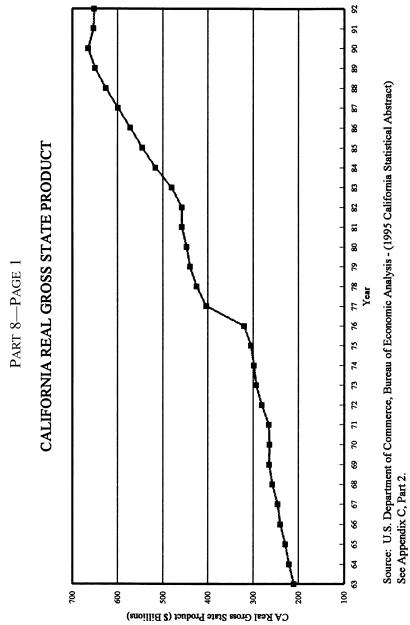

- |

-


- |

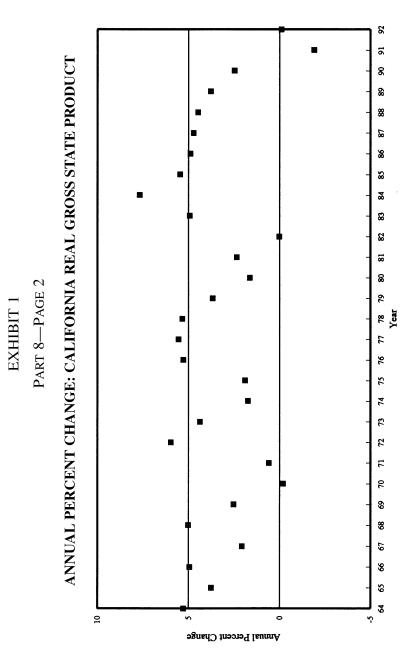
Annual Percent Change

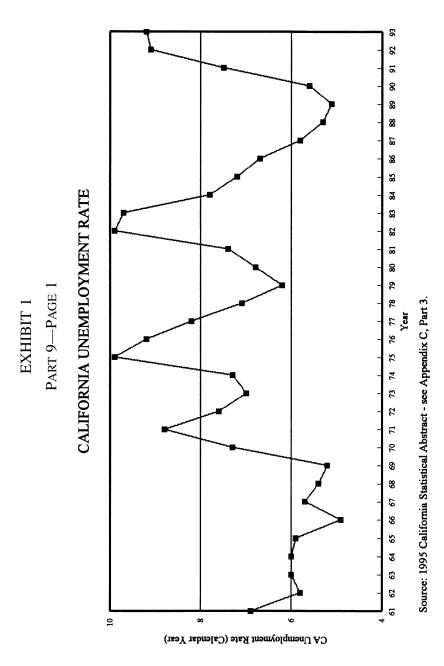

-

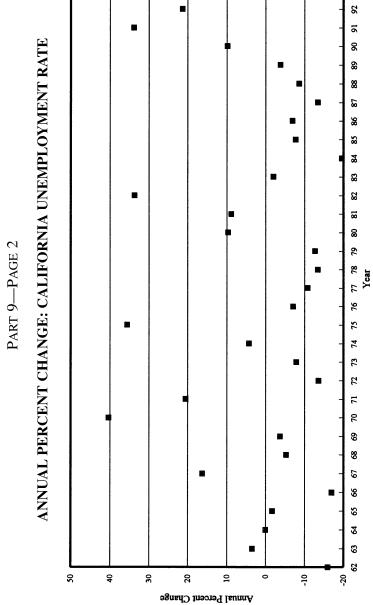

119

120 CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

-|

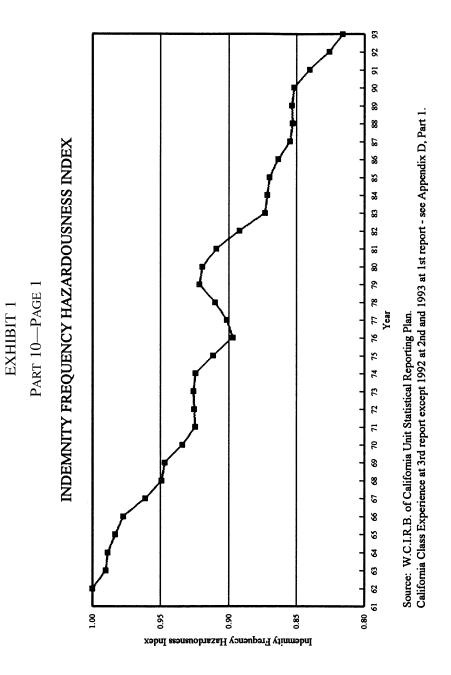


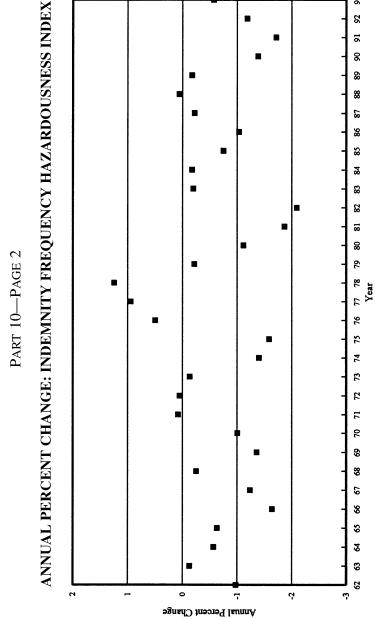



- |

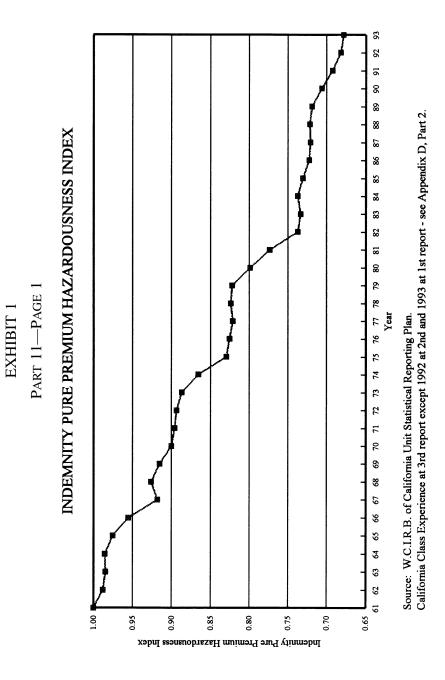
122

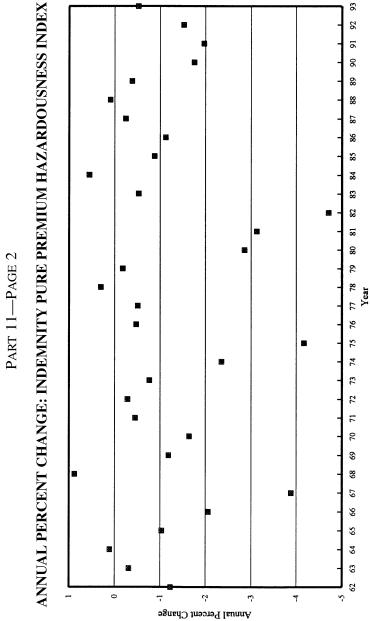
CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

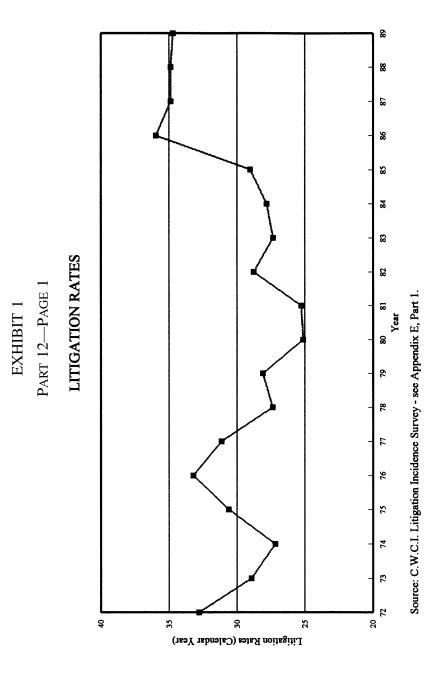




- |

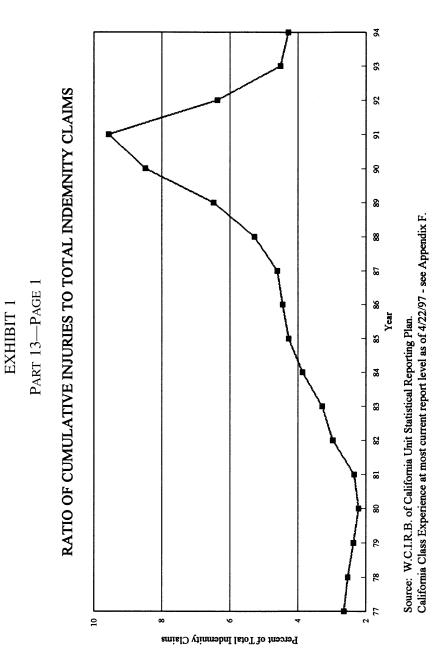

125


-|



127

-|


130 CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

-|

- |

CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

132

-|

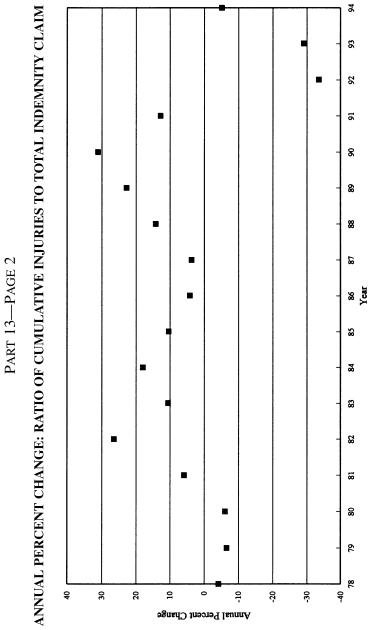
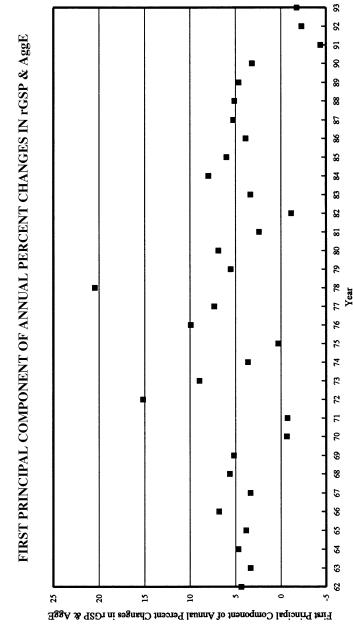
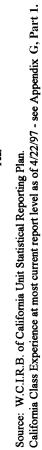
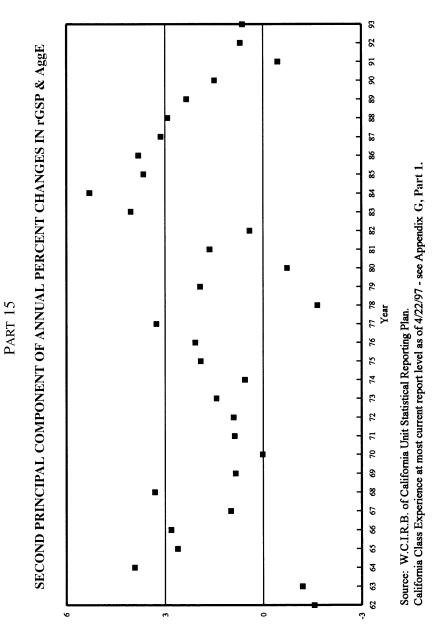



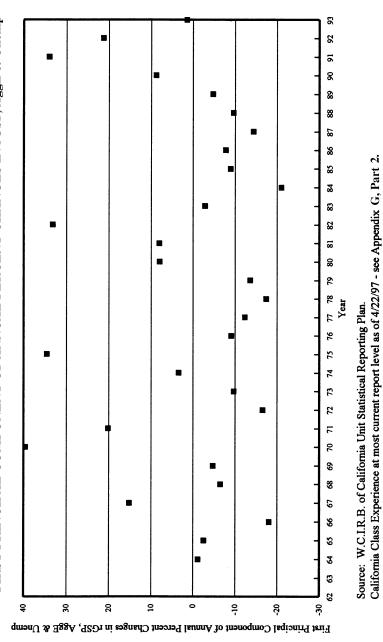
EXHIBIT 1


- |



-|

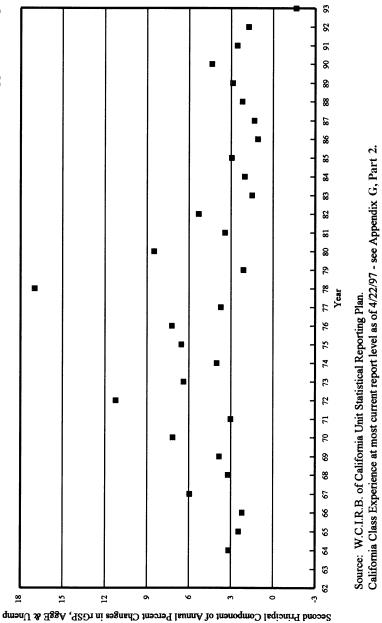
134

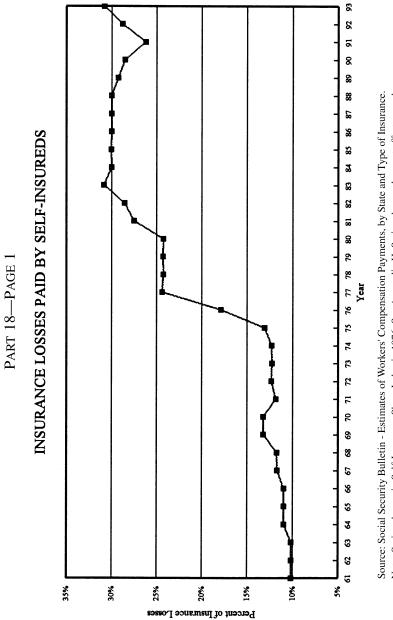


Second Principal Component of Annual Percent Changes in rGSP & AggE

EXHIBIT 1 Part 16

-|


FIRST PRINCIPAL COMPONENT OF ANNUAL PERCENT CHANGES IN rGSP, AggE & Unemp



136 CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

PART 17

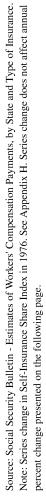
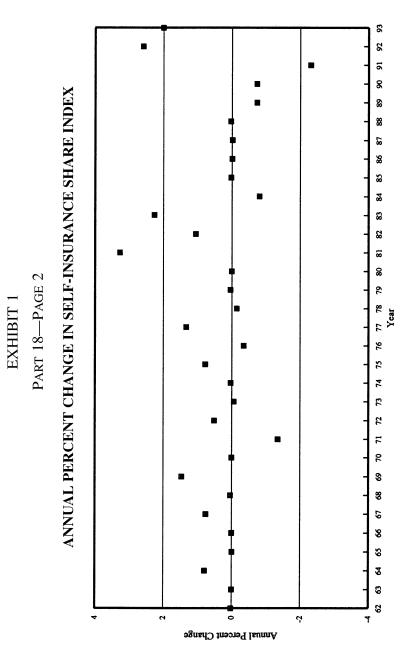



EXHIBIT 1

-|

Part 1

CANDIDATE VARIABLES—TABULAR PRESENTATION ORIGINAL VARIABLES

		laim Frequenc 1M Payroll (1		Cumulat	ive Benefit	Level	California - Aggregate	Real California
Year	Indemnity	Med-Only	Total	Indemnity	Medical	Total	Emplmt	GSP
1961	0.914	6.012	6.926	1.000	1.000	1.001	3,891,683	_
1962	0.934	6.013	6.947	1.001	1.020	1.004	4,071,877	
1963	0.952	5.952	6.904	1.001	1.080	1.005	4,216,436	210,153
1964	0.956	5.889	6.845	1.001	1.080	1.005	4,346,448	220,848
1965	0.932	5.624	6.557	1.001	1.080	1.005	4,464,625	229,125
1966	0.938	5.583	6.521	1.001	1.158	1.022	4,707,406	240,495
1967	0.966	5.664	6.629	1.001	1.391	1.073	4,840,158	245,762
1968	0.991	5.470	6.461	1.001	1.391	1.073	5,041,894	257,843
1969	1.048	5.579	6.626	1.042	1.429	1.105	5,272,325	264,621
1970	1.014	5.236	6.251	1.042	1.542	1.117	5,240,190	263,933
1971	1.028	5.228	6.255	1.042	1.542	1.117	5,189,637	265,600
1972	1.086	5.636	6.722	1.227	1.581	1.247	5,913,892	281,159
1973	1.237	5.391	6.629	1.283	1.695	1.297	6,383,331	293,735
1974	1.476	4.763	6.240	1.355	1.771	1.362	6,588,356	298,408
1975	1.546	4.682	6.228	1.428	1.995	1.450	6,564,524	304,518
1976	1.630	4.816	6.446	1.433	2.527	1.530	7,130,103	320,160
1977	1.710	4.877	6.588	1.519	2.721	1.626	7,543,268	403,192
1978	1.746	4.904	6.650	1.519	2.721	1.626	9,036,931	424,809
1979	1.736	4.790	6.527	1.519	2.882	1.641	9,448,087	439,868
1980	1.654	4.548	6.203	1.519	3.040	1.655	10,083,911	447,341
1981	1.566	4.249	5.815	1.564	3.256	1.719	10,256,167	457,877
1982	1.520	3.944	5.464	1.564	3.927	1.785	10,131,806	458,036
1983	1.675	4.195	5.870	2.171	4.363	2.200	10,312,305	480,484
1984	1.820	4.206	6.025	2.332	4.738	2.321	10,900,212	517,192
1985	1.770	4.004	5.774	2.332	5.093	2.328	11,378,074	545,612
1986	1.705	3.766	5.470	2.332	5.093	2.328	11,644,237	572,257
1987	1.751	3.751	5.502	2.332	5.278	2.331	12,094,751	599,088
1988	1.752	3.605	5.357	2.332	5.460	2.333	12,556,920	626,079
1989	1.815	3.566	5.380	2.332	5.460	2.333	13,005,986	649,583
1990	1.966	3.495	5.461	2.385	5.684	2.356	13,328,057	665,298
1991	1.867	3.355	5.222	2.502	6.224	2.401	12,796,072	653,197
1992	1.511	3.108	4.619	2.522	6.162	2.407	12,490,570	652,328
1993	1.243	2.763	4.007	2.522	6.162	2.413	12,253,883	
1994	1.165	2.456	3.621	2.334	6.202	2.186	12,500,754	—
1995				2.425	6.473	2.232	_	_
1996	—	—	—	2.495	6.618	2.268	—	—

Notes: The Principal Components variables are linear combinations of annual percentage changes. Series change in Self-Insurance Share Index in 1976. See Appendix H. Value given for 1976 is average of self-insured share under both series.

	Indemnity Frequency	Indemnity Pure Premium	Litigation	Cumulative ÷ Indemnity		Principal C	Components		Self- Insurance Share
Rate	Haz'ness	Haz'ness	Rate	Claims	PCGA_1	PCGA_2	PCUGA_1	PCUGA_2	Index
6.9	1.000	1.000	_	_					0.1018
5.8	0.990	0.988							0.1019
6.0	0.989	0.985		—					0.1019
6.0	0.983	0.986							0.1097
5.9	0.977	0.975	—						0.1095
4.9	0.961	0.955		—					0.1095
5.7	0.949	0.918							0.1171
5.4	0.947	0.926		_					0.1174
5.2	0.934	0.915							0.1319
7.3	0.925	0.900							0.1319
8.8	0.925	0.896							0.1184
7.6	0.926	0.893	32.81						0.1235
7.0	0.925	0.886	28.93						0.1228
7.3	0.912	0.866	27.17						0.1230
9.9	0.897	0.829	30.59	_					0.1307
9.2	0.902	0.825	33.22						0.1788
8.2	0.910	0.821	31.15	2.6375					0.2437
7.1	0.922	0.824	27.37	2.5254		N	от		0.2422
6.2	0.920	0.822	28.09	2.3588		APPLI	CABLE		0.2426
6.8	0.909	0.799	25.12	2.2147					0.2425
7.4	0.892	0.774	25.26	2.3447					0.2752
9.9	0.874	0.737	28.76	2.9650					0.2857
9.7	0.872	0.733	27.33	3.2780					0.3083
7.8	0.870	0.737	27.81	3.8679					0.3002
7.2	0.864	0.731	29.03	4.2713					0.3003
6.7	0.855	0.723	35.94	4.4500					0.3001
5.8	0.853	0.723	34.87	4.6127					0.2999
5.3	0.854	0.721	34.86	5.2685					0.3002
5.1	0.852	0.721	34.70	6.4725					0.2927
5.6	0.840	0.706		8.4853					0.2853
7.5	0.826	0.692	38.20	9.5761					0.2633
9.1	0.826	0.682	42.85	6.3594					0.2880
9.2	0.811	0.678		4.5128					0.3080
_	_	_	_	4.2813					_
			_						
			_						

- |

PART 2

CANDIDATE VARIABLES—TABULAR PRESENTATION **ANNUAL PERCENT CHANGES**

		laim Frequen 1M Payroll (I	Benefit Level		California Aggregate	Real California
Year	Indemnity	Med-Only	Total	Indemnity	Medical	Total	Emplmt	GSP
1961			_	0.032	0.000	0.092	_	_
1962	2.185	0.015	0.301	0.075	2.012	0.272	4.630	_
1963	1.956	-1.013	-0.614	0.000	5.852	0.158	3.550	
1964	0.426	-1.063	-0.857	0.000	0.000	0.000	3.083	5.275
1965	-2.484	-4.491	-4.211	0.000	0.000	0.000	2.719	3.759
1966	0.623	-0.731	-0.538	0.000	7.259	1.689	5.438	4.942
1967	2.920	1.441	1.654	0.000	20.083	4.928	2.820	2.069
1968	2.675	-3.423	-2.535	0.000	0.000	0.000	4.168	5.011
1969	5.693	1.992	2.559	4.100	2.747	3.062	4.570	2.533
1970	-3.193	-6.135	-5.670	0.000	7.935	1.043	-0.610	-0.194
1971	1.321	-0.169	0.073	0.000	0.000	0.000	-0.965	0.590
1972	5.659	7.811	7.458	17.732	2.489	11.635	13.956	5.957
1973	13.951	-4.342	-1.387	4.553	7.232	4.049	7.938	4.358
1974	19.315	-11.647	-5.867	5.623	4.461	4.974	3.212	1.747
1975	4.700	-1.707	-0.191	5.418	12.673	6.438	-0.362	1.897
1976	5.430	2.870	3.505	0.300	26.650	5.560	8.616	5.283
1977	4.951	1.263	2.196	6.000	7.702	6.268	5.795	5.545
1978	2.089	0.545	0.946	0.000	0.000	0.000	19.801	5.322
1979	-0.566	-2.309	-1.851	0.000	5.898	0.907	4.550	3.672
1980	-4.716	-5.051	-4.962	0.000	5.479	0.885	6.730	1.633
1981	-5.362	-6.577	-6.253	3.000	7.119	3.842	1.708	2.354
1982	-2.918	-7.188	-6.038	0.000	20.599	3.812	-1.213	0.013
1983	10.225	6.365	7.439	38.800	11.100	23.300	1.782	4.931
1984	8.611	0.257	2.641	7.400	8.600	5.500	5.701	7.665
1985	-2.723	-4.789	-4.165	0.000	7.500	0.300	4.384	5.453
1986	-3.706	-5.957	-5.267	0.000	0.000	0.000	2.339	4.887
1987	2.739	-0.395	0.582	0.000	3.630	0.101	3.869	4.711
1988	0.024	-3.883	-2.639	0.000	3.445	0.099	3.821	4.476
1989	3.597	-1.098	0.438	0.000	0.000	0.000	3.576	3.770
1990	8.353	-1.995	1.495	2.300	4.100	1.000	2.476	2.475
1991	-5.055	-4.003	-4.382	4.900	9.500	1.900	-3.991	-1.900
1992	-19.058	-7.352	-11.537	0.800	-1.000	0.251	-2.387	-0.106
1993	-17.720	-11.090	-13.259	0.000	0.000	0.248	-1.895	_
1994	-6.330	-11.124	-9.637	-7.469	0.646	-9.428	2.015	
1995				3.919	4.374	2.141	_	
1996			_	2.894	2.242	1.596	—	_

Notes: The Principal Components variables are linear combinations of annual percentage changes. PCGA_1(2) = First (second) principal component of CA Real GSP and Aggregate Employment PCUGA_1(2) = First (second) principal component of CA Real GSP, Unemployment Rate, and Aggregate Employment Series change in Self-Insurance Share Index in 1976. See Appendix H. Series change does not

affect annual percent change.

	Indemnity Frequency	Indemnity Pure Premium		Cumulative ÷ Indemnity		Principal C	Components		Self- Insurance Share
Rate	Haz'ness	Haz'ness	Rate	Claims	PCGA_1	PCGA_2	PCUGA_1	PCUGA_2	Index
_	_	_	_	_	_	_	_	_	0.002
-15.942	-0.974	-1.233	_	_	4.360	-1.560		_	0.009
3.448	-0.128	-0.318		_	3.343	-1.196	—	_	-0.000
0.000	-0.565	0.107	_	_	4.680	3.928	-1.188	3.164	0.787
-1.667	-0.629	-1.040	—	—	3.826	2.624	-2.571	2.446	-0.020
-16.949	-1.642	-2.062		—	6.785	2.822	-18.124	2.203	-0.000
16.327	-1.237	-3.883	—	—	3.352	0.998	15.155	5.962	0.755
-5.263	-0.249	0.875			5.612	3.314	-6.495	3.208	0.032
-3.704	-1.361	-1.188			5.157	0.846	-4.765	3.837	1.455
40.385	-1.003	-1.650			-0.639	0.023	39.526	7.167	-0.000
20.548	0.082	-0.456			-0.709	-0.881	20.155	3.023	-1.356
-13.636	0.051	-0.287			15.147	0.907	-16.613	11.223	0.513
-7.895	-0.137	-0.772	-11.834		8.942	1.429	-9.696	6.383	-0.071
4.286	-1.398	-2.363	-6.085	—	3.613	0.563	3.374	4.021	0.019
35.616	-1.589	-4.173	12.615		0.299	1.908	34.588	6.548	0.769
-7.071	0.500	-0.474	8.598		9.892	2.072	-9.127	7.231	-0.358
-10.870	0.949	-0.513	-6.250	_	7.324	3.268	-12.331	3.739	1.331
-13.415	1.249	0.302	-12.133	-4.248	20.437	-1.660	-17.424	16.983	-0.151
-12.676	-0.216	-0.182	2.621	-6.598	5.521	1.925	-13.643	2.121	0.034
9.677	-1.116	-2.861	-10.557	-6.108	6.886	-0.730	7.984	8.507	-0.003
8.824	-1.866	-3.130	0.537	5.871	2.401	1.641	8.013	3.436	3.271
33.784	-2.097	-4.711	13.867	26.453	-1.137	0.421	33.177	5.311	1.047
-2.020	-0.201	-0.534	-4.964	10.556	3.338	4.042	-2.874	1.489	2.261
-19.588	-0.173	0.549	1.773	17.998	7.950	5.297	-21.061	2.026	-0.816
-7.692	-0.748	-0.882	4.382	10.430	5.965	3.658	-8.956	2.964	0.015
-6.944	-1.033	-1.126	23.803	4.183	3.849	3.814	-7.777	1.087	-0.017
-13.433	-0.225	-0.248	-2.974	3.655	5.230	3.132	-14.373	1.335	-0.021
-8.621	0.057	0.090	-0.032	14.219	5.106	2.927	-9.643	2.208	0.026
-3.774	-0.179	-0.384	-0.456	22.853	4.637	2.344	-4.788	2.881	-0.746
9.804	-1.382	-1.756	_	31.096	3.165	1.496	8.811	4.381	-0.746
33.929	-1.718	-1.977		12.856	-4.398	-0.444	34.062	2.563	-2.312
21.333	-1.185	-1.526	12.183	-33.591	-2.284	0.704	21.269	1.760	2.590
1.099	-0.572	-0.527		-29.038	-1.784	0.638	1.428	-1.647	1.999
—		—	—	-5.130			—	—	—
—		—	—	—					—
_	_	—	_	_	_	—	_	_	_

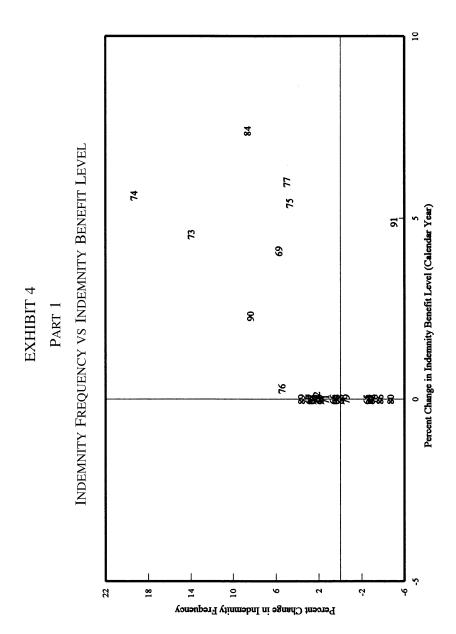
PART 1

CORRELATIONS AMONG VARIABLES SAMPLE PERIOD: 1964–1992 PEARSON PRODUCT MOMENT CORRELATION AT LAG = 0

		aim Frequer IM Payroll (E	Benefit Leve	el	California Aggregate	Real California
	Indemnity	Med-Only	Total	Indemnity	Medical	Total	Emplmt	GSP
Indemnity Claim Frequency	1.000	0.298	0.615	0.385	0.158	0.437	0.343	0.392
Med-Only Claim Frequency	0.298	1.000	0.928	0.521	0.155	0.544	0.445	0.490
Total Claim Frequency	0.615	0.928	1.000	0.552	0.195	0.588	0.484	0.559
Indemnity Benefit Level	0.385	0.521	0.552	1.000	0.110	0.945	0.060	0.204
Medical Benefit Level	0.158	0.155	0.195	0.110	1.000	0.384	-0.102	-0.113
Total Benefit Level	0.437	0.544	0.588	0.945	0.384	1.000	0.082	0.199
California Aggregate Employment	0.343	0.445	0.484	0.060	-0.102	0.082	1.000	0.655
Real California Gross State Product	0.392	0.490	0.559	0.204	-0.113	0.199	0.655	1.000
California Unemployment Rate	-0.347	-0.389	-0.448	-0.110	0.267	-0.059	-0.677	-0.892
Indemnity Frequency Haz'ness	0.260	0.510	0.502	0.127	-0.176	0.093	0.643	0.617
Indemnity Pure Premium Haz'ness	0.169	0.370	0.356	0.105	-0.493	-0.067	0.431	0.638
Litigation Rates	-0.390	-0.155	-0.239	-0.197	0.325	-0.109	-0.543	-0.122
Cumulative÷ Indemnity Claims	0.690	0.219	0.483	0.112	0.466	0.153	-0.110	0.153
1st PC (rGSP, AggE)	0.367	0.472	0.518	0.085	-0.108	0.104	0.993	0.739
2nd PC (rGSP, AggE)	0.179	0.210	0.262	0.210	-0.049	0.182	-0.116	0.674
1st PC (rGSP, AggE, Unemp)	-0.353	-0.400	-0.459	-0.110	0.261	-0.063	-0.705	-0.897
2nd PC (rGSP, AggE, Unemp)	0.136	0.234	0.231	-0.022	0.119	0.058	0.710	0.040
Self-Insurance Share Index	-0.210	0.014	-0.099	0.317	0.061	0.388	-0.063	0.024

Note: Pearson Product Moment Correlation assumes the variables to be normally distributed.

	Indemnity Frequency	Indemnity Pure Premium	Litigation	Cumulative ÷ Indemnity		Principa	l Componer	nts	Self- Insurance Share
Rate	Haz'ness	Haz'ness	Rate	Claims	PCGA_1	PCGA_2	PCUGA_1	PCUGA_2	Index
-0.347	0.260	0.169	-0.390	0.690	0.367	0.179	-0.353	0.136	-0.210
-0.389	0.510	0.370	-0.155	0.219	0.472	0.210	-0.400	0.234	0.014
-0.448	0.502	0.356	-0.239	0.483	0.518	0.262	-0.459	0.231	-0.099
-0.110	0.127	0.105	-0.197	0.112	0.085	0.210	-0.110	-0.022	0.317
0.267	-0.176	-0.493	0.325	0.466	-0.108	-0.049	0.261	0.119	0.061
-0.059	0.093	-0.067	-0.109	0.153	0.104	0.182	-0.063	0.058	0.388
-0.677	0.643	0.431	-0.543	-0.110	0.993	-0.116	-0.705	0.710	-0.063
-0.892	0.617	0.638	-0.122	0.153	0.739	0.674	-0.897	0.040	0.024
1.000	-0.587	-0.683	0.353	0.025	-0.741	-0.511	0.999	0.038	0.027
-0.587	1.000	0.781	-0.448	-0.156	0.668	0.183	-0.600	0.312	-0.182
-0.683	0.781	1.000	-0.327	-0.116	0.483	0.417	-0.681	-0.068	-0.265
0.353	-0.448	-0.327	1.000	0.374	-0.522	0.357	0.369	-0.368	-0.002
0.025	-0.156	-0.116	0.374	1.000	-0.076	0.286	0.028	-0.119	-0.407
-0.741	0.668	0.483	-0.522	-0.076	1.000	0.000	-0.767	0.639	-0.052
-0.511	0.183	0.417	0.357	0.286	0.000	1.000	-0.490	-0.642	0.094
0.999	-0.600	-0.681	0.369	0.028	-0.767	-0.490	1.000	-0.000	0.029
0.038	0.312	-0.068	-0.368	-0.119	0.639	-0.642	-0.000	1.000	-0.058
0.027	-0.182	-0.265	-0.002	-0.407	-0.052	0.094	0.029	-0.058	1.000


PART 2

CORRELATIONS AMONG VARIABLES SAMPLE PERIOD: 1964–1992 SIGNIFICANCE OF CORRELATION AT LAG = 0

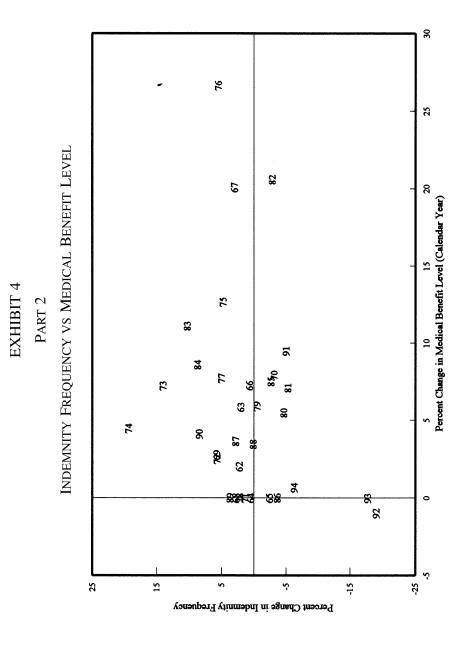
		aim Frequen M Payroll (В	Benefit Leve	el .	California Aggregate	Real California
	Indemnity	Med-Only	Total	Indemnity	Medical	Total	Emplmt	GSP
Indemnity Claim Frequency		0.116	0.000	0.039	0.413	0.018	0.068	0.036
Med-Only Claim Frequency	0.116		0.000	0.004	0.422	0.002	0.016	0.007
Total Claim Frequency	0.000	0.000		0.002	0.310	0.001	0.008	0.002
Indemnity Benefit Level	0.039	0.004	0.002		0.569	0.000	0.758	0.288
Medical Benefit Level	0.413	0.422	0.310	0.569		0.040	0.599	0.560
Total Benefit Level	0.018	0.002	0.001	0.000	0.040		0.673	0.300
California Aggregate Employment	0.068	0.016	0.008	0.758	0.599	0.673		0.000
Real California Gross State Product	0.036	0.007	0.002	0.288	0.560	0.300	0.000	
California Unemployment Rate	0.065	0.037	0.015	0.572	0.162	0.763	0.000	0.000
Indemnity Frequency Haz'ness	0.174	0.005	0.006	0.513	0.361	0.632	0.000	0.000
Indemnity Pure Premium Haz'ness	0.382	0.048	0.058	0.588	0.007	0.732	0.020	0.000
Litigation Rates	0.121	0.553	0.355	0.448	0.203	0.676	0.024	0.640
Cumulative÷ Indemnity Claims	0.004	0.432	0.068	0.690	0.080	0.587	0.696	0.587
1st PC (rGSP, AggE)	0.050	0.010	0.004	0.662	0.576	0.592	0.000	0.000
2nd PC (rGSP, AggE)	0.353	0.275	0.169	0.274	0.803	0.344	0.549	0.000
1st PC (rGSP, AggE, Unemp)	0.060	0.032	0.012	0.569	0.172	0.746	0.000	0.000
2nd PC (rGSP, AggE, Unemp)	0.483	0.222	0.229	0.911	0.538	0.766	0.000	0.838
Self-Insurance Share Index	0.275	0.942	0.610	0.094	0.753	0.038	0.746	0.900

Note: P Value is the probability of observing the indicated SAMPLE correlation coefficient if the True correlation coefficient was actually zero.

	Indemnity Frequency	Indemnity Pure Premium	Litigation	Cumulative ÷ Indemnity		Principa	l Componer	ıts	Self- Insurance Share
Rate	Haz'ness	Haz'ness	Rate	Claims	PCGA_1	PCGA_2	PCUGA_1	PCUGA_2	Index
0.065	0.174	0.382	0.121	0.004	0.050	0.353	0.060	0.483	0.275
0.037	0.005	0.048	0.553	0.432	0.010	0.275	0.032	0.222	0.942
0.015	0.006	0.058	0.355	0.068	0.004	0.169	0.012	0.229	0.610
0.572	0.513	0.588	0.448	0.690	0.662	0.274	0.569	0.911	0.094
0.162	0.361	0.007	0.203	0.080	0.576	0.803	0.172	0.538	0.753
0.763	0.632	0.732	0.676	0.587	0.592	0.344	0.746	0.766	0.038
0.000	0.000	0.020	0.024	0.696	0.000	0.549	0.000	0.000	0.746
0.000	0.000	0.000	0.640	0.587	0.000	0.000	0.000	0.838	0.900
	0.001	0.000	0.165	0.928	0.000	0.005	0.000	0.844	0.888
0.001		0.000	0.071	0.578	0.000	0.342	0.001	0.099	0.345
0.000	0.000		0.201	0.680	0.008	0.024	0.000	0.726	0.164
0.165	0.071	0.201		0.232	0.031	0.160	0.145	0.146	0.994
0.928	0.578	0.680	0.232		0.788	0.301	0.921	0.672	0.132
0.000	0.000	0.008	0.031	0.788		1.000	0.000	0.000	0.787
0.005	0.342	0.024	0.160	0.301	1.000		0.007	0.000	0.629
0.000	0.001	0.000	0.145	0.921	0.000	0.007		1.000	0.882
0.844	0.099	0.726	0.146	0.672	0.000	0.000	1.000		0.764
0.888	0.345	0.164	0.994	0.132	0.787	0.629	0.882	0.764	

148 CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

-|

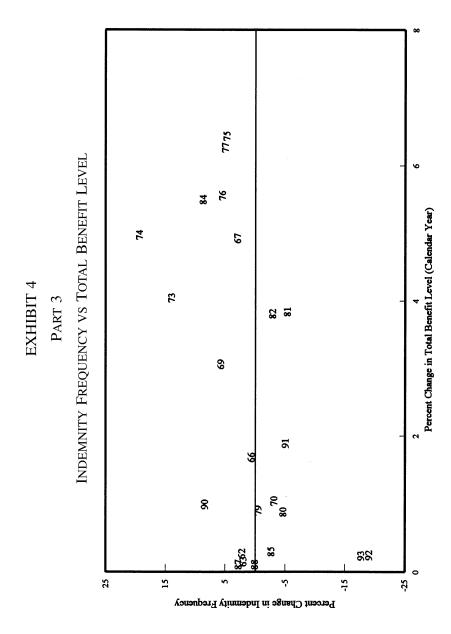

Spearman Rank Correla Valid Cases Two-tailed Significance Regression Output With Constant Constant Constant -0.10398 Sid Err of Y Est 7.01511 Stagared 0.15903 No. of Observations 33 Degrees of Freedom 31 X Coefficient(s) 0.39609 Sid Err of Coeff 0.16359 State 0.15359 State 0.16359 State 0.16359 State 0.16359 State 0.16359 State 0.16359 State 0.02152 State 0.00000 State 0.15886 A Squared 0.15886	Spearman Rank Correlation Coefficient: Valid Cases
	Spearman Ra Valid Cases

Outliers 1972, 1983 and 1994 used in regression but are not shown in graph

CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

149

|

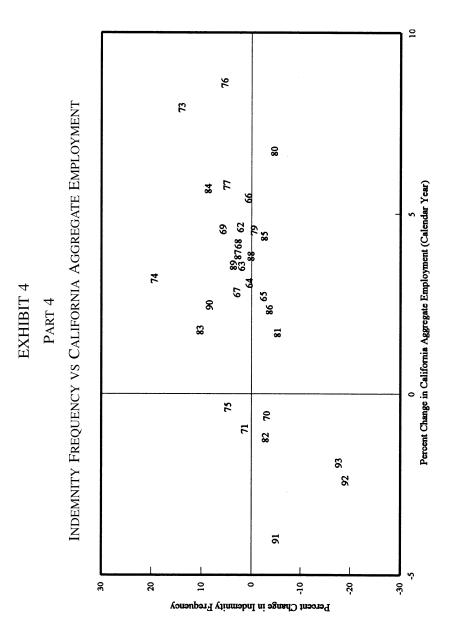

150 CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

— |

	valid Cases Two-tailed Significance	دد 0.13092	ری 192	
Regression Output With Constant:	ith Constant:	Regression With Dummy Variable and Constant	ny Variable and	Constant
Constant	-0.55947	Constant		-1.72494
Std Err of Y Est	7.43909	Std Err of Y Est		7.51880
R Squared	0.05431	R Squared		0.06509
No. of Observations	33	No. of Observations		33
Degrees of Freedom	31	Degrees of Freedom		30
			Ind BL	Dummy
X Coefficient(s)	0.26884	X Coefficient(s)	0.19654	2.09867
Std Err of Coef.	0.20150	Std Err of Coef.	0.23786	3.56718
P-Value	0.19185	P-Value	0.41518	0.56072
Regression Output Without Constant:	hout Constant:	Regression With Dummy Variable and No Constant	Variable and N	o Constant
Constant	0.00000	Constant		0.00000
Std Err of Y Est	7.33394	Std Err of Y Est		7.44826
R Squared	0.05120	R Squared		0.05197
No. of Observations	33	No. of Observations		33
Degrees of Freedom	32	Degrees of Freedom		31
			Ind BL	Dummy
X Coefficient(s)	0.22550	X Coefficient(s)	0.19654	0.37373
Std Err of Coef.	0.14668	Std Err of Coef.	0.23563	2.35638
P-Value	0.13403	P-Value	0.41061	0.87501

CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

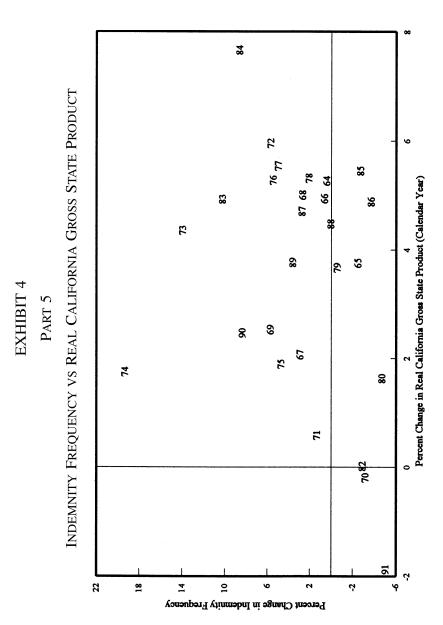
151

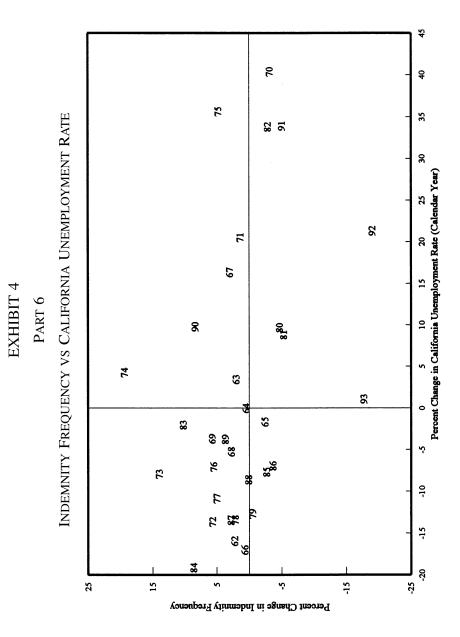

-|

ignificance	nt: 0.50840 33 0.00252	Regression With Dummy Variable and Constant	nt 0.56004	Std Err of Y Est 6.88774	red 0.21544	No. of Observations 33	Degrees of Freedom 30	Ind BL Dummy	X Coefficient(s) 0.71540 -1.69602	Std Err of Coef. 0.24985 3.03890	0.00758 0.58092	Regression With Dummy Variable and No Constant	at 0.00000	Std Err of Y Est 6.78096	red 0.21423	No. of Observations 33	Degrees of Freedom 31	Ind BL Dummy	X Coefficient(s) 0.71540 -1.13598	Std Err of Coef. 0.24597 1.54338
	spearman kank Correlation Coefficier Valid Cases Two-tailed Significance	Regression Output With Constant: Regr	-0.68463 Constant		0.20730 R Squared						0.00776 P-Value	Regression Output Without Constant: Regres	0.00000 Constant		0.20050 R Squared					

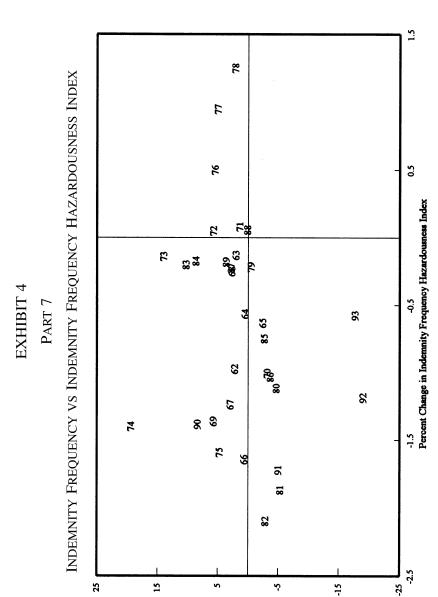
Outliers 1972, 1983 and 1994 used in regression but are not shown in graph

CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION


153

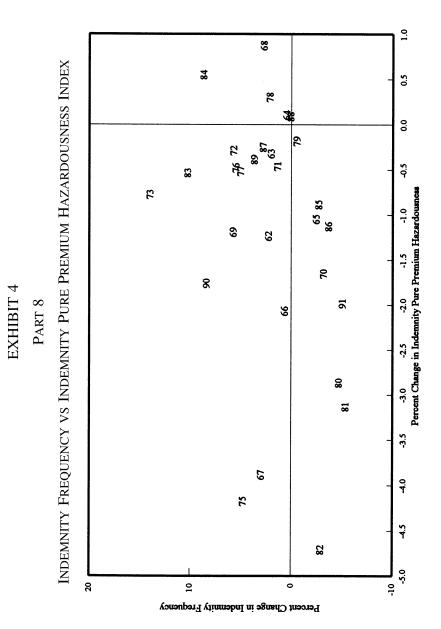

|

154


CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

t is not shown in the graph	Spearman Rank Correlation Coefficient:0.40246Valid Cases29Two-tailed Significance0.03042	Regression Output With Constant: Constant –2.27752	std Err of Y Est 6.59466 A Squared 0.15332	No. of Observations 29 Degrees of Freedom 27	X Coefficient(s) 1.21851 Std Err of Coef. 0.55107 2-Value 0.03570	Regression Output Without Constant:	Constant 0.00000 24 Err of V Ect 6 50063	1 1291	ervations Freedom	X Coefficient(s) 0.74826 Sid Err of Coef. 0.30273
Outlier 1992 is used in the regressions but is not shown in the graph	Spearman Rank Corre Valid Cases Two-tailed Significanc	Regression C Constant	Std Err of Y Est R Squared	No. of Observations Degrees of Freedom	X Coefficient(s) Std Err of Coef. P-Value	Regression Ou	Constant Std Err of V Ecr	R Squared	No. of Observations Degrees of Freedom	X Coefficient(s) Std Err of Coef.

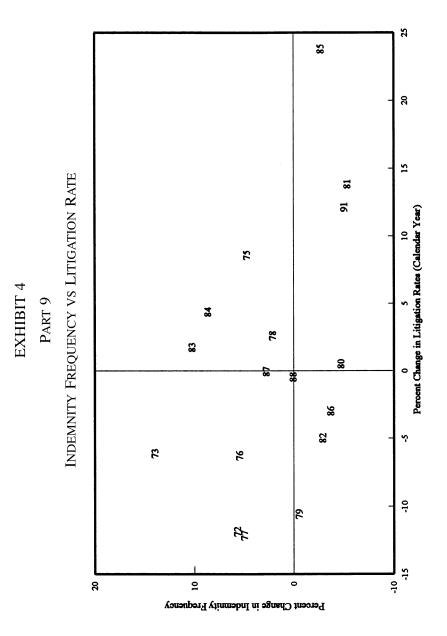
Coefficient: -0.34054 32 0.05648		1.53439	0.08889	32	30	-0.13483	0.07881	0.09740	Without Constant:	0.00000	7.35321	0.04675	32	31	-0.12291	0.07865	0.12824	
Spearman Rank Correlation Coefficient: Valid Cases Two-tailed Significance	Regression Output With Constant:	Constant Std Err of V Ect	R Squared	No. of Observations	Degrees of Freedom	X Coefficient(s)	Std Err of Coef.	P-Value	Regression Output Without Constant.	Constant	Std Err of Y Est	R Squared	No. of Observations	Degrees of Freedom	X Coefficient(s)	Std Err of Coef.	P-Value	


Percent Change in Indemnity Frequency

|

|

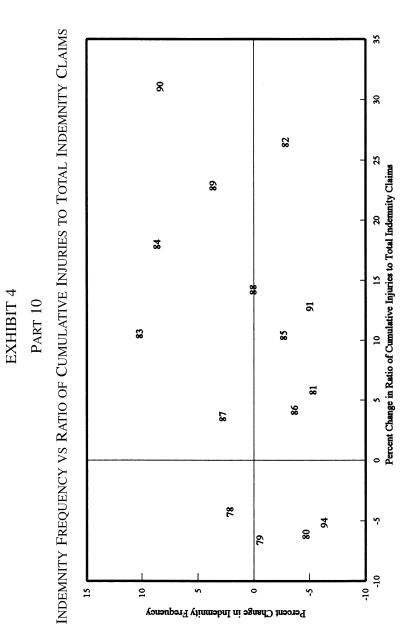
160


Valud Cases Two-tailed Significance Regression Output With Constant: Stid Err of Y Est R Souared	
Regression Output With Cons Constant Std Err of Y Est R Souared	2.580
Constant Std Err of Y Est R Souared	2.580 7.468 0.048 2.055
Std Err of Y Est R Souared	7.46806 0.04846 32 30 2.05597
R Souared	0.04846 32 30 2.05597
an make to	32 30 2.05597
No. of Observations	30 2.05597
Degrees of Freedom	2.05597
X Coefficient(s)	1 ((0))
Std Err of Coef.	1.00330
P-Value	0.22600
Regression Output Without Constant:	nstant:
Constant	0.0000
Std Err of Y Est	7.62216
R Squared	0.04609
No. of Observations	32
Degrees of Freedom	31
X Coefficient(s)	0.46323
Std Err of Coef.	1.31509
P-Value	0.72703

|

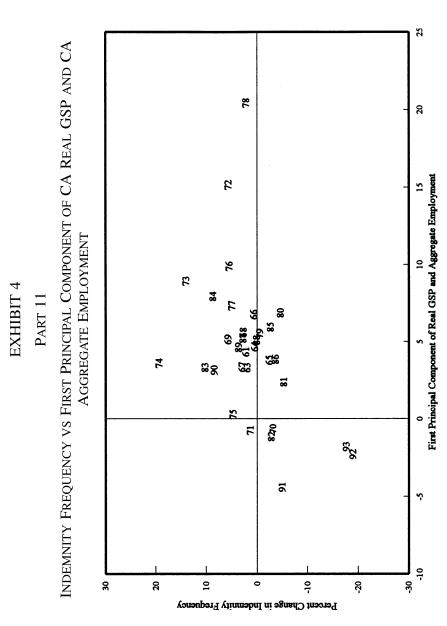
162

Spearman Rank Valid Cases Two-tailed Sign Regres Constant Std Err of Y Ess R Squared No. of Observat Degrees of Free X Coefficient(s) Std Err of Coef. P-Value Regressi Constant R Squared No. of Observat R Squared No. of Observat Std Err of Y Ess R Squared No. of Observat Std Err of Coef. Degrees of Free No. of Observat Degrees of Free No. of Observat Degrees of Free No. of Observat	Spearman Rank Correlation Coefficient: 0.20860	Valid Cases 32 Two-tailed Significance 0.24550			Regression Output With Constant:		Std Err of Y Est 7.61169	_	ervations	Degrees of Freedom 30	X Coefficient(s) 0.58979	Std Err of Coef. 0.99820	_	Domession Outenut Without Constants	Negression Output Williout Constant.	Constant 0.00000	Std Err of Y Est 7.63367	R Squared 0.02227	No. of Observations 32	Degrees of Freedom 31	X Coefficient(s) -0.13025	Std Err of Coef			1 - Value
---	--	---	--	--	----------------------------------	--	--------------------------	---	-----------	-----------------------	--------------------------	--------------------------	---	-------------------------------------	--------------------------------------	------------------	--------------------------	-------------------	------------------------	-----------------------	---------------------------	-----------------	--	--	-----------



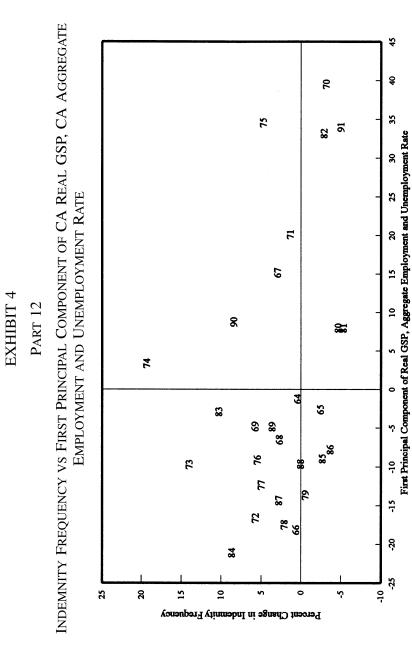
164

-|

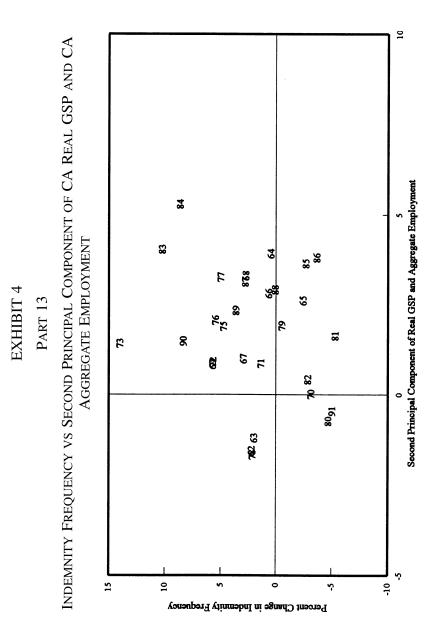

Outliers 1974 and 1985 are NOT used in regressions but are shown on graph	in regressions but are shown on graph	
	Spearman Rank Correlation Coefficient: Valid Cases Two-tailed Significance	-0.35000 16 0.18386
	Regression Output With Constant:	: 2 08/1/8
	Std Err of Y Est R Squared	5.71497 5.71497 0.10549
	No. of Observations Degrees of Freedom	16 14
	X Coefficient(s) Std Err of Coef. P-Value	-0.23892 0.18595 0.21968
	Regression Output Without Constant:	nt:
	Constant Std Err of Y Est	0.00000 7.94003
	R Squared No. of Observations Degrees of Freedom	0.26223 16 15
	X Coefficient(s) Std Err of Coef. P-Value	-0.26371 0.19190 0.18956

CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

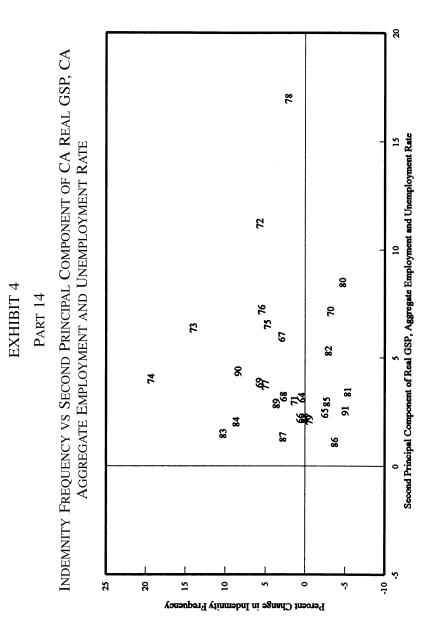
l


CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

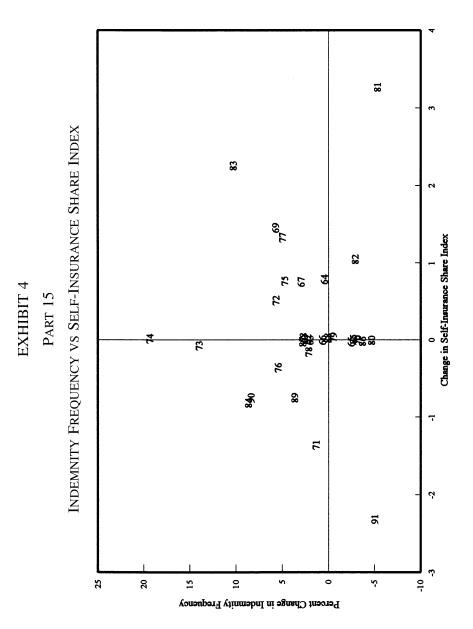
168


-|

Spearman Rank Correlation Coefficient:	0.43181
Valid Cases Two-tailed Significance	32 0.01358
)	
Regression Output With Constant:	
Constant	-1.75361
Std Err of Y Est	6.93017
R Squared	0.18059
No. of Observations	32
Degrees of Freedom	30
X Coefficient(s)	0.65856
Std Err of Coef.	0.25612
P-Value	0.01533
Regression Output Without Constant:	ť
Constant	0.00000
Std Err of Y Est	6.93842
R Squared	0.15126
No. of Observations	32
Degrees of Freedom	31
X Coefficient(s)	0.47547
Std Err of Coef.	0.18563
P-Value	0.01551


170

-0.36418 30 0.04786	unt: 1.41012 7.52272 0.09809 30 28	-0.14101 0.08080 0.09121	tant: 0.00000 7.52863 0.06441 30 29	-0.13357 0.08054 0.10731
Spearman Rank Correlation Coefficient: Valid Cases Two-tailed Significance	Regression Output With Constant: Constant Std Err of Y Est R Squared No. of Observations Degrees of Freedom	X Coefficient(s) Std Err of Coef. P-Value	Regression Output Without Constant: Constant Std Err of Y Est R Squared No. of Observations Degrees of Freedom	X Coefficient(s) Std Err of Coef. P-Value


Spearman Rank Correlation Coefficient: Valid Cases Two-tailed Significance	0.22360 32 0.21860	
Regression Output With Constant:	lt:	
Constant	-0.04754	
Std Err of Y Est	7.52449	
K Squared	0.03402	
No. of Observations	32 20	
Degrees of Freedom	00	
X Coefficient(s)	0.79696	
Std Err of Coef.	0.77531	
P-Value	0.31220	
Regression Output Without Constant:	ant:	
Constant	0.0000	
Std Err of Y Est	7.40222	
R Squared	0.03400	
No. of Observations	32	
Degrees of Freedom	31	
X Coefficient(s)	0.78313	
Std Err of Coef.	0.55359	
P-Value	0.16714	

CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

|

an Rank Correlation Coefficient: ases ed Significance Regression Output With Constant: t of Y Est ed Diservations of Freedom icient(s) of Coef. Regression Output Without Constant: t of Y Est ed Diservations of Freedom icient(s) of Coef.	Outliers 1992 and 1993 used in regressions but are not shown in the graph	sions but are not shown in the graph	
ion Output With Constant: -1.245 7.649 0.067 0.067 0.067 0.165 0.165 0.165 0.165 0.1056 0.0056 0.0056 0.0056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.057 0.165		Spearman Rank Correlation Coefficient: Valid Cases Two-tailed Significance	0.28275 30 0.13002
-1.245 7.649 0.067 0.067 0.165 0.403 0.403 0.165 0.165 0.165 0.005 0.005 0.056 0.056 0.056 0.056			
0.067 ons 0.067 0.403 0.403 0.165 0.165 0.165 0.165 0.165 0.165 0.006 0.006 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.057 0.007 0.007 0.007 0.007 0.007 0.165 0.007 0.165 0.		Constant	-1.24561
ons loim 0.573 0.403 0.165 0.165 0.165 0.165 7.559 0.0056 ons 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.124		Std Err of Y Est R Squared	7.64980 0.06736
lom 0.573 0.403 0.165 0.165 0.165 0.0056 0.056 0.056 0.056 0.056 0.056 0.124		No. of Observations	30
0.573 0.403 0.165 0.165 0.165 0.165 0.006 0.006 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056		Degrees of Freedom	28
0.403 0.165 0.165 0.000 7.559 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056		X Coefficient(s)	0.57363
0.165 n Output Without Constant: 0.000 7.559 0.056 0.056 ons 0.397 0.251 0.124		Std Err of Coef.	0.40336
on Output Without Constant: 7.550 0.056 0.056 ons lom 0.397 0.251 0.251		P-Value	0.16530
0.000 7.559 0.056 0.056 0.056 0.056 0.056 0.397 0.251 0.124		Regression Output Without Constan	nt:
7.559 0.056 0.056 0.056 0.056 0.397 0.251 0.124		Constant	0.00000
0.056 ions dom 0.397 0.251 0.124		Std Err of Y Est	7.55920
ions dom 0.397 0.124 0.124		R Squared	0.05680
dom 0.397 0.251 0.124		No. of Observations	30
		Degrees of Freedom	29
		X Coefficient(s)	0.39749
		Std Err of Coef.	0.25168
		P-Value	0.12442

-0.10320 32 0.56550	t: 1.55043 7.54764 0.02807 30 28	-1.16260 1.24904 0.35939	unt: 0.00000 0.02807 30 29	-0.82922 1.21901 0.50140
Spearman Rank Correlation Coefficient: Valid Cases Two-tailed Significance	Regression Output With Constant: Constant Std Err of Y Est R Squared No. of Observations Degrees of Freedom	X Coefficient(s) Std Err of Coef. P-Value	Regression Output Without Constant: Constant Std Err of Y Est R Squared No. of Observations Degrees of Freedom	X Coefficient(s) Std Err of Coef. P-Value

Ś	
Е	
BI	
H	
\mathbf{Z}	
Щ	

_ |

PART 1

SUMMARY OF SELECTED REGRESSION RESULTS

		N	INDEMNITY BENEFIT LEVEL	BENEFI	t Level				
			Coefficient of Indemnity	Adjusted R^2	Mean Residual	P-Value	P-Values for Tests of Normality in Residuals	ormality in F	esiduals
	Independent Variables	2	Benefit Level	(×100)	Error	K-S Test	Shapiro-Wilks	Skewness	Kurtosis
Constant	PCUGA 1 & PCUGA 2	Cum Inj Index	0.286573	87.9086	-0.000001	0.98557	0.726754	0.881409	0.704214
Constant	PCUGA_1	Cum Inj Index	0.261897	85.6142	-0.00001	0.94783	0.748869	0.886143	0.343503
Constant	PCGA_1 & PCGA_2	Cum Inj Index	0.272918	83.4069	-0.00000	0.78244	0.423384	0.548331	0.813895
Constant	rGSP & AggE	Cum Inj Index	0.272919	83.4069	-0.00001	0.78245	0.423383	0.548330	0.813897
Constant	PCGA_1	Cum Inj Index	0.309052	82.2782	0.000000	0.50538	0.105146	0.386600	0.849528
Constant	AggE	Cum Inj Index	0.321087	79.8728	0.000000	0.66497	0.257688	0.398509	0.826385
Constant	rGSP	Cum Inj Index	0.220530	78.2211	-0.000000	0.90252	0.335510	0.997070	0.148195
Origin	PCUGA_1 & PCUGA_2	Cum Inj Index	0.174378	66.0923	-1.821382	0.92753	0.330178	0.930584	0.411106
Origin	PCUGA_1	Cum Inj Index	0.164625	64.4638	-2.66()44()	0.70927	0.205739	0.925496	0.625992
Origin	AggE	Cum Inj Index	0.168924	32.8023	-3.249618	0.76309	0.425381	0.632718	0.418103
Origin	PCGA_1	Cum Inj Index	0.166104	32.1664	-3.202778	0.74136	0.339507	0.610755	0.411451
Origin	PCGA_1 & PCGA_2	Cum Inj Index	0.236292	31.8970	-2.675669	0.99048	0.736900	0.858949	0.404446
Origin	rGSP & AggE	Cum Inj Index	0.236293	31.8970	-2.675668	0.99048	0.736900	0.858948	0.404446
Origin	rGSP	Cum Inj Index	0.181181	30.8825	-2.692286	0.71617	0.417545	0.613256	0.349558
Origin	PCUGA_1 & PCUGA_2	None	0.310626	26.1143	-0.129588	0.60045	0.113746	0.727394	0.018431
Origin	PCGA_1	None	0.285431	26.0075	-0.745032	0.62419	0.060441	0.890201	0.011669
Origin	AggE	None	0.296739	25.9621	-0.631326	0.74362	0.095821	0.945521	0.014194
Origin	PCUGA_1	None	0.363330	25.5120	0.765343	0.79254	0.116257	0.880094	0.018651
Origin	rGSP	None	0.272067	23.3272	-0.776528	0.52080	0.025223	0.889271	0.007354
Origin	rGSP & AggE	None	0.288721	23.1740	-0.712893	0.64107	0.068267	0.905894	0.012398
Origin	PCGA_1 & PCGA_2	None	0.288721	23.1740	-0.712893	0.64107	0.068266	0.905893	0.012398
Constant	PCGA_1	None	0.321818	20.3379	-0.000000	0.70653	0.169706	0.712973	0.020484
Constant	AggE	None	0.330217	19.3274	0.00001	0.78895	0.207190	0.845635	0.023023
Constant	rGSP	None	0.287312	19.2424	-0.00001	0.71529	0.032419	0.400785	0.008683
Constant	PCUGA_1	None	0.316254	18.7551	0.00001	0.75395	0.091303	0.844291	0.016314
Constant	PCGA_1 & PCGA_2	None	0.300944	18.4262	0.00001	0.68396	0.067943	0.443847	0.013336
Constant	rGSP & AggE	None	0.300945	18.4262	0.00001	0.68396	0.067943	0.443848	0.013336
Constant	PCUGA_1 & PCUGA_2	None	0.319097	17.8047	0.000002	0.56930	0.137531	0.718970	0.020284

178

CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

PCGA_1(2) = First (second) principal component of California Real GSP and Aggregate Employment. PCUGA_1(2) = First (second) principal component of California Unemployment Rate, California Real GSP, and Aggregate Employment.

PART 2

SUMMARY OF SELECTED REGRESSION RESULTS TOTAL BENEFIT LEVEL

				<					
	Independent Variables		Benefit Level	(×100)	Error	K-S Test	Shapiro-Wilks	Skewness	Kurtosis
Constant	PCUGA_1 & PCUGA_2	Cum Inj Index	0.456894	85.9722	-0.000000	0.92907	0.874813	0.927566	0.611238
Constant	PCUGA_1	Cum Inj Index	0.422782	84.3168	-0.00001	0.95431	0.848256	0.968421	0.361423
Constant	PCGA 1 & PCGA 2	Cum Inj Index	0.420679	80.7484	-0.000000	0.89854	0.322648	0.817466	0.496837
Constant	rGSP & AggE	Cum Inj Index	0.420679	80.7484	0.000000	0.89854	0.322650	0.817465	0.496839
Constant	PCGA_1	Cum Inj Index	0.484488	79.2394	-0.000000	0.92763	0.747651	0.795915	0.775950
Constant	AggE	Cum Inj Index	0.502991	76.5814	-0.000000	0.93771	0.901157	0.842296	0.895562
Constant	rGSP	Cum Inj Index	0.337664	76.3457	0.00001	0.95764	0.381211	0.919454	0.085781
Origin	PCUGA_1 & PCUGA_2	Cum Inj Index	0.256019	64.4102	-1.800296	0.82172	0.359736	0.848332	0.372861
Origin	PCUGA_1	Cum Inj Index	0.225583	62.4887	-2.652812	0.79838	0.328497	0.879385	0.642470
Origin	PCUGA_1	None	0.621759	31.9340	0.083426	0.63017	0.092248	0.700709	0.018230
Origin	PCUGA_1 & PCUGA_2	None	0.564547	30.0771	-0.279990	0.69593	0.082883	0.626873	0.016654
Origin	AggE	Cum Inj Index	0.203652	29.6727	-3.189150	0.87257	0.536635	0.741083	0.302869
Origin	PCGA_1	Cum Inj Index	0.198961	29.1148	-3.152980	0.88414	0.475527	0.715886	0.295250
Origin	rGSP	Cum Inj Index	0.221670	27.7018	-2.714230	0.86316	0.354814	0.659300	0.238581
Origin	AggE	None	0.487566	27.4589	-0.900121	0.46532	0.059950	0.901925	0.012502
Origin	PCGA_1	None	0.472383	27.3324	-0.973372	0.44110	0.047488	0.865926	0.010582
Origin	rGSP & AggE	Cum Inj Index	0.304403	27.2065	-2.715112	0.98855	0.628836	0.823965	0.282299
Origin	PCGA_1 & PCGA_2	Cum Inj Index	0.304402	27.2065	-2.715111	0.98855	0.628837	0.823966	0.282298
Origin	rGSP	None	0.472065	24.9179	-0.931511	0.42116	0.022933	0.909797	0.007748
Origin	rGSP & AggE	None	0.492587	24.6757	-0.875043	0.47991	0.064638	0.914406	0.013135
Origin	PCGA_1 & PCGA_2	None	0.492587	24.6756	-0.875044	0.47991	0.064638	0.914405	0.013135
Constant	PCUGA_1	None	0.609784	24.3041	-0.000003	0.64948	0.086616	0.698150	0.017646
Constant	PCGA_1	None	0.590481	24.0807	-0.00001	0.54070	0.143540	0.593814	0.023128
Constant	rGSP	None	0.547191	23.2327	-0.000001	0.40620	0.024810	0.326243	0.009149
Constant	AggE	None	0.602700	23.0988	-0.000001	0.70428	0.184220	0.713578	0.026753
Constant	PCUGA_1 & PCUGA_2	None	0.600278	22.6779	0.000002	0.81060	0.128743	0.589805	0.020823
Constant	rGSP & AggE	None	0.560971	22.3380	0.000000	0.66443	0.058335	0.356940	0.013897
Constant	PCGA_1 & PCGA_2	None	0.560971	22.3380	0.000000	0.66443	0.058335	0.356940	0.013897

CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION 179

Ε	
IIB	
X	
Щ	

-| Ś

PART 3

SUMMARY OF SELECTED REGRESSION RESULTS INDEMNITY AND MEDICAL BENEFIT LEVELS SEPARATELY

			Coefficient of Indemnity	Adjusted R^2	Mean Residual	P-Value	P-Values for Tests of Normality in Residuals	ormality in F	kesiduals
	Independent Variables	x	Benefit Level	(×100)	Error	K-S Test	Shapiro-Wilks	Skewness	Kurtosis
Constant	PCUGA_1 & PCUGA_2	Cum Inj Index	0.292514	86.6292	-0.000000	0.93713	0.469462	0.860224	0.579064
Constant	PCUGA_1	Cum Inj Index	0.265798	84.2016	-0.000001	0.91036	0.648858	0.865121	0.261407
Constant	PCGA_1 & PCGA_2	Cum Inj Index	0.295324	82.4230	-0.000000	0.92179	0.421744	0.377549	0.966732
Constant	rGSP & AggE	Cum Inj Index	0.295324	82.4230	-0.000001	0.92179	0.421743	0.377548	0.966733
Constant	PCGA_1	Cum Inj Index	0.333570	82.2312	-0.000000	0.42860	0.014267	0.168730	0.659239
Constant	AggE	Cum Inj Index	0.349063	80.3324	-0.000001	0.26057	0.005202	0.138342	0.608047
Constant	rGSP	Cum Inj Index	0.248528	77.1472	-0.000001	0.87537	0.434008	0.966419	0.149610
Origin	PCUGA_1	Cum Inj Index	0.272917	72.6089	-1.466101	0.27758	0.024815	0.631453	0.018983
Origin	PCUGA_1 & PCUGA_2	Cum Inj Index	0.264671	70.3213	-1.313504	0.37866	0.025171	0.626510	0.014782
Origin	AggE	Cum Inj Index	0.333620	61.7762	-1.517823	0.98017	0.747490	0.787201	0.379075
Origin	PCGA_1	Cum Inj Index	0.328093	61.1363	-1.52()994	0.97121	0.815370	0.876925	0.332588
Origin	PCGA_1 & PCGA_2	Cum Inj Index	0.364976	59.6827	-1.263185	0.93943	0.230026	0.437066	0.726277
Origin	rGSP & AggE	Cum Inj Index	0.364976	59.6827	-1.263183	0.93942	0.230023	0.437065	0.726277
Origin	rGSP	Cum Inj Index	0.319801	57.7186	-1.243197	0.97554	0.703445	0.965119	0.209469
Origin	PCUGA_1	None	0.279791	28.4637	-0.190637	0.68344	0.083596	0.404802	0.017932
Origin	PCUGA_1 & PCUGA_2	None	0.272875	26.0173	-0.388706	0.79310	0.069573	0.414467	0.016002
Origin	AggE	None	0.284992	23.3459	-0.774986	0.62034	0.076152	0.885340	0.013112
Origin	PCGA_1	None	0.277164	23.2979	-0.846570	0.67076	0.056379	0.848956	0.010987
Constant	PCUGA_1	None	0.288158	20.4783	0.00001	0.78526	0.086808	0.367933	0.020017
Origin	rGSP	None	0.267653	20.4679	-0.835981	0.55850	0.025379	0.870139	0.007349
Origin	PCGA_1 & PCGA_2	None	0.282775	20.2872	-0.795989	0.63350	0.068830	0.874672	0.012498
Origin	rGSP & AggE	None	0.282775	20.2872	-0.795988	0.63350	0.068830	0.874672	0.012498
Constant	PCGA_1	None	0.304491	19.9140	-0.000001	0.73658	0.155005	0.392062	0.022554
Constant	rGSP	None	0.266582	18.9563	0.00001	0.26368	0.014179	0.174932	0.007352
Constant	PCUGA_1 & PCUGA_2	None	0.292522	18.7697	0.000003	0.72397	0.074620	0.310532	0.021152
Constant	AggE	None	0.313943	18.6927	-0.000002	0.67057	0.231371	0.513812	0.027657
Constant	rGSP & AggE	None	0.280121	18.2308	-0.000000	0.67307	0.038561	0.189872	0.011297
Constant	PCGA_1 & PCGA_2	None	0.280120	18.2308	0.000004	0.67306	0.038559	0.189866	0.011297

180

CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

PART 1

STATGRAPHICS PLUS REGRESSION RESULTS-MODEL #1

Parameter	Estimate	Standard Error	T Statistic	P-V	alue
CONSTANT	-4.911830	1.070660	-4.58767	0.0	010
CYIndBL	0.286573	0.069859	4.10215	0.0	
PCUGA 1	-0.200370	0.038628	-5.42019	0.0	003
PCUGA 2	0.299701	0.170568	1.75708	0.1	094
CumInjNDX	0.308297	0.042620	7.23363	0.0	000
	ŀ	Analysis of Varia	nce		
Source	Sum of Squares	Degrees of Freedom	Mean Square Error	F-Ratio	P-Valu
Model	674.4880	4	168.6220	26.4462	0.0000
Residual	63.7604	10	6.3760		
Total (Corr.)	738.2484	14			
Standard Error o	sted for $d.f.$ = 87.90	86 percent			

The output shows the results of fitting a multiple linear regression model to describe the relationship between IndFrq and 4 independent variables. The equation of the fitted model is

 $IndFrq = -4.91183 + 0.286573 * CYIndBL - 0.20937 * PCUGA_1$

+ $0.299701 * PCUGA_2 + 0.308297 * CumInjNDX.$

Since the P-value in the ANOVA table is less than 0.01, there is a statistically significant relationship between the variables at the 99% confidence level.

The R-Squared statistic indicates that the model as fitted explains 91.3633% of the variability in IndFrq. The adjusted R-squared statistic, which is more suitable for comparing models with different numbers of independent variables, is 87.9086%. The standard error of the estimate shows the standard deviation of the residuals to be 2.52508. This value can be used to construct prediction limits for new observations by selecting the Reports option from the text menu. The mean absolute error (MAE) of 1.65922 is the average value of the residuals. The Durbin-Watson (DW) statistic tests the residuals to determine if there is any significant correlation based on the order in which they occur in your data file. Since the DW value is greater than 1.4, there is probably not any serious autocorrelation in the residuals.

In determining whether the model can be simplified, notice that the highest P-value on the independent variables is 0.1094, belonging to PCUGA 2. Since the P-value is greater or equal to 0.10, that term is not statistically significant at the 90% or higher confidence level. Consequently, you should consider removing PCUGA_2 from the model.

Part 2

STATGRAPHICS PLUS REGRESSION RESULTS-MODEL #2

Parameter	Estimate	Standard Error	T Statistic	P-V	alue
CONSTANT	-3.580310	0.824978	-4.33988	0.0	012
CYIndBL	0.261897	0.074644	3.50862	0.0	049
PCUGA_1	-0.214998	0.041989	-5.12040	0.0	003
CumInjNDX	0.301076	0.046272	6.50673	0.0	000
	ł	Analysis of Varia	nce		
Source	Sum of Squares	Degrees of Freedom	Mean Square Error	F-Ratio	P-Valu
Model	654.8030	3	218.2677	28.77271	0.0000
Residual	83.4452	11	7.5859		
Total (Corr.)	738.2480	14			
R-squared = 88.0 R-squared (adjust	6969 percent sted for d.f.) = 85.61 of Est. = 2.75426	42 percent			

The StatAdvisor

The output shows the results of fitting a multiple linear regression model to describe the relationship between IndFrq and 3 independent variables. The equation of the fitted model is

IndFrq = -3.58031 + 0.261897 * CYIndBL - 0.214998 * PCUGA_1 + 0.301076 * CumInjNDX

Since the P-value in the ANOVA table is less than 0.01, there is a statistically significant relationship between the variables at the 99% confidence level.

The R-Squared statistic indicates that the model as fitted explains 88.6969% of the variability in IndFrq. The adjusted R-squared statistic, which is more suitable for comparing models with different numbers of independent variables, is 85.6142%. The standard error of the estimate shows the standard deviation of the residuals to be 2.75426. This value can be used to construct prediction limits for new observations by selecting the Reports option from the text menu. The mean absolute error (MAE) of 1.95774 is the average value of the residuals. The Durbin–Watson (DW) statistic tests the residuals to determine if there is any significant correlation based on the order in which they occur in your data file. Since the DW value is greater than 1.4, there is probably not any serious autocorrelation in the residuals.

In determining whether the model can be simplified, notice that the highest P-value on the independent variables is 0.0049, belonging to CYIndBL. Since the P-value is less than 0.01, the highest order term is statistically significant at the 99% confidence level. Consequently, you probably don't want to remove any variables from the model.

Part 3

STATGRAPHICS PLUS REGRESSION RESULTS-MODEL #3

Dependent varial	ble: IndFrq				
Parameter	Estimate	Standard Error	T Statistic	P-V	alue
CONSTANT	-7.726190	1.297840	-5.95310	0.0	001
CYIndBL	0.272918	0.084933	3.21332	0.0	093
PCGA_1	0.649210	0.141971	4.57282	0.0	010
PCGA_2	0.584624	0.442156	1.32221	0.2	155
CumInjNDX	0.290403	0.051592	5.62879	0.0	002
	ł	Analysis of Varia	nce		
Source	Sum of Squares	Degrees of Freedom	Mean Square Error	F-Ratio	P-Valu
	•				
Model	650.7490	4	162.6873	18.5931	0.0001
Residual	87.4989	10	8.7499		
Total (Corr.)	738.2479	14			
R-squared = 88.1 R-squared (adjust Standard Error of Mean absolute er	sted for d.f.) = 83.40 f Est. = 2.95802	069 percent			

The output shows the results of fitting a multiple linear regression model to describe the relationship between IndFrq and 4 independent variables. The equation of the fitted model is

$IndFrq = -7.72619 + 0.272918 * CYIndBL + 0.64921 * PCGA_1$

+ $0.584624 * PCGA_2 + 0.290403 * CumInjNDX$

Since the P-value in the ANOVA table is less than 0.01, there is a statistically significant relationship between the variables at the 99% confidence level.

The R-Squared statistic indicates that the model as fitted explains 88.1478% of the variability in IndFrq. The adjusted R-squared statistic, which is more suitable for comparing models with different numbers of independent variables, is 83.4069%. The standard error of the estimate shows the standard deviation of the residuals to be 2.95802. This value can be used to construct prediction limits for new observations by selecting the Reports option from the text menu. The mean absolute error (MAE) of 1.9507 is the average value of the residuals. The Durbin–Watson (DW) statistic tests the residuals to determine if there is any significant correlation based on the order in which they occur in your data file. Since the DW value is greater than 1.4, there is probably not any serious autocorrelation in the residuals.

In determining whether the model can be simplified, notice that the highest P-value on the independent variables is 0.2155, belonging to PCGA_2. Since the P-value is greater or equal to 0.10, that term is not statistically significant at the 90% or higher confidence level. Consequently, you should consider removing PCGA_2 from the model.

Part 4

STATGRAPHICS PLUS REGRESSION RESULTS-MODEL #4

Dependent varial	ble: IndFrq				
Parameter	Estimate	Standard Error	T Statistic	DA	/alue
Parameter	Esumate	Error	Statistic	P- V	alue
CONSTANT	-7.726180	1.297840	-5.95310	0.0	001
CYIndBL	0.272919	0.084933	3.21332	0.0	093
CYrGSP	0.769158	0.420688	1.82834	0.0	974
CYAggE	0.414309	0.196672	2.10660	0.0	614
CumInjNDX	0.290403	0.051592	5.62879	0.0	002
	1	Analysis of Varia	nce		
	Sum of	Degrees of	Mean Square		
Source	Squares	Freedom	Error	F-Ratio	P-Value
Model	650.7490	4	162.6873	18.5931	0.0001
Residual	87.4989	10	8.7499		
Total (Corr.)	738.2479	14			
R-squared = 88.1	1478 percent sted for d.f.) = 83.40)60 paraant			
Standard Error o	,	109 percent			
Mean absolute e					
	tatistic = 2.07557				
Darom matoon					

The output shows the results of fitting a multiple linear regression model to describe the relationship between IndFrq and 4 independent variables. The equation of the fitted model is

IndFrq = -7.72618 + 0.272919 * CYIndBL + 0.769158 * CYrGSP

+ 0.414309 * CYAggE + 0.290403 * CumInjNDX.

Since the P-value in the ANOVA table is less than 0.01, there is a statistically significant relationship between the variables at the 99% confidence level.

The R-Squared statistic indicates that the model as fitted explains 88.1478% of the variability in IndFrq. The adjusted R-squared statistic, which is more suitable for comparing models with different numbers of independent variables, is 83.4069%. The standard error of the estimate shows the standard deviation of the residuals to be 2.95802. This value can be used to construct prediction limits for new observations by selecting the Reports option from the text menu. The mean absolute error (MAE) of 1.9507 is the average value of the residuals. The Durbin–Watson (DW) statistic tests the residuals to determine if there is any significant correlation based on the order in which they occur in your data file. Since the DW value is greater than 1.4, there is probably not any serious autocorrelation in the residuals.

In determining whether the model can be simplified, notice that the highest P-value on the independent variables is 0.0974, belonging to CYrGSP. Since the P-value is less than 0.10, that term is statistically significant at the 90% confidence level. Depending on the confidence level at which you wish to work, you may or may not decide to remove CYrGSP from the model.

Part 5

STATGRAPHICS PLUS REGRESSION RESULTS-MODEL #5

Parameter	Estimate	Standard Error	T Statistic	P-V	alue
CONSTANT	-6.852850	1.154560	-5.93544	0.0	001
CYIndBL	0.309052	0.083107	3.71872	0.0	034
PCGA_1	0.642720	0.146633	4.38319	0.0	011
CumInjNDX	0.308337	0.051443	5.99380	0.0	001
	I	Analysis of Varia	nce		
Source	Sum of Squares	Degrees of Freedom	Mean Square Error	F-Ratio	P-Valu
Model	635.4530	3	211.8177	22.6662	0.0001
Residual	102.7960	11	9.3451		
Total (Corr.)	738.2490	14			
R-squared = 86.0	757 percent				
	ted for $d.f.$ = 82.27	82 percent			

The StatAdvisor

The output shows the results of fitting a multiple linear regression model to describe the relationship between IndFrq and 3 independent variables. The equation of the fitted model is

IndFrq = -6.85285 + 0.309052 * CYIndBL + 0.64272 * PCGA_1 + 0.308337 * CumInjNDX

Since the P-value in the ANOVA table is less than 0.01, there is a statistically significant relationship between the variables at the 99% confidence level.

The R-Squared statistic indicates that the model as fitted explains 86.0757% of the variability in IndFrq. The adjusted R-squared statistic, which is more suitable for comparing models with different numbers of independent variables, is 82.2782%. The standard error of the estimate shows the standard deviation of the residuals to be 3.05697. This value can be used to construct prediction limits for new observations by selecting the Reports option from the text menu. The mean absolute error (MAE) of 2.09204 is the average value of the residuals. The Durbin–Watson (DW) statistic tests the residuals to determine if there is any significant correlation based on the order in which they occur in your data file. Since the DW value is greater than 1.4, there is probably not any serious autocorrelation in the residuals.

In determining whether the model can be simplified, notice that the highest P-value on the independent variables is 0.0034, belonging to CYIndBL. Since the P-value is less than 0.01, the highest order term is statistically significant at the 99% confidence level. Consequently, you probably don't want to remove any variables from the model.

Part 6

STATGRAPHICS PLUS REGRESSION RESULTS-MODEL #6

Parameter	Estimate	Standard Error	T Statistic	P-V	alue
CONSTANT CYIndBL CYAggE CumInjNDX	-6.384760 0.321087 0.648742 0.314359	$\begin{array}{c} 1.179070\\ 0.088928\\ 0.164242\\ 0.054959\end{array}$	-5.41509 3.61065 3.94990 5.71994	0.0 0.0	002 041 023 001
	I	Analysis of Varia	nce		
Source	Sum of Squares	Degrees of Freedom	Mean Square Error	F-Ratio	P-Value
Model Residual	621.5000 116.7480	3 11	207.1667 10.6135	19.5192	0.0001
Total (Corr.)	738.2480	14			

Durbin–Watson statistic = 2.22488

The StatAdvisor

The output shows the results of fitting a multiple linear regression model to describe the relationship between IndFrq and 3 independent variables. The equation of the fitted model is

IndFrq = -6.38476 + 0.321087 * CYIndBL + 0.648742 * CYAggE + 0.314359 * CumInjNDX

Since the P-value in the ANOVA table is less than 0.01, there is a statistically significant relationship between the variables at the 99% confidence level.

The R-Squared statistic indicates that the model as fitted explains 84.1858% of the variability in IndFrq. The adjusted R-squared statistic, which is more suitable for comparing models with different numbers of independent variables, is 79.8728%. The standard error of the estimate shows the standard deviation of the residuals to be 3.25783. This value can be used to construct prediction limits for new observations by selecting the Reports option from the text menu. The mean absolute error (MAE) of 2.23537 is the average value of the residuals. The Durbin–Watson (DW) statistic tests the residuals to determine if there is any significant correlation based on the order in which they occur in your data file. Since the DW value is greater than 1.4, there is probably not any serious autocorrelation in the residuals.

In determining whether the model can be simplified, notice that the highest P-value on the independent variables is 0.0041, belonging to CYIndBL. Since the P-value is less than 0.01, the highest order term is statistically significant at the 99% confidence level. Consequently, you probably don't want to remove any variables from the model.

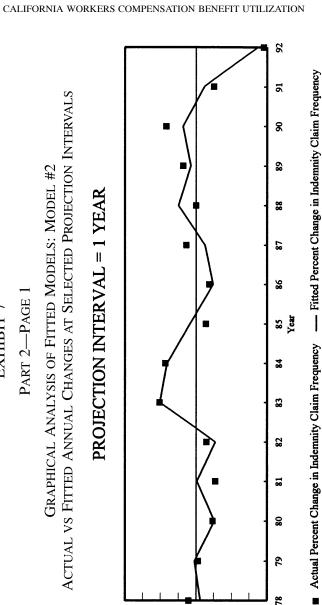
Part 7

STATGRAPHICS PLUS REGRESSION RESULTS-MODEL #7

Parameter	Estimate	Standard Error	T Statistic	P-Value	
CONSTANT	-7.771980	1.486670	-5.22778	0.0003	
CYIndBL	0.220530	0.093040	2.37028	0.0371	
CYAggE	1.346940	0.365450	3.68569	0.0036	
CumInjNDX	0.264735	0.057435	4.60930	0.0008	
	1	Analysis of Varia	nce		
Source	Sum of Squares	Degrees of Freedom	Mean Square Error	F-Ratio	P-Valu
Model	611.9200	3	203.9733	17.7608	0.0002
Residual	126.3290	11	11.4845		
Total (Corr.)	738.2490	14			
R-squared = 82.8 R-squared (adjust Standard Error of Mean absolute e	sted for d.f.) = 78.22 f Est. = 3.38887	211 percent			

The StatAdvisor

The output shows the results of fitting a multiple linear regression model to describe the relationship between IndFrq and 3 independent variables. The equation of the fitted model is


IndFrq = -7.77198 + 0.22053 * CYIndBL + 1.34694 * CYrGSP + 0.264735 * CumInjNDX

Since the P-value in the ANOVA table is less than 0.01, there is a statistically significant relationship between the variables at the 99% confidence level.

The R-Squared statistic indicates that the model as fitted explains 82.888% of the variability in IndFrq. The adjusted R-squared statistic, which is more suitable for comparing models with different numbers of independent variables, is 78.2211%. The standard error of the estimate shows the standard deviation of the residuals to be 3.38887. This value can be used to construct prediction limits for new observations by selecting the Reports option from the text menu. The mean absolute error (MAE) of 2.47812 is the average value of the residuals. The Durbin–Watson (DW) statistic tests the residuals to determine if there is any significant correlation based on the order in which they occur in your data file. Since the DW value is less than 1.4, there may be some indication of serial correlation. Plot the residuals versus row order to see if there is any pattern which can be seen.

In determining whether the model can be simplified, notice that the highest P-value on the independent variables is 0.0371, belonging to CYIndBL. Since the P-value is less than 0.05, that term is statistically significant at the 95% confidence level. Consequently, you probably don't want to remove any variables from the model.

Ŷ Annual Percent Change in Indemnity Claim Frequency

0

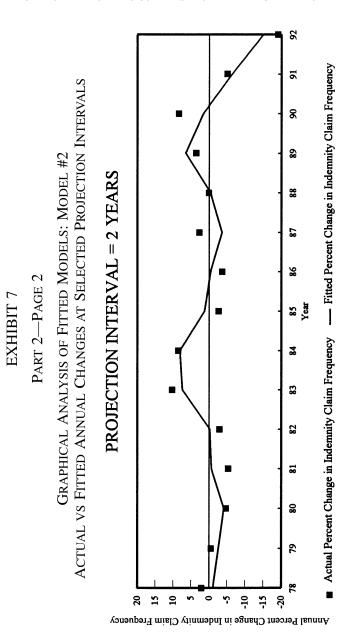
Ś

10

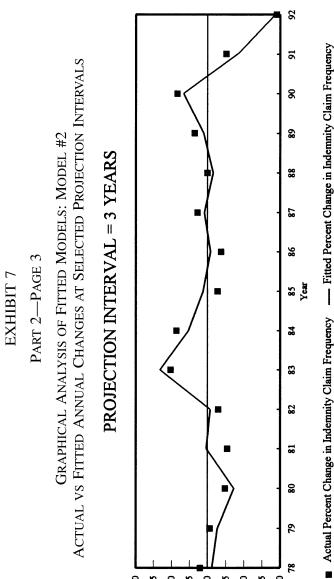
8

-10

-15 -50


8

8

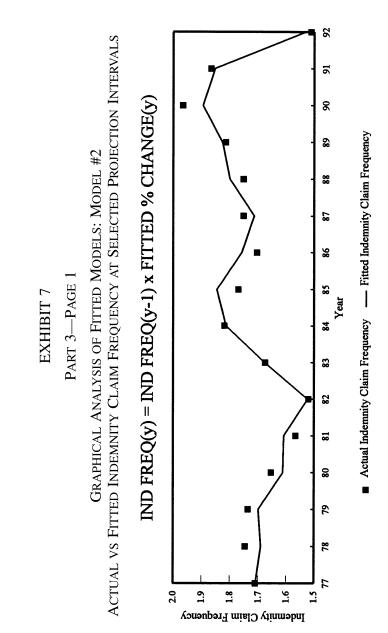

81

80

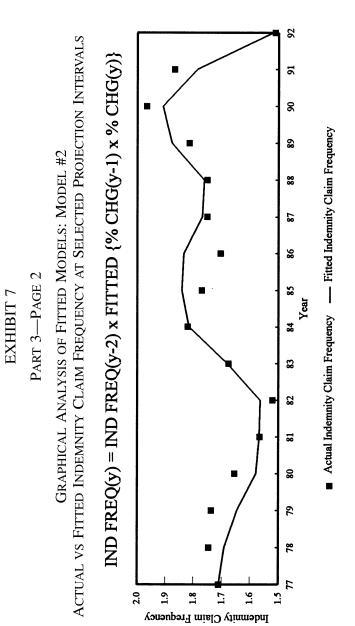
5

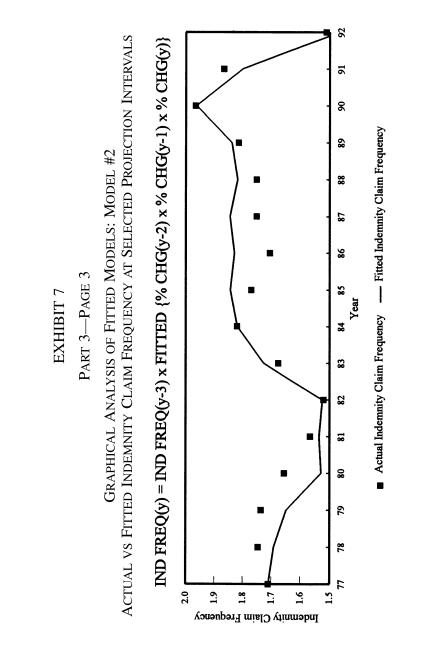
190

15 10 Ś 0 Ŷ

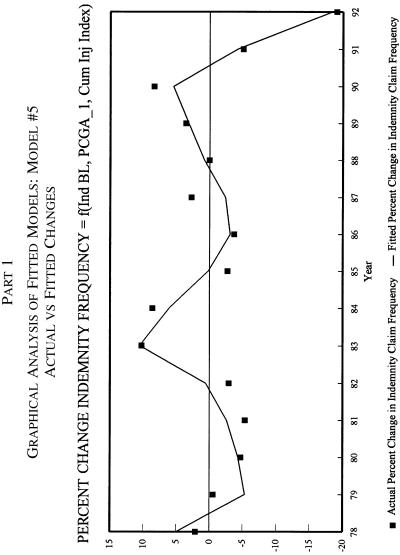

8

78


-10

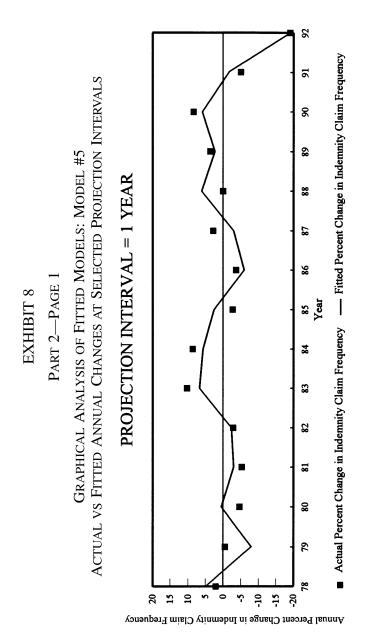

Annual Percent Change in Indemnity Claim Frequency

-15 -50


192

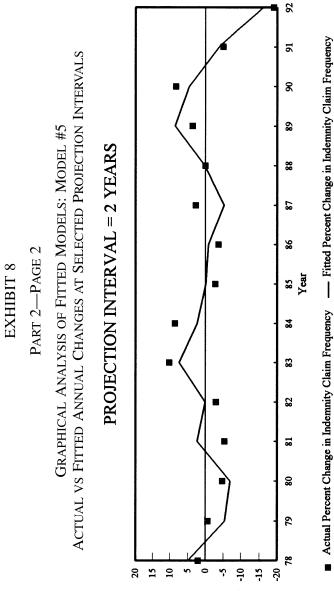
194

— |

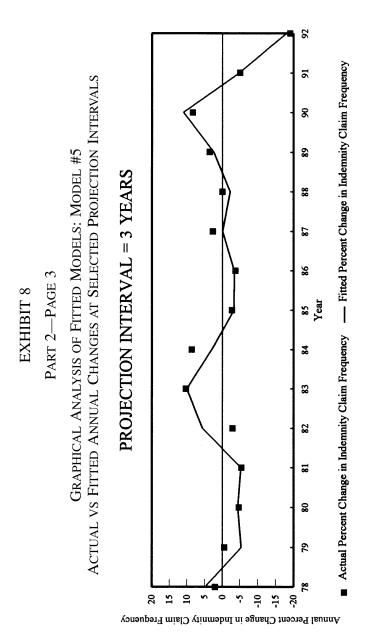


Annual Percent Change in Indemnity Claim Frequency

EXHIBIT 8


PART 1

CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION 195

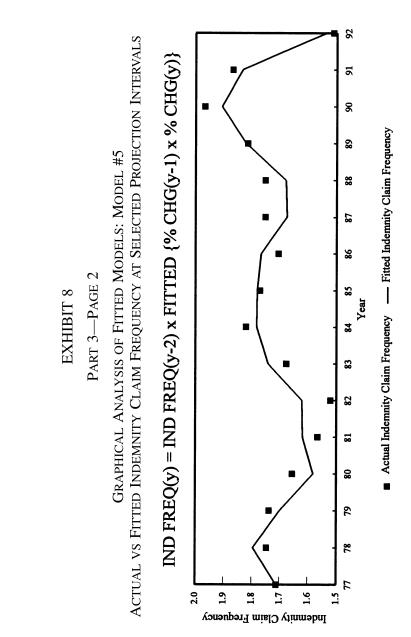


196

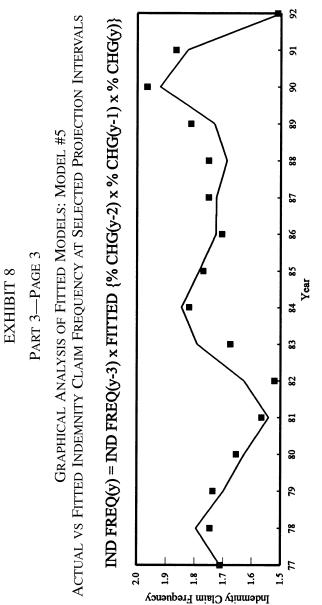
-| CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

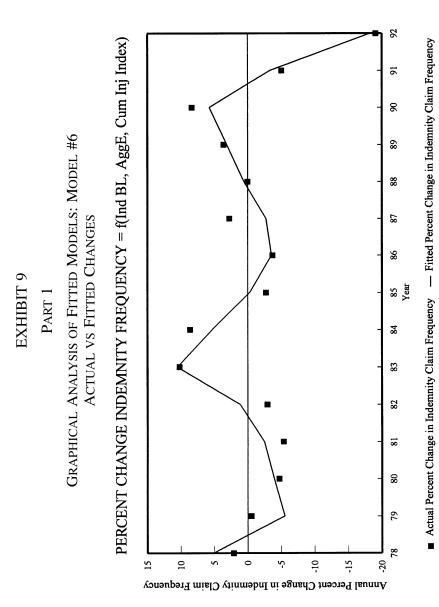


Annual Percent Change in Indemnity Claim Frequency

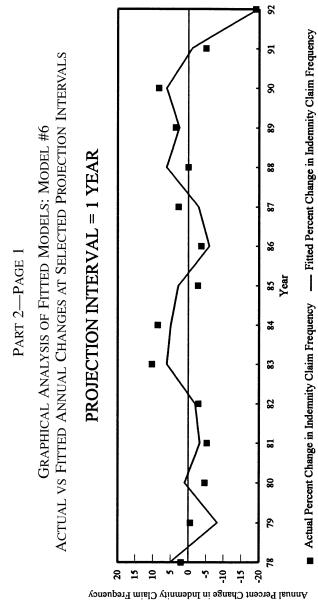


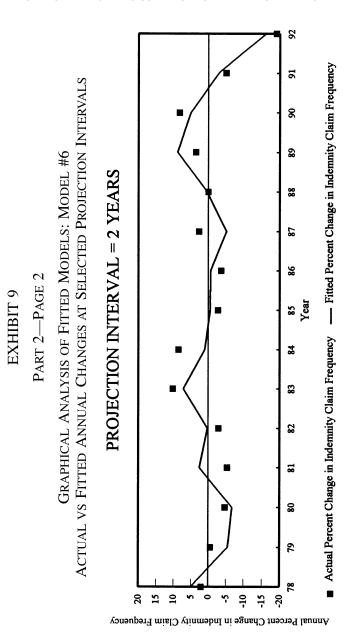
198

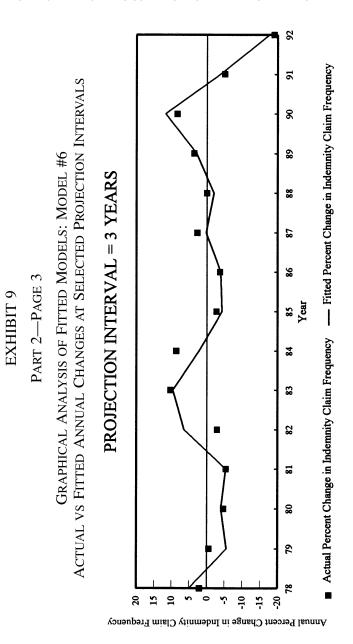


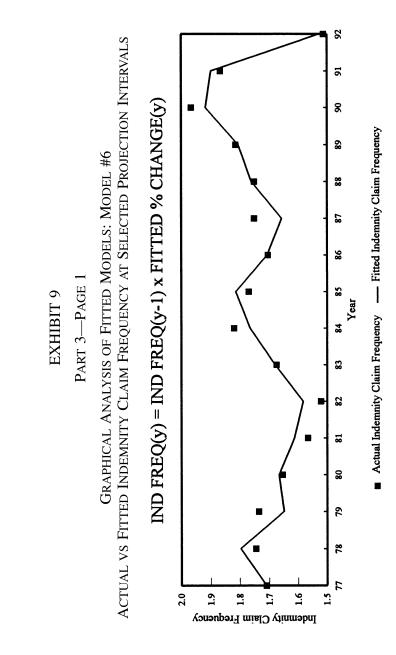

Indemnity Claim Frequency

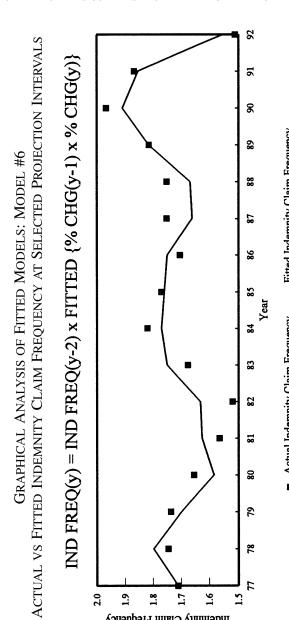
200




Actual Indemnity Claim Frequency — Fitted Indemnity Claim Frequency


202


-I


204

206

— |

2.0

1.9

1.8

Indemnity Claim Frequency

1.7

1.6

PART 3—PAGE 2

EXHIBIT 9

Actual Indemnity Claim Frequency — Fitted Indemnity Claim Frequency

86

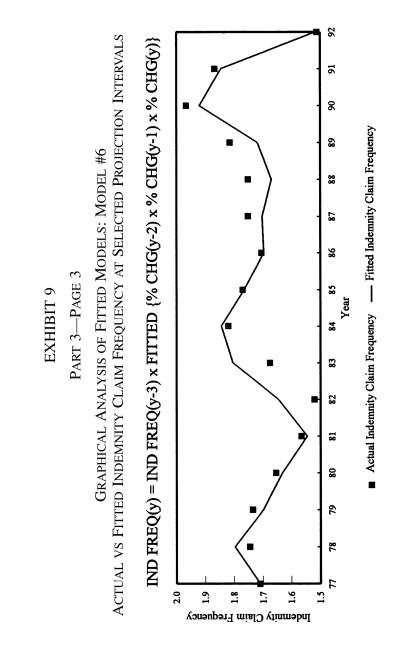
83

83

82

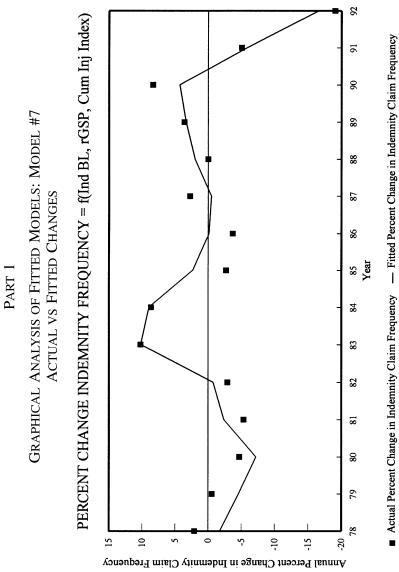
81

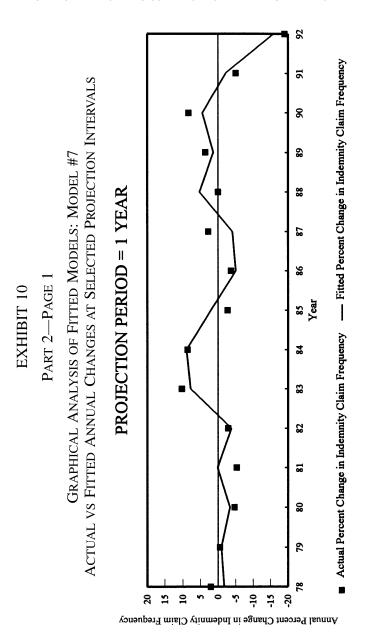
80

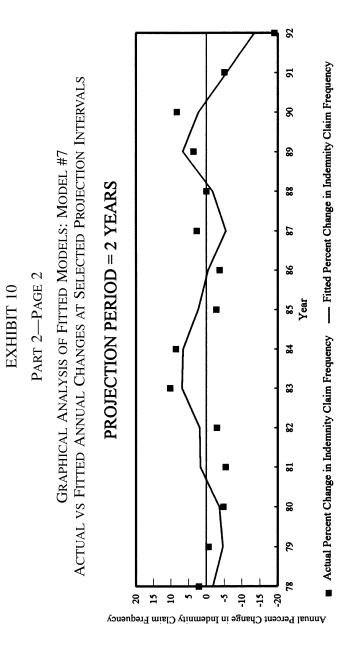

5

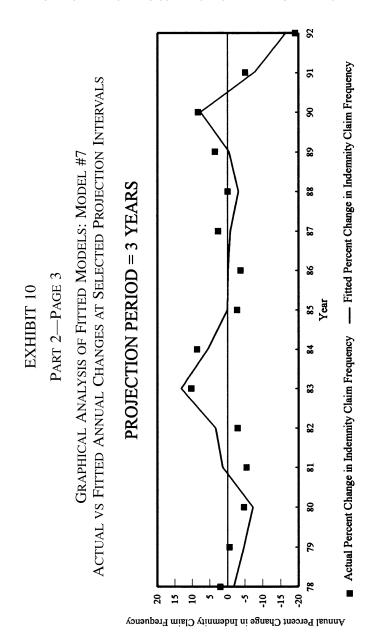
78

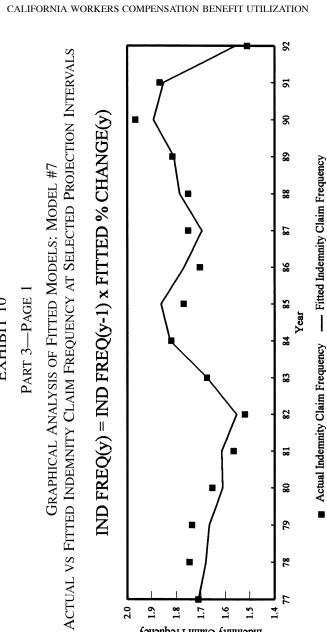
F


1.5


Year 84


208


— |



210

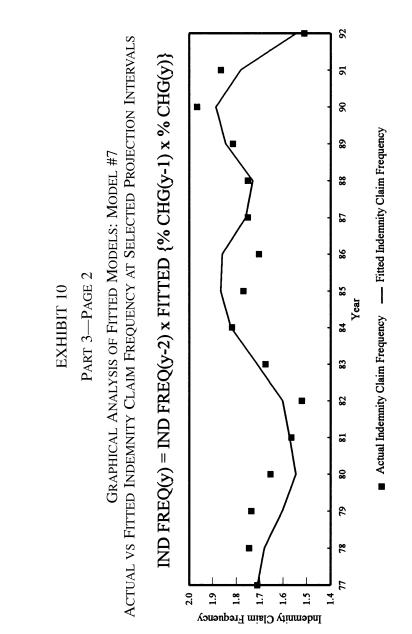
213

82

81

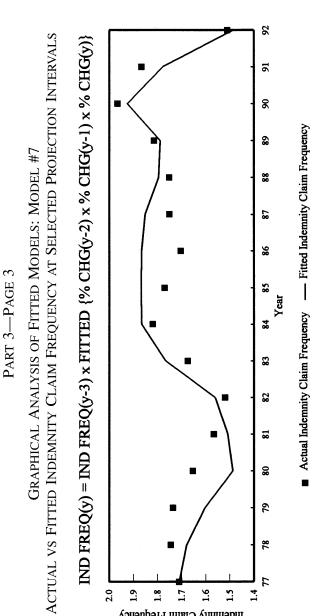
80

62


78

F

1.7 Indemnity Claim Frequency


1.6 1.5 1.4

2.0 1.9 1.8

214

— I

2.0 1.9

CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

EXHIBIT 10

81

8

62

78

F

1.6 1.5 1.4

1.8 1.7 Indemnity Claim Frequency

Part 1

STATGRAPHICS PLUS REGRESSION RESULTS

Parameter	Estimate	Standard Error	T Statistic	P-V	alue
CONSTANT CYIndBL PCGA_1	-1.579230 0.321818 0.477622	0.153038	-0.92993 2.10287 1.98775	0.3 0.0 0.0	453
		Analysis of Varia	nce		
Source	Sum of Squares	Degrees of Freedom	Mean Square Error	F-Ratio	P-Valu
Model Residual	360.9690 1025.8800	2 26	180.4845 39.4569	4.574216	0.0199
Total (Corr.)	1386.8490	28			
	sted for d.f.) = 20.3 of Est. = 6.28147	379 percent			

The StatAdvisor

The output shows the results of fitting a multiple linear regression model to describe the relationship between IndFrq and 2 independent variables. The equation of the fitted model is

IndFrq = -1.57923 + 0.321818 * CYIndBL + 0.477622 * PCGA_1

Since the P-value in the ANOVA table is less than 0.05, there is a statistically significant relationship between the variables at the 95% confidence level.

The R-Squared statistic indicates that the model as fitted explains 26.028% of the variability in IndFrq. The adjusted R-squared statistic, which is more suitable for comparing models with different numbers of independent variables, is 20.3379%. The standard error of the estimate shows the standard deviation of the residuals to be 6.28147. This value can be used to construct prediction limits for new observations by selecting the Reports option from the text menu. The mean absolute error (MAE) of 4.3111 is the average value of the residuals. The Durbin–Watson (DW) statistic tests the residuals to determine if there is any significant correlation based on the order in which they occur in your data file. Since the DW value is less than 1.4, there may be some indication of serial correlation. Plot the residuals versus row order to see if there is any pattern which can be seen.

In determining whether the model can be simplified, notice that the highest P-value on the independent variables is 0.0575, belonging to PCGA_1. Since the P-value is less than 0.10, that term is statistically significant at the 90% confidence level. Depending on the confidence level at which you wish to work, you may or may not decide to remove PCGA_1 from the model.

Part 2

STATGRAPHICS PLUS REGRESSION RESULTS

Parameter	Estimate	Standard Error	T Statistic	P-V	alue
CONSTANT	-1.188410	1.610480	-0.73792	0.4	672
CYIndBL CYAggE	0.330217 0.481486	0.153726 0.254616	2.14809 1.89103	0.0 0.0	412 698
	1	Analysis of Varia	nce		
Source	Sum of Squares	Degrees of Freedom	Mean Square Error	F-Ratio	P-Valu
Model Residual	347.9560 1038.8900	2 26	173.9780 39.9573	4.354097	0.0234
Total (Corr.)	1386.8460	28			
Standard Error of Mean absolute e	sted for d.f.) = 19.32 of Est. = 6.32119	274 percent			

The StatAdvisor

The output shows the results of fitting a multiple linear regression model to describe the relationship between IndFrq and 2 independent variables. The equation of the fitted model is

IndFrq = -1.18841 + 0.330217 * CYIndBL + 0.481486 * CYAggE.

Since the P-value in the ANOVA table is less than 0.05, there is a statistically significant relationship between the variables at the 95% confidence level.

The R-Squared statistic indicates that the model as fitted explains 25.0897% of the variability in IndFrq. The adjusted R-squared statistic, which is more suitable for comparing models with different numbers of independent variables, is 19.3274%. The standard error of the estimate shows the standard deviation of the residuals to be 6.32119. This value can be used to construct prediction limits for new observations by selecting the Reports option from the text menu. The mean absolute error (MAE) of 4.36516 is the average value of the residuals. The Durbin–Watson (DW) statistic tests the residuals to determine if there is any significant correlation based on the order in which they occur in your data file. Since the DW value is less than 1.4, there may be some indication of serial correlation. Plot the residuals versus row order to see if there is any pattern which can be seen.

In determining whether the model can be simplified, notice that the highest P-value on the independent variables is 0.0698, belonging to CYAggE. Since the P-value is less than 0.10, that term is statistically significant at the 90% confidence level. Depending on the confidence level at which you wish to work, you may or may not decide to remove CYAggE from the model.

Part 3

STATGRAPHICS PLUS REGRESSION RESULTS

Parameter	Estimate	Standard Error	T Statistic	P-V	alue
CONSTANT CYIndBL CYrGSP	-2.593800 0.287312 1.016480	2.146440 0.156838 0.539883	-1.20842 1.83191 1.88279	0.0	378 784 710
	1	Analysis of Varia	nce		
Source	Sum of Squares	Degrees of Freedom	Mean Square Error	F-Ratio	P-Valu
Model Residual	346.8620 1039.9850	2 26	173.4310 39.9994	4.3358	0.0237
Total (Corr.)	1386.8470	28			
Standard Error of	0108 percent sted for d.f.) = 19.24 of Est. = 6.32451 error = 4.08829	24 percent			

The StatAdvisor

The output shows the results of fitting a multiple linear regression model to describe the relationship between IndFrq and 2 independent variables. The equation of the fitted model is

IndFrq = -2.5938 + 0.287312 * CYIndBL + 1.01648 * CYrGSP.

Since the P-value in the ANOVA table is less than 0.05, there is a statistically significant relationship between the variables at the 95% confidence level.

The R-Squared statistic indicates that the model as fitted explains 25.0108% of the variability in IndFrq. The adjusted R-squared statistic, which is more suitable for comparing models with different numbers of independent variables, is 19.2424%. The standard error of the estimate shows the standard deviation of the residuals to be 6.32451. This value can be used to construct prediction limits for new observations by selecting the Reports option from the text menu. The mean absolute error (MAE) of 4.08829 is the average value of the residuals. The Durbin–Watson (DW) statistic tests the residuals to determine if there is any significant correlation based on the order in which they occur in your data file. Since the DW value is less than 1.4, there may be some indication of serial correlation. Plot the residuals versus row order to see if there is any pattern which can be seen.

In determining whether the model can be simplified, notice that the highest P-value on the independent variables is 0.0784, belonging to CYIndBL. Since the P-value is less than 0.10, that term is statistically significant at the 90% confidence level. Depending on the confidence level at which you wish to work, you may or may not decide to remove CYIndBL from the model.

Part 4

STATGRAPHICS PLUS REGRESSION RESULTS

Dependent varia	ble: IndFrq				
Parameter	Estimate	Standard Error	T Statistic	P-V	alue
CONSTANT	0.938789	1.304640	0.71958	0.4	782
CYIndBL	0.316254	0.154940	2.04114	0.0	515
PCUGA_1	-0.125809	0.068556	-1.83512	0.0	780
	1	Analysis of Varia	nce		
	Sum of	Degrees of	Mean Square		
Source	Squares	Freedom	Error	F-Ratio	P-Valu
Model	340.5860	2	170.2930	4.2319	0.0256
Residual	1046.2600	26	40.2408		
Total (Corr.)	1386.8460	28			

R-squared = 24,5583 percent R-squared (adjusted for d.f.) = 18,7551 percent Standard Error of Est. = 6,34357 Mean absolute error = 4,26624 Durbin–Watson statistic = 0.989726

The StatAdvisor

The output shows the results of fitting a multiple linear regression model to describe the relationship between IndFrq and 2 independent variables. The equation of the fitted model is

IndFrq = 0.938789 + 0.316254 * CYIndBL - 0.125809 * PCUGA_1.

Since the P-value in the ANOVA table is less than 0.05, there is a statistically significant relationship between the variables at the 95% confidence level.

The R-Squared statistic indicates that the model as fitted explains 24.5583% of the variability in IndFrq. The adjusted R-squared statistic, which is more suitable for comparing models with different numbers of independent variables, is 18.7551%. The standard error of the estimate shows the standard deviation of the residuals to be 6.34357. This value can be used to construct prediction limits for new observations by selecting the Reports option from the text menu. The mean absolute error (MAE) of 4.26624 is the average value of the residuals. The Durbin–Watson (DW) statistic tests the residuals to determine if there is any significant correlation based on the order in which they occur in your data file. Since the DW value is less than 1.4, there may be some indication of serial correlation. Plot the residuals versus row order to see if there is any pattern which can be seen.

In determining whether the sole in the rs any pattern which can be seen. In determining whether the model can be simplified, notice that the highest P-value on the independent variables is 0.0780, belonging to PCUGA 1. Since the P-value is less than 0.10, that term is statistically significant at the 90% confidence level. Depending on the confidence level at which you wish to work, you may or may not decide to remove PCUGA 1 from the model.

	SELECTED MODE
EXHIBIT 12	PERFORMANCE MEASURES FOR SELECTED 1

	SUMMARY OF PERFORMANCE MEASURES FOR SELECTED MODELS	INDEMNITY BENEFIT LEVEL
--	---	-------------------------

			Pertormanc	e Measures	Performance Measures Projection Period = 1 Year	tion Period = 1 Year	Projection Period = 2 Years	Period = ars	Projection Period = 3 Years	Period = cars
	Independent Variables		Average Absolute Error	Average Adjusted Average Absolute R ² Absolute Error (×100) Error	Average Absolute Error	R ² (×100)	Average Absolute Error	R ² (×100)	Average Absolute Error	R ² (×100)
Constant	PCUGA_1 & PCUGA_2 Cum Inj Index	Cum Inj Index	1.6592	87.9086	2.5386	81.6704	2.8823	76.1449	1.9625	90.1574
Constant	PCUGA 1	Cum Inj Index	1.9577	85.6142	2.6385	79.3143	3.0434	74.6150	2.6673	83.3440
Constant	PCGA 1 & PCGA 2	Cum Inj Index	1.9507	83.4069	2.9959	75.5453	3.4739	66.8418	2.3567	83.9297
Constant	rGSP & AggE	Cum Inj Index	1.9507	83.4069	2.9959	75.5453	3.4739	66.8418	2.3567	83.9297
Constant	PCGA_1	Cum Inj Index	2.0920	82.2782	3.4225	69.2466	3.7406	62.9808	2.2048	79.8725
Constant	AggE	Cum Inj Index	2.2354	79.8728	3.6540	66.4066	3.9143	59.7829	2.5036	76.1922
Constant	rGSP	Cum Inj Index	2.4781	78.2211	2.9955	74.2734	3.9902	58.6875	3.4846	72.4205

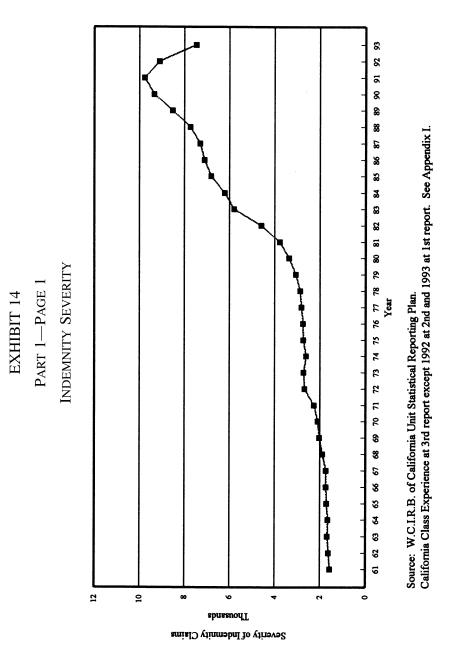
PCGA_1(2) = First (second) principal component of California Real GSP and Aggregate Employment.
PCUGA_1(2) = First (second) principal component of California Unemployment Rate, California Real GSP, and Aggregate Employment.
R² = Square of sample correlation coefficient between the actual and fitted annual percent changes in indemnity claim frequency.

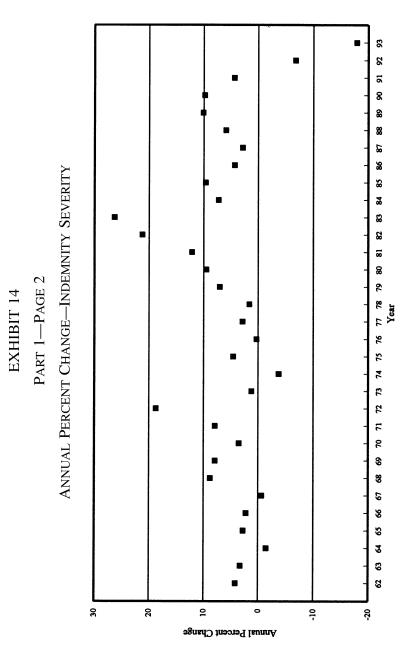
220

- |

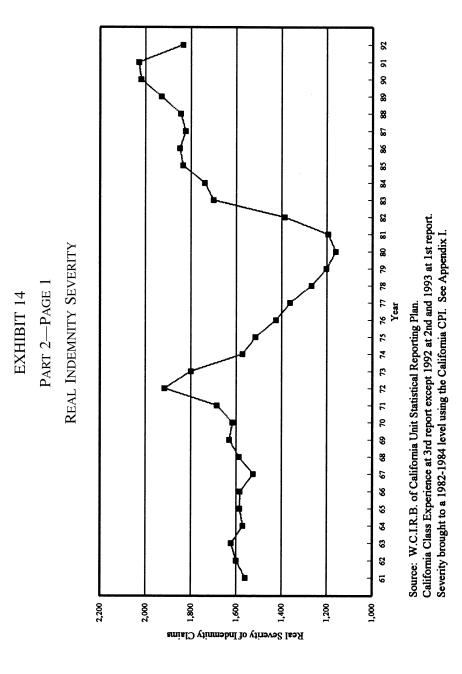
CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

13	
KHIBIT	
Ξ	

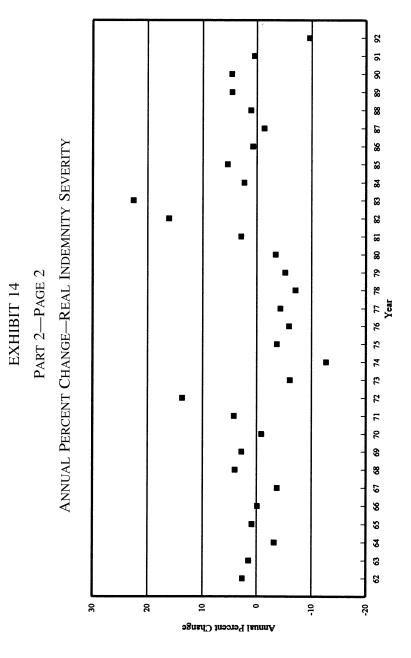

-


UTILIZATION POINT ESTIMATES AND CONFIDENCE INTERVALS FOR SELECTED MODELS

Model #2 (Exhibit 7)	Model #5 (Exhibit 8)
Indemnity Benefit Level	Indemnity Benefit Level
Ratio of Cumulative Injuries to Total Indemnity Claims	Ratio of Cumulative Injuries to Total Indemnity Claims
First Principal Component of rGSP, AggE, and Unemp	First Principal Component of rGSP and AggE
Point Estimate for percent change in indemnity frequency	Point Estimate for percent change in indemnity frequency
due to change in indemnity benefit level =	due to change in indemnity benefit level =
$0.2619 \times Indemnity Benefit Level Change (CY)$	0.3091 × Indemnity Benefit Level Change (CY)
95% Prediction Interval:	95% Prediction Interval:
$ 0.2619 \pm (2.2010 \times 0.0746) \times$ Indemnity Benefit Level Change (CY) $(0.0977, 0.4261) \times$ Indemnity Benefit Level Change (CY)	$[0.3091 \pm (2.2010 \times 0.0831)] \times$ Indemnity Benefit Level Change (CY) (0.1262, 0.4920) × Indemnity Benefit Level Change (CY)
90% Prediction Interval: $[0.2619 \pm (1.7959 \times 0.0746)] \times$ Indemnity Benefit Level Change (CY) $(0.1279, 0.3959) \times$ Indemnity Benefit Level Change (CY)	90% Prediction Interval: $[0.3091 \pm (1.7959 \times 0.0831)] \times$ Indemnity Benefit Level Change (CY) (0.1599, 0.4583) \times Indemnity Benefit Level Change (CY)
Model #6 (Exhibit 9)	Model #7 (Exhibit 10)
Indemnity Benefit Level	Indemnity Benefit Level
Ratio of Cumulative Injuries to Total Indemnity Claims	Ratio of Cumulative Injuries to Total Indemnity Claims
California Aggregate Employment	California Real Gross State Product
Point Estimate for percent change in indemnity frequency	Point Estimate for percent change in indemnity frequency
due to change in indemnity benefit level =	due to change in indemnity benefit level =
0.3211 × Indemnity Benefit Level Change (CY)	0.2205 × Indemnity Benefit Level Change (CY)
95% Prediction Interval:	95% Prediction Interval:
$[0.3211 \pm (2.2010 \times 0.0889)] \times$ Indemnity Benefit Level Change (CY) (0.1254, 0.5168) × Indemnity Benefit Level Change (CY)	$[0.2205 \pm (2.2010 \times 0.0930)] \times$ Indemnity Benefit Level Change (CY) (0.0158, 0.4252) × Indemnity Benefit Level Change (CY)
90% Prediction Interval:	90% Prediction Interval:
$[0.3211 \pm (1.7959 \times 0.0889)] \times$ Indemnity Benefit Level Change (CY) (0.1614,0.4808) × Indemnity Benefit Level Change (CY)	$[0.2205 \pm (1.7959 \times 0.0930)] \times$ Indemnity Benefit Level Change (CY) $(0.0535, 0.3875) \times$ Indemnity Benefit Level Change (CY)


CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

221



-

224

- |

EXHIBIT 15

Part 1

CANDIDATE VARIABLES—TABULAR PRESENTATION ORIGINAL VARIABLES

		Indemnit	Real Severity			ılative Benef Calendar Yea		California	Real
Year	Indemnity . Severity	Indemnity	Medical	. All Claims	Indemnity	Medical	Total	Aggregate Emplmt	California GSP
1961	1,559.4	1,559.4	547.0	302.9	1.000	1.000	1.001	3,891,683	-
1962	1,623.8	1,600.0	560.6	315.3	1.001	1.020	1.004	4,071,877	-
1963	1,676.9	1,623.1	584.3	329.4	1.001	1.080	1.005	4,216,436	210,153
1964	1,652.8	1,571.1	581.0	325.8	1.001	1.080	1.005	4,346,448	220,848
1965	1,698.5	1,585.0	638.6	341.6	1.001	1.080	1.005	4,464,625	229,125
1966	1,736.8	1,583.8	700.5	358.5	1.001	1.158	1.022	4,707,406	240,495
1967	1,726.1	1,524.8	695.8	355.8	1.001	1.391	1.073	4,840,158	245,762
1968	1,877.6	1,586.6	725.7	386.7	1.001	1.391	1.073	5,041,894	257,843
1969	2,025.7	1,630.8	739.1	406.9	1.042	1.429	1.105	5,272,325	264,621
1970	2,097.3	1,616.8	751.5	417.3	1.042	1.542	1.117	5,240,190	263,933
1971	2,263.0	1,685.0	806.9	442.2	1.042	1.542	1.117	5,189,637	265,600
1972	2,687.2	1,916.3	830.5	475.6	1.227	1.581	1.247	5,913,892	281,159
1973	2,720.7	1,800.3	808.5	519.3	1.283	1.695	1.297	6,383,331	293,735
1974	2,619.5	1,571.8	732.8	576.8	1.355	1.771	1.362	6,588,356	298,408
1975	2,739.9	1,514.4	765.9	600.0	1.428	1.995	1.450	6,564,524	304,518
1976	2,749.0	1,425.1	783.1	595.7	1.433	2.527	1.530	7,130,103	320,160
1977	2,828.8	1,363.6	782.8	594.2	1.519	2.721	1.626	7,543,268	403,192
1978	2,874.8	1,267.7	787.2	576.1	1.519	2.721	1.626	9,036,931	424,809
1979	3,075.9	1,201.8	792.7	566.9	1.519	2.882	1.641	9,448,087	439,868
1980	3,369.4	1,160.3	824.8	565.8	1.519	3.040	1.655	10,083,911	447,341
1981	3,779.0	1,194.4	910.8	606.7	1.564	3.256	1.719	10,256,167	457,877
1982	4,581.9	1.387.5	1.023.6	714.6	1.564	3.927	1.785	10,131,806	458,036
1983	5,788,3	1,701.2	1,107.8	847.7	2.171	4.363	2.200	10,312,305	480,484
1984	6,207.9	1,740.7	1,104.5	905.7	2.332	4.738	2.321	10,900,212	517,192
1985	6,806,4	1.835.4	1.215.2	983.2	2.332	5.093	2.328	11.378.074	545.612
1986	7,100.4	1,849.1	1.308.9	1.033.2	2.332	5.093	2.328	11.644.237	572,257
1987	7,305.5	1,824.2	1,387.0	1.073.0	2.332	5.278	2.331	12,094,751	599,088
1988	7,737.6	1,844.6	1,457.0	1.131.5	2.332	5.460	2.333	12,556,920	626,079
1989	8,517.8	1,930.2	1.571.0	1,244.0	2.332	5.460	2.333	13.005,986	649,583
1990	9,352.3	2,020.3	1.641.5	1,387.8	2.385	5.684	2.356	13,328,057	665,298
1991	9,760.8	2.029.4	1.593.0	1,368.1	2.502	6.224	2.401	12,796.072	653,197
1992	9,100.9	1,834.4	1,496.2	1,158.2	2.522	6.162	2.407	12,490,570	652,328
1993	7,473.5	-	-	-	2.522	6.162	2.413	12,253,883	-
1994	-	-	-	-	2.334	6.202	2.186	12,500,754	-
1995	-	-	_	_	2.425	6.473	2.232	-	-
1996	-	-	_	-	2.495	6.618	2.268	-	_

Notes: Severity brought to 1982–1984 level using the California CPI. Series change in Self-Insurance Share Index in 1976. See Appendix H. Value given for 1976 is average of self-insured share under both series.

California Unemplmt	Indemnity Frequency	Indemnity Pure Premium	Litigation	Cumulative Indemnity		Principal C	Components		Self- Insurance Share
Rate	Haz'ness	Haz'ness	Rate	Claims	PCGA_1	PCGA_2	PCUGA_1	PCUGA_2	Index
6.9	1.000	1.000	-	-					0.1018
5.8	0.990	0.988	-	-					0.1019
6.0	0.989	0.985	-	-					0.1019
6.0	0.983	0.986	-	-					0.1097
5.9	0.977	0.975	-	-					0.1095
4.9	0.961	0.955	-	-					0.1095
5.7	0.949	0.918	-	-					0.1171
5.4	0.947	0.926	-	-					0.1174
5.2	0.934	0.915	-	-					0.1319
7.3	0.925	0.900	-	-					0.1319
8.8	0.925	0.896	-	-					0.1184
7.6	0.926	0.893	32.81	-					0.1235
7.0	0.925	0.886	28.93	-					0.1228
7.3	0.912	0.866	27.17	-					0.1230
9.9	0.897	0.829	30.59	-					0.1307
9.2	0.902	0.825	33.22	-					0.1788
8.2	0.910	0.821	31.15	2.637					0.2437
7.1	0.922	0.824	27.37	2.525		N	OT		0.2422
6.2	0.920	0.822	28.09	2.359		APPLI	CABLE		0.2426
6.8	0.909	0.799	25.12	2.215					0.2425
7.4	0.892	0.774	25.26	2.345					0.2752
9.9	0.874	0.737	28.76	2.965					0.2857
9.7	0.872	0.733	27.33	3.278					0.3083
7.8	0.870	0.737	27.81	3.868					0.3002
7.2	0.864	0.731	29.03	4.271					0.3003
6.7	0.855	0.723	35.94	4.450					0.3001
5.8	0.853	0.721	34.87	4.613					0.2999
5.3	0.854	0.721	34.86	5.269					0.3002
5.1	0.852	0.719	34.70	6.473					0.2927
5.6	0.840	0.706	-	8.485					0.2853
7.5	0.826	0.692	38.20	9.576					0.2621
9.1	0.816	0.682	42.85	6.359					0.2880
9.2	0.811	0.678	_	4.513					0.3080
-	_	-	_	4.281					-
-	-	-	-	-					-
-	-	-	_	-					_

EXHIBIT 15

PART 2

CANDIDATE VARIABLES—TABULAR PRESENTATION **ANNUAL PERCENT CHANGES**

	-	Indemnit	Real Severity			ulative Benefi Calendar Year		California	Real
Year	Indemnity . Severity	Indemnity	Medical	. All Claims	Indemnity	Medical	Total	Aggregate Emplmt	California GSP
1961					0.032	0.000	0.092	_	
1962	4.131	2.604	2.484	4.097	0.075	2.012	0.272	4.630	
1963	3.271	1.446	4.226	4.479	0.000	5.852	0.158	3.550	
1964	-1.440	-3.204	-0.556	-1.105	0.000	0.000	0.000	3.083	5.275
1965	2.768	0.882	9.916	4.866	0.000	0.000	0.000	2.719	3.759
1966	2.255	-0.076	9.693	4.934	0.000	7.259	1.689	5.438	4.942
1967	-0.616	-3.723	-0.679	-0.762	0.000	20.083	4.928	2.820	2.069
1968	8.778	4.053	4.298	8.688	0.000	0.000	0.000	4.168	5.011
1969	7.888	2.788	1.848	5.241	4.100	2.747	3.062	4.570	2.533
1970	3.533	-0.861	1.672	2.550	0.000	7.935	1.043	-0.610	-0.194
1971	7.899	4.220	7.379	5.956	0.000	0.000	0.000	-0.965	0.590
1972	18.746	13.726	2.919	7.562	17.732	2.489	11.635	13.956	5.957
1973	1.246	-6.056	-2.649	9.186	4.553	7.232	4.049	7.938	4.358
1974	-3.718	-12.692	-9.364	11.072	5.623	4.461	4.974	3.212	1.747
1975	4.595	-3.654	4.521	4.015	5.418	12.673	6.438	-0.362	1.897
1976	0.332	-5.893	2.246	-0.716	0.300	26.650	5.560	8.616	5.283
1977	2.902	-4.316	-0.032	-0.251	6.000	7.702	6.268	5.795	5.545
1978	1.629	-7.033	0.555	-3.039	0.000	0.000	0.000	19.801	5.322
1979	6.993	-5.197	0.698	-1.593	0.000	5.898	0.907	4.550	3.672
1980	9.543	-3.458	4.048	-0.205	0.000	5.479	0.885	6.730	1.633
1981	12.156	2.945	10.432	7.244	3.000	7.119	3.842	1.708	2.354
1982	21.249	16.165	12.384	17.772	0.000	20.599	3.812	-1.213	0.013
1983	26.328	22.604	8.224	18.629	38.800	11.100	23.300	1.782	4.931
1984	7.250	2.325	-0.293	6.839	7.400	8.600	5.500	5.701	7.665
1985	9.641	5.439	10.021	8.557	0.000	7.500	0.300	4.384	5.453
1986	4.319	0.747	7.708	5.084	0.000	0.000	0.000	2.339	4.887
1987	2.889	-1.348	5.969	3.851	0.000	3.630	0.101	3.869	4.711
1988	5.915	1.120	5.049	5.458	0.000	3.445	0.099	3.821	4.476
1989	10.084	4.639	7.823	9.940	0.000	0.000	0.000	3.576	3.770
1990	9.796	4.666	4.486	11.560	2.300	4.100	1.000	2.476	2.475
1991	4.368	0.455	-2.956	-1.420	4.900	9.500	1.900	-3.991	-1.900
1992	-6.761	-9.611	-6.079	-15.340	0.800	-1.000	0.251	-2.387	-0.106
1993	-17.882		_		0.000	0.000	0.248	-1.895	
1994					-7.469	0.646	-9.428	2.015	
1995					3.919	4.374	2.141		
1996					2.894	2.242	1.596		

Notes: PCGA_1(2) = First (second) principal component of CA Real GSP and Aggregate Employment PCUGA_1(2) = First (second) principal component of CA Real GSP, Unemployment Rate, and Aggregate Employment Series change in Self-Insurance Share Index in 1976. See Appendix H. Value given for 1976 is average of self-insured share under both series.

California Unemplmt	Indemnity Frequency	Indemnity Pure Premium	Litigation	Cumulative ÷ Indemnity		Principal C	omponents		Self- Insurance Share
Rate	Haz'ness	Haz'ness	Rate	Claims	PCGA_1	PCGA_2	PCUGA_1	PCUGA_2	Index
							_	_	0.002
-15.942	-0.974	-1.233			4.360	-1.560			0.009
3.448	-0.128	-0.318			3.343	-1.196	—	—	-0.000
0.000	-0.565	0.107			4.680	3.928	-1.188	3.164	0.787
-1.667	-0.629	-1.040			3.826	2.624	-2.571	2.446	-0.020
-16.949	-1.642	-2.062			6.785	2.822	-18.124	2.203	-0.000
16.327	-1.237	-3.883			3.352	0.998	15.155	5.962	0.755
-5.263	-0.249	0.875			5.612	3.314	-6.495	3.208	0.032
-3.704	-1.361	-1.188			5.157	0.846	-4.765	3.837	1.455
40.385	-1.003	-1.650			-0.639	0.023	39.526	7.167	-0.000
20.548	0.082	-0.456			-0.709	0.881	20.155	3.023	-1.356
-13.636	0.051	-0.287			15.147	0.907	-16.613	11.223	0.513
-7.895	-0.137	-0.772	-11.834		8.942	1.429	-9.696	6.383	-0.071
4.286	-1.398	-2.363	-6.085		3.613	0.563	3.374	4.021	0.019
35.616	-1.589	-4.173	12.615		0.299	1.908	34.588	6.548	0.769
-7.071	0.500	-0.474	8.598		9.892	2.072	-9.127	7.231	-0.358
-10.870	0.949	-0.513	-6.250		7.324	3.268	-12.331	3.739	1.331
-13.415	1.249	0.302	-12.133	-4.248	20.437	-1.660	-17.424	16.983	-0.151
-12.676	-0.216	-0.182	2.621	-6.598	5.521	1.925	-13.643	2.121	0.034
9.677	-1.116	-2.861	-10.557	-6.108	6.886	-0.730	7.984	8.507	-0.003
8.824	-1.866	-3.130	0.537	5.871	2.401	1.641	8.013	3.436	3.271
33.784	-2.097	-4.711	13.867	26.453	-1.137	0.421	33.177	5.311	1.047
-2.020	-0.201	-0.534	-4.964	10.556	3.338	4.042	-2.874	1.489	2.261
-19.588	-0.173	0.549	1.773	17.998	7.950	5.297	-21.061	2.026	-0.816
-7.692	-0.748	-0.882	4.382	10.430	5.965	3.658	-8.956	2.964	0.015
-6.944	-1.033	-1.126	23.803	4.183	3.849	3.814	-7.777	1.087	-0.017
-13.433	-0.225	-0.248	-2.974	3.655	5.230	3.132	-14.373	1.335	-0.021
-8.621	0.057	0.090	-0.032	14.219	5.106	2.927	-9.643	2.208	0.026
-3.774	-0.179	-0.384	-0.456	22.853	4.637	2.344	-4.788	2.881	-0.746
9.804	-1.382	-1.756		31.096	3.165	1.496	8.811	4.381	-0.746
33.929	-1.718	-1.977		12.856	-4.398	-0.444	34.062	2.563	-2.312
21.333	-1.185	-1.526	12.183	-33.591	-2.284	0.704	21.269	1.760	2.590
1.099	-0.572	-0.527		-29.038	-1.784	0.638	1.428	-1.647	1.999
				-5.130			_	_	—
							_	_	—
							—	—	—

EXHIBIT 16

Part 1

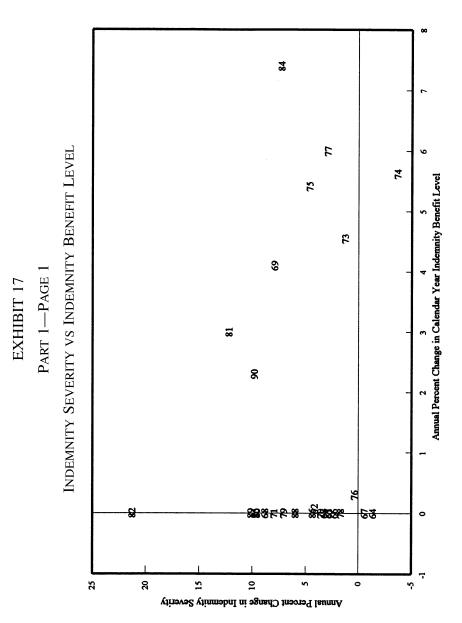
Correlations Among Variables Sample Period: 1964–1992 Pearson Product Moment Correlation at LAG = 0

		R	eal Severit	y	F	Benefit Levo	-1	
	Indemnity	Indemnit	y Claims	All		alendar Ye		California Aggregate
	Severity	Indemnity	Medical		Indemnity	Medical	Total	Emplmt
Indemnity Severity								
Real Indemnity Severity	0.927	1.000	0.655	0.696	0.585	0.103	0.525	-0.117
Real Medical Severity	0.614	0.655	1.000	0.504	0.012	0.060	0.011	-0.088
Real Total Severity	0.711	0.696	0.504	1.000	0.423	0.142	0.417	-0.056
Indemnity Benefit Level	0.591	0.585	0.012	0.423	1.000	0.110	0.945	0.060
Medical Benefit Level	0.144	0.103	0.060	0.142	0.110	1.000	0.384	-0.102
Total Benefit Level	0.555	0.525	0.011	0.417	0.945	0.384	1.000	0.082
California Aggregate Employment	0.004	-0.117	-0.088	-0.056	0.060	-0.102	0.082	1.000
Real California Gross State Product	0.088	0.103	0.152	0.167	0.204	-0.113	0.199	0.655
California Unemployment Rate	0.003	0.022	-0.054	-0.074	-0.110	0.267	-0.059	-0.677
Indemnity Frequency Haz'ness	-0.061	-0.091	-0.129	-0.154	0.127	-0.176	0.093	0.643
Indemnity Pure Premium Haz'ness	-0.065	-0.001	-0.126	-0.097	0.105	-0.493	-0.067	0.431
Litigation Rates	0.146	0.255	0.476	0.143	-0.197	0.325	-0.109	-0.543
Cumulative ÷ Indemnity Claims	0.596	0.650	0.557	0.836	0.112	0.466	0.153	-0.110
1st PC (rGSP, AggE)	0.017	-0.088	-0.055	-0.024	0.085	-0.108	0.104	0.993
2nd PC (rGSP, AggE)	0.111	0.249	0.286	0.274	0.210	-0.049	0.182	-0.116
1st PC (rGSP, AggE, Unemp)	0.002	0.025	-0.049	-0.070	-0.110	0.261	-0.063	-0.705
2nd PC (rGSP, AggE, Unemp)	0.010	-0.135	-0.169	-0.145	-0.022	0.119	0.058	0.710
Self-Insurance Share Index	0.167	0.136	0.092	-0.032	0.317	0.061	0.388	-0.063

Note: Pearson Product Moment Correlation assumes the variables to be normally distributed.

Real California	California Unemplmt	Indemnity	Indemnity Pure Premium	Litigation	Cumulative ÷ Indemnity	I	Principal C	omponents		Self- Insurance Share
GSP	Rate	Haz'ness	Haz'ness	Rate	Claims	PCGA_1	PCGA_2	PCUGA_1	PCUGA_2	Index
0.103	0.022	-0.091	-0.001	0.255	0.650	-0.088	0.249	0.025	-0.135	0.136
0.152	-0.054	-0.129	-0.126	0.476	0.557	-0.055	0.286	-0.049	-0.169	0.092
0.167	-0.074	-0.154	-0.097	0.143	0.836	-0.024	0.274	-0.070	-0.145	-0.032
0.204	-0.110	0.127	0.105	-0.197	0.112	0.085	0.210	-0.110	-0.022	0.317
-0.113	0.267	-0.176	-0.493	0.325	0.466	-0.108	-0. 049	0.261	0.119	0.061
0.199	-0.059	0.093	-0.067	-0.109	0.153	0.104	0.182	-0.063	0.058	0.388
0.655	-0.677	0.643	0.431	-0.543	-0.110	0.993	-0.116	-0.705	0.710	-0.063
1.000	-0.892	0.617	0.638	-0.122	0.153	0.739	0.674	-0.897	0.040	0.024
-0.892	1.000	-0.587	-0.683	0.353	0.025	-0.741	-0.511	0.999	0.038	0.027
0.617	-0.587	1.000	0.781	-0.448	-0.156	0.668	0.183	-0.600	0.312	-0.182
0.638	-0.683	0.781	1.000	-0.327	-0.116	0.483	0.417	-0.681	-0.068	-0.265
-0.122	0.353	-0.448	-0.327	1.000	0.374	-0.522	0.357	0.369	-0.368	-0.002
0.153	0.025	-0.156	-0.116	0.374	1.000	-0.076	0.286	0.028	-0.119	-0.407
0.739	-0.741	0.668	0.483	-0.522	-0.076	1.000	0.000	-0.767	0.639	-0.052
0.674	-0.511	0.183	0.417	0.357	0.286	0.000	1.000	-0.490	-0.642	0.094
-0.897	0.999	-0.600	-0.681	0.369	0.028	-0.767	-0.490	1.000	-0.000	0.029
0.040	0.038	0.312	-0.068	-0.368	-0.119	0.639	-0.642	-0.000	1.000	-0.058
0.024	0.027	-0.182	-0.265	-0.002	-0.407	-0.052	0.0 94	0.029	-0.058	1.000

EXHIBIT 16

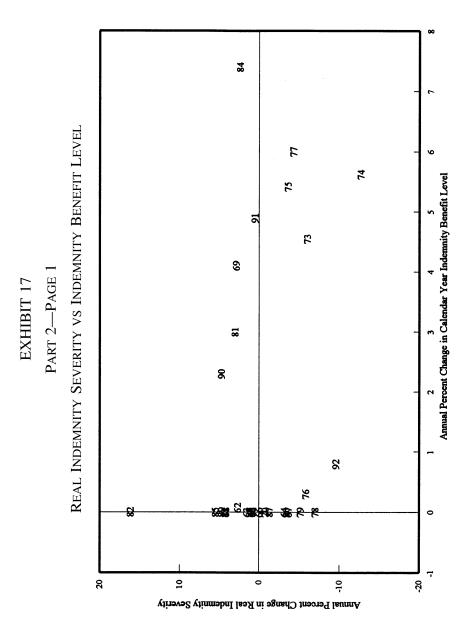

Part 2

Correlations Among Variables Sample Period: 1964–1992 Significance of Correlation at LAG = 0

		R	eal Severity	<i>,</i>	в	enefit Leve	1	
	Indemnity	Indemnit	y Claims	All		alendar Yea		California Aggregate
	Severity	Indemnity	Medical	Claims	Indemnity	Medical	Total	Emplmt
Indemnity Severity		0.000	0.000	0.000	0.001	0.456	0.002	0.983
Real Indemnity Severity	0.000		0.000	0.000	0.001	0.595	0.003	0.547
Real Medical Severity	0.000	0.000		0.005	0.952	0.756	0.953	0.649
Real Total Severity	0.000	0.000	0.005		0.022	0.461	0.024	0.774
Indemnity Benefit Level	0.001	0.001	0.952	0.022		0.569	0.000	0.758
Medical Benefit Level	0.456	0.595	0.756	0.461	0.569		0.040	0.599
Total Benefit Level	0.002	0.003	0.953	0.024	0.000	0.040		0.673
California Aggregate Employment	0.983	0.547	0.649	0.774	0.758	0.599	0.673	
Real California Gross State Product	0.650	0.595	0.432	0.387	0.288	0.560	0.300	0.000
California Unemployment Rate	0.987	0.911	0.781	0.702	0.572	0.162	0.763	0.000
Indemnity Frequency Haz'ness	0.754	0.639	0.506	0.425	0.513	0.361	0.632	0.000
Indemnity Pure Premium Haz'ness	0.738	0.997	0.515	0.617	0.588	0.007	0.732	0.020
Litigation Rates	0.577	0.323	0.053	0.584	0.448	0.203	0.676	0.024
Cumulative ÷ Indemnity Claims	0.019	0.009	0.031	0.000	0.690	0.080	0.587	0.696
1st PC (rGSP, AggE)	0.929	0.649	0.776	0.902	0.662	0.576	0.592	0.000
2nd PC (rGSP, AggE)	0.565	0.192	0.133	0.151	0.274	0.803	0.344	0.549
1st PC (rGSP, AggE, Unemp)	0.993	0.897	0.800	0.717	0.569	0.172	0.746	0.000
2nd PC (rGSP, AggE, Unemp)	0.957	0.484	0.380	0.454	0.911	0.538	0.766	0.000
Self-Insurance Share Index	0.385	0.483	0.636	0.868	0.094	0.753	0.038	0.746

Note: P Value is the probability of observing the indicated SAMPLE correlation coefficient if the TRUE correlation coefficient was actually zero.

Real	California	Indemnity	Indemnity Pure		Cumulative ÷					Self- Insuranc
California	Unemplmt	Frequency	Premium		Indemnity		Principal Co	•		Share
GSP	Rate	Haz'ness	Haz'ness	Rate	Claims	PCGA_1	PCGA_2	PCUGA_1	PCUGA_2	Index
0.650	0.987	0.754	0.738	0.577	0.019	0.929	0.565	0.993	0.957	0.385
0.595	0.911	0.639	0.997	0.323	0.009	0.649	0.192	0.897	0.484	0.483
0.432	0.781	0.506	0.515	0.053	0.031	0.776	0.133	0.800	0.380	0.636
0.387	0.702	0.425	0.617	0.584	0.000	0.902	0.151	0.717	0.454	0.868
0.288	0.572	0.513	0.588	0.448	0.690	0.662	0.274	0.569	0.911	0.094
0.560	0.162	0.361	0.007	0.203	0.080	0.576	0.803	0.172	0.538	0.753
0.300	0.763	0.632	0.732	0.676	0.587	0.592	0.344	0.746	0.766	0.038
0.000	0.000	0.000	0.020	0.024	0.696	0.000	0.549	0.000	0.000	0.746
	0.000	0.000	0.000	0.640	0.587	0.000	0.000	0.000	0.838	0.900
0.000		0.001	0.000	0.165	0.928	0.000	0.005	0.000	0.844	0.888
0.000	0.001		0.000	0.071	0.578	0.000	0.342	0.001	0.099	0.345
0.000	0.000	0.000		0.201	0.680	0.008	0.024	0.000	0.726	0.164
0.640	0.165	0.071	0.201		0.232	0.031	0.160	0.145	0.146	0.994
0.587	0.928	0.578	0.680	0.232		0.788	0.301	0.921	0.672	0.132
0.000	0.000	0.000	0.008	0.031	0.788		1.000	0.000	0.000	0.787
0.000	0.005	0.342	0.024	0.160	0.301	1.000		0.007	0.000	0.629
0.000	0.000	0.001	0.000	0.145	0.921	0.000	0.007		1.000	0.882
0.838	0.844	0.099	0.726	0.146	0.672	0.000	0.000	1.000		0.764
0.900	0.888	0.345	0.164	0.994	0.132	0.787	0.6 29	0.882	0.764	


- |

and the contract of the contra	and the set of second to the second	
Outliers 1972 and 1965 used in regression but not snown in graph	sion but not snown in graph	
	Spearman Rank Correlation Coefficient:	0.12728 31
	Two-tailed Significance	0.49500
	Regression Output With Constant:	
	Constant	4.30094
	Std Err of Y Est	5.61927
	R Squared	0.35458
	No. of Observations	31
	Degrees of Freedom	29
	X Coefficient(s)	0.54096
	Std Err of Coef.	0.13553
	P-Value	0.00041
	Doctor October With the second	-
	Regression Output Williout Constant.	lt:
	Constant	0.00000
	Std Err of Y Est	6.82402
	R Squared	0.01534
	No. of Observations	31
	Degrees of Freedom	30
	X Coefficient(s)	0.75305
	Std Err of Coef.	0.15078
	P-Value	0.00002

EXHIBIT 17 Part 1—Page 2

- |

CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION 235

- |

Outliers 1972 and 1983 used in regression but not shown in graph	ion but not shown in graph	
	Spearman Rank Correlation Coefficient: Valid Cases	0.00661 31
	Two-tailed Significance	0.97180
	Regression Output With Constant:	
	Constant	-1.01637
	Std Err of Y Est	5.99262
	R Squared	0.33033
	No. of Observations	31
	Degrees of Freedom	29
	X Coefficient(s)	0.54665
	Std Err of Coef.	0.14453
	P-Value	0.00072
	Resression Output Without Constant:	
	Constant	0.00000
	Std Err of Y Est	5.96745
	R Squared	0.31304
	No. of Observations	31
	Degrees of Freedom	30
	X Coefficient(s)	0.49653
	Std Err of Coef.	0.13186
	P-Value	0.00072

EXHIBIT 17 Part 2—Page 2

- |

237

APPENDIX A

PART 1

DEVELOPMENT OF CANDIDATE VARIABLES CLAIM FREQUENCIES

Wage Indemnity Med-Only Total \$ Current Index \$ 1987 Indemnity Med-Only Total 21,877,687 22.3 98,107,006 89,647 589,817 679,464 0.9138 6.0120 6.9257 23,612,513 23.2 101,627,186 94,893 611,070 705,963 0.9337 6.0120 6.9466 25,228,415 24.2 104,386,884 99,366 621,304 70,9138 6.0129 6.9039 26,203,849 25.1 104,366,850 913,367 6.11,070 713,372 0.9323 5.6242 6.5565 28,887,463 26.0 111,085,011 103,566 644,766 728,332 0.93233 5.6242 6.5565 31,220,478 272 114,696,870 109,501 640,367 0.9951 5.5642 6.5565 31,23,452 29,111 103,566 644,186 772,755 0.9914 5.6636 6.5213 37,504,640 31,4 119,602,193 118,568 <t< th=""><th></th><th>Total I</th><th>Fotal Exposure (000s)</th><th>; (000s)</th><th>Incui</th><th>Incurred Claim Count</th><th>Count</th><th>Incurred Fre</th><th>Incurred Frequency per \$1M (1987)</th><th>1M (1987)</th><th></th><th>Annual % Change</th><th>ge</th></t<>		Total I	Fotal Exposure (000s)	; (000s)	Incui	Incurred Claim Count	Count	Incurred Fre	Incurred Frequency per \$1M (1987)	1M (1987)		Annual % Change	ge
21,877,687 22.3 98,107,006 89,647 589,817 679,464 0.9138 6.0120 6.9257 23,612,513 23.2 101,627,186 94,893 611,070 705,963 0.9337 6.0129 6.9466 25,228,415 24.2 104,386,854 99,376 611,070 705,963 0.9337 6.0129 6.9466 25,228,415 24.2 104,386,854 99,376 613,373 713,372 0.9561 5.8887 6.8447 28,887,463 25.1 104,221,777 99,642 613,373 713,372 0.9561 5.8887 6.8447 28,887,463 25.1 104,221,777 99,642 613,373 713,372 0.9561 5.887 6.8447 28,887,463 25.1 114,696,870 107,600 640,367 747,967 0.9381 5.531 5.5242 6.5564 33,123,452 29,111 113,908,431 109,981 645,128 772,755 0.9914 5.6036 6.0501 33,123,452 29,111	Policy Year	I	Wage Index	\$ 1987	Indemnity	Med-Only		Indemnity Claims		Total Claims	Indemnity Claims	Indemnity Med-Only Claims Claims	Total Claims
23,612,513 23,212 101,627,186 94,893 611,070 705,963 0.9337 6.0129 6.9466 25,228,415 24.2 104,386,854 99,376 621,304 720,680 0.9520 5.9519 6.9039 25,228,415 24.2 104,386,854 99,376 613,730 713,372 0.9561 5.8887 6.8447 28,887,463 26.0 111,085,011 103,566 641,766 728,332 0.9323 5.6242 6.5565 - 28,887,463 26.0 111,085,011 103,566 644,766 728,332 0.9323 5.6242 6.5565 - 33,123,452 29.1 113,908,431 109,981 645,128 755,109 0.9655 5.6636 6.6291 37,504,640 31.4 119,602,193 118,568 654,187 772,755 0.9914 5.4697 6.4610 39,913,331 33.7 118,280,474 123,933 659,842 783,775 1.0478 5.5786 6.2566 40,951,049 <t< td=""><td>1961</td><td>21,877,687</td><td>22.3</td><td>98,107,006</td><td>89,647</td><td>589,817</td><td>679,464</td><td>0.9138</td><td>6.0120</td><td>6.9257</td><td>1</td><td>1</td><td> 1</td></t<>	1961	21,877,687	22.3	98,107,006	89,647	589,817	679,464	0.9138	6.0120	6.9257	1	1	1
25,228,415 24.2 104,386,854 99,376 621,304 720,680 0.9520 5.9519 6.9039 26,203,849 25.1 104,221,777 99,642 613,730 713,372 0.9561 5.8887 6.8447 28,887,463 26.0 111,085,011 103,566 624,766 728,332 0.9323 5.6242 6.5565 - 28,887,463 27.0 114,696,870 107,600 640,367 747,967 0.9381 5.5242 6.5565 - 33,122,472 291.1 113,908,431 109,981 645,128 755,109 0.9655 5.6636 6.6291 37,504,640 31.4 119,602,193 118,568 654,187 772,755 0.9914 5.6636 6.6264 39,913,331 33.7 118,280,474 123,933 659,842 783,775 1.0478 5.5786 6.6264 40,951,049 35.4 116,602,193 118,568 654,187 772,755 0.9914 5.4697 6.4610 39,913,331 <t< td=""><td>1962</td><td>23,612,513</td><td>23.2</td><td>101,627,186</td><td>94,893</td><td>611,070</td><td>705,963</td><td>0.9337</td><td>6.0129</td><td>6.9466</td><td>2.1853</td><td>0.0147</td><td>0.3011</td></t<>	1962	23,612,513	23.2	101,627,186	94,893	611,070	705,963	0.9337	6.0129	6.9466	2.1853	0.0147	0.3011
26,203,849 25.1 104,221,777 99,642 613,730 713,372 0.9561 5.8887 6.8447 28,887,463 26.0 111,085,011 103,566 624,766 728,332 0.9323 5.6242 6.5565 - 28,887,463 26.0 111,085,011 103,566 624,766 728,332 0.9323 5.6242 6.5565 - 31,220,478 27.2 114,696,870 107,600 640,367 747,967 0.9381 5.5831 6.5213 33,123,452 29.1 113,908,431 109,981 645,128 755,109 0.9655 5.6636 6.6291 37,504,640 31.4 119,602,193 118,568 654,187 772,755 0.9914 5.4697 6.4610 39,913,331 33.7 118,280,474 123,933 659,842 733,682 1.0448 5.5786 6.2267 40,951,049 35.4 115,775,975 117,435 660,247 723,682 1.0143 5.2364 6.2567 40,951,049 <t< td=""><td>1963</td><td>25,228,415</td><td>24.2</td><td>104,386,854</td><td>99,376</td><td>621,304</td><td>720,680</td><td>0.9520</td><td>5.9519</td><td>6.9039</td><td>1.9557</td><td>-1.0132</td><td>-0.6141</td></t<>	1963	25,228,415	24.2	104,386,854	99,376	621,304	720,680	0.9520	5.9519	6.9039	1.9557	-1.0132	-0.6141
28,87,463 26.0 111,085,011 103,566 624,766 728,332 0.9323 5.6242 6.5565 - 31,220,478 27.2 114,696,870 107,600 640,367 747,967 0.9381 5.5831 6.5213 33,123,452 29.1 113,908,431 109,981 645,128 755,109 0.9655 5.6636 6.6291 37,504,640 31.4 119,602,193 118,568 654,187 772,755 0.9914 5.4697 6.4610 39,913,331 33.7 118,280,474 123,933 659,842 733,758 1.0478 5.5786 6.6264 40,951,049 35.4 115,775975 117,435 606,247 723,682 1.0143 5.2376 6.5064 43,255,487 36.5 118,273,484 692,701 10.2277 5.2275 6.2367 6.2567 43,255,428 133,484 692,791 826,275 1.0859 5.6356 6.7263 6.2567 50,834,927 40,366 123,9326 652,107	1964	26,203,849	25.1	104,221,777	99,642	613,730	713,372	0.9561	5.8887	6.8447	0.4265	-1.0626	-0.8573
31,220,478 27.2 114,696,870 107,600 640,367 747,967 0.9381 5.5831 6.5213 33,123,452 29.1 113,908,431 109,981 645,128 755,109 0.9655 5.6636 6.6291 37,504,640 31.4 119,602,193 118,568 654,187 772,755 0.9914 5.4697 6.4610 39,913,331 33.7 118,280,474 123,933 659,842 783,775 1.0478 5.5786 6.6264 40,951,049 35.4 115,775,975 117,435 606,247 723,682 1.0143 5.2364 6.2507 43,254,887 36.5 118,6773,181 121,927 620,191 826,275 1.02377 5.2275 6.2507 43,254,386 56,53446 62,791 822,975 1.0859 5.6359 6.7263 47,004,364 38.2 122,925,428 133,484 692,791 822,975 1.0859 5.6359 6.72635 50,834,927 40,6368 54,332 66,2471 2.35245 </td <td>1965</td> <td>28,887,463</td> <td>26.0</td> <td>111,085,011</td> <td>103,566</td> <td>624,766</td> <td>728,332</td> <td>0.9323</td> <td>5.6242</td> <td>6.5565</td> <td>-2.4836</td> <td>-4.4913</td> <td>-4.2108</td>	1965	28,887,463	26.0	111,085,011	103,566	624,766	728,332	0.9323	5.6242	6.5565	-2.4836	-4.4913	-4.2108
33,123,452 29.1 113,908,431 109,981 645,128 755,109 0.9655 5.6636 6.6291 37,504,640 31.4 119,602,193 118,568 654,187 772,755 0.9914 5.4697 6.4610 39,913,331 33.7 118,280,474 123,933 659,842 783,775 1.0478 5.5786 6.6264 40,951,049 35.4 115,775,975 117,435 660,247 723,682 1.0143 5.2364 6.2507 43,254,887 36.5 118,6775,975 117,435 660,247 723,682 1.0143 5.2364 6.2507 43,254,367 36.5 118,637,181 121,927 620,190 722,75 6.2353 6.2553 47,004,364 38.2 122,925,428 133,484 692,791 822,956 1.0859 5.6339 6.7283 6.2353 50,834,927 40,61368 573,486 574,386 574,386 5.4332 671,018 829,956 1.03859 5.6339 6.7283 1	1966	31,220,478	27.2	114,696,870	107,600	640,367	747,967	0.9381	5.5831	6.5213	0.6234	-0.7306	-0.5381
37,504,640 31.4 119,602,193 118,568 654,187 772,755 0.9914 5.4697 6.4610 39,913,331 33.7 118,280,474 123,933 659,842 783,775 1.0478 5.5786 6.6264 40,951,049 35.4 115,775,975 117,435 666,247 723,682 1.0143 5.2364 6.2507 43,254,366 118,657,181 121,927 620,180 742,107 1.0277 5.2275 6.2553 47,004,364 38.2 122,925,428 133,484 692,791 826,275 1.0859 5.6359 6.7218 50,834,927 40,61364 38.2 122,925,428 133,484 692,791 826,275 1.0859 5.6359 6.7218 50,834,927 406 125,028,485 154,932 675,018 829,950 1.2374 5.3911 6.6285 1 50,834,678 154,932 674,308 73410 691,618 4.7632 6.3965 1	1967	33,123,452	29.1	113,908,431	109,981	645,128	755,109	0.9655	5.6636	6.6291	2.9203	1.4408	1.6536
39,913,331 33.7 118,280,474 123,933 659,842 783,775 1.0478 5.5786 6.6264 40,951,049 35.4 115,775,975 117,435 606,247 723,682 1.0143 5.2364 6.2507 43,254,387 36.5 118,637,181 121,927 620,180 742,107 1.0277 5.2275 6.2553 47,004,364 38.2 122,925,428 133,484 692,791 826,275 1.0859 5.6359 6.7218 50,834,927 406 125,2085,5428 133,484 692,791 826,275 1.0859 5.6359 6.7218 50,834,927 40.6 125,028 554,336 675,018 829,950 1.2374 5.3911 6.6285 1 54,238 178,689,984 158,710 873,10 616,18 747,632 6.2396 1 6.6285 1	1968	37,504,640	31.4	119,602,193	118,568	654,187	772,755	0.9914	5.4697	6.4610	2.6754	-3.4232	-2.5350
40,951,049 35.4 115,775,975 117,435 606,247 723,682 1.0143 5.2364 6.2507 - 43,254,887 36.5 118,637,181 121,927 620,180 742,107 1.0277 5.2375 6.2553 43,254,887 36.5 118,637,181 121,927 620,180 742,107 1.0277 5.2275 6.2553 47,004,364 38.2 122,925,428 133,484 692,791 826,275 1.0859 5.6359 6.7218 50,834,927 40.6 125,208,865 154,932 675,018 829,950 1.2374 5.3911 6.6285 1 50,834,68 4.2,8 7310 604,308 791,618 1.4764 4.7632 6.3966 1.2396 1	1969	39,913,331	33.7	118,280,474	123,933	659,842	783,775	1.0478	5.5786	6.6264	5.6928	1.9915	2.5594
43,254,887 36,5 118,637,181 121,927 620,180 742,107 1.0277 5.2275 6.2553 47,004,364 38,2 122,925,428 133,484 692,791 826,275 1.0859 5.6359 6.7218 50,834,927 40.6 125,208,865 154,932 675,018 829,950 1.2374 5.3911 6.6285 1 54,238,668 42,81 26,869,984 187,310 604,308 791,618 1.4764 4.7632 6.2366 1	1970	40,951,049	35.4	115,775,975	117,435	606,247	723,682	1.0143	5.2364	6.2507	-3.1933	-6.1349	-5.6698
47,004,364 38.2 122,925,428 133,484 692,791 826,275 1.0859 5.6359 6.7218 50,834,927 40.6 125,208,865 154,932 675,018 829,950 1.2374 5.3911 6.6285 1 51,834,927 40.6 125,208,865 154,932 675,018 829,950 1.2374 5.3911 6.6285 1 54,938 668 42.8 126,869 98.4 187,310 601,308 791,618 1.4764 4.7632 6.3396 1	1971	43,254,887	36.5	118,637,181	121,927	620,180	742,107	1.0277	5.2275	6.2553	1.3211	-0.1689	0.0729
50,834,927 40.6 125,208,865 154,932 675,018 829,950 1.2374 5.3911 6.6285 1 54,238,668 42,8 126,869,984 187,310 604,308 791,618 1.4764 4.7632 6.2396 1	1972	47,004,364	38.2	122,925,428	133,484	692,791	826,275	1.0859	5.6359	6.7218	5.6595	7.8111	7.4576
54.238.668 42.8 126.869.984 187.310 604.308 791.618 1.4764 4.7632 6.2396 1	1973	50,834,927	40.6	125,208,865	-	675,018	829,950	1.2374	5.3911	6.6285	13.9511	-4.3423	-1.3870
	1974	54,238,668	42.8	126,869,984	187,310	604,308	791,618	1.4764	4.7632	6.2396	19.3153	-11.6474	-5.8674

238

- |

CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

1975	57,738,551	46.2	124,895,945	193,063	584,751	777,814	1.5458	4.6819	6.2277	4.7005	-1.7069	-0.1908
1976	62,193,123	49.0	126,958,448	206,908	611,465	818,373	1.6297	4.8163	6.4460	5.4302	2.8697	3.5052
1977	67,671,264	51.8	130,676,822	223,511	637,325	860,836	1.7104	4.8771	6.5875	4.9505	1.2634	2.1956
1978	75,054,494	55.6	134,951,430	235,645	661,759	897,404	1.7461	4.9037	6.6498	2.0893	0.5449	0.9459
1979	82,723,286	60.9	135,929,178	236,010	651,166	887,176	1.7363	4.7905	6.5268	-0.5655	-2.3085	-1.8508
1980	89,813,215	66.6	134,908,287	223,191	613,630	836,821	1.6544	4.5485	6.2029	-4.7159	-5.0513	-4.9621
1981	98,778,141	73.1	135,218,017	211,709	574,590	786,299	1.5657	4.2494	5.8150	-5.3617	-6.5766	-6.2526
1982	103,443,974	77.3	133,843,357	203,441	527,868	731,309	1.5200	3.9439	5.4639	-2.9184	-7.1878	-6.0383
1983	114,266,699	82.0	139,404,129	233,559	584,794	818,353	1.6754	4.1950	5.8704	10.2248	6.3650	7.4387
1984	129,672,576	86.9	149,266,396	271,618	627,773	899,391	1.8197	4.2057	6.0254	8.6114	0.2567	2.6411
1985	140,891,926	91.4	154,095,929	272,771	617,051	889,822	1.7701	4.0043	5.7745	-2.7229	-4.7885	-4.1647
1986	153,916,015	95.3	161,550,696	275,370	608, 364	883,734	1.7045	3.7658	5.4703	-3.7057	-5.9574	-5.2671
1987	167,173,336	100.0	167,173,336	292,759	627,052	919,811	1.7512	3.7509	5.5021	2.7390	-0.3948	0.5817
1988	181,245,258	104.9	172,810,122	302,703	623,028	925,731	1.7517	3.6053	5.3569	0.0240	-3.8826	-2.6392
1989	194,374,909	109.2	178,066,971	323,131	634,934	958,065	1.8147	3.5657	5.3804	3.5971	-1.0976	0.4375
1990	197,318,717	112.9	174,807,166	343,711	610,877	954,588	1.9662	3.4946	5.4608	8.3525	-1.9948	1.4951
1991	198,907,627	116.8	170,334,988	317,987	571,418	889,405	1.8668	3.3547	5.2215	-5.0552	-4.0035	-4.3822
1992	200,370,929	120.5	166,281,823	251,259	516,811	768,070	1.5110	3.1080	4.6191	-19.0585	-7.3518	-11.5373
1993	202,247,504	121.2	166,835,674	207,425	461,029	668,454	1.2433	2.7634	4.0067	-17.7198	-11.0896	-13.2586
1994	210,773,228	122.4	172,186,345	200,526	422,883	623,409	1.1646	2.4560	3.6205	-6.3302	-11.1245	-9.6368
Source: V See App	<i>Source</i> : WCIRB of California Class Experience at latest report level as of 11/12/96. See Appendix A, Part 2 for development of the index to adjust for wage level changes.	fornia C for dev	lass Experience elopment of the	e at latest re e index to a	sport level idjust for w	as of 11/12/ /age level ch	96. hanges.					

_|

APPENDIX A

PART 2

DEVELOPMENT OF INDEX TO ADJUST FOR WAGE LEVEL CHANGES

			(B) × 1,000	$19yy \times 100$		
(A)	(B)	(C)	(C)	1987		
	Wages	Employees	Avg	Index	Class Experience	Exposure (000s)
Year	(millions)	(thousands)	Wage	1987 = 100	Nominal	Real
1961	30,770	6,036	5,097.75	22.3	21,877,687	98,107,006
1962	33,260	6,262	5,311.40	23.2	23,612,513	101,627,186
1963	35,674	6,457	5,524.86	24.2	25,228,415	104,386,854
1964	38,273	6,659	5,747.56	25.1	26,203,849	104,221,777
1965	40,751	6,855	5,944.71	26.0	28,887,463	111,085,011
1966	44,914	7,218	6,222.50	27.2	31,220,478	114,696,870
1967	48,141	7,242	6,647.47	29.1	33,123,452	113,908,431
1968	52,824	7,369	7,168.41	31.4	37,504,640	119,602,193
1969	57,917	7,508	7,714.04	33.7	39,913,331	118,280,474
1970	61,250	7,575	8,085.81	35.4	40,951,049	115,775,975
1971	63,919	7,669	8,334.72	36.5	43,254,887	118,637,181
1972	69,895	7,996	8,741.25	38.2	47,004,364	122,925,428
1973	76,904	8,286	9,281.20	40.6	50,834,927	125,208,865
1974	84,419	8,638	9,772.98	42.8	54,238,668	126,869,984
1975	90,864	8,598	10,568.04	46.2	57,738,551	124,895,945
1976	100,674	8,990	11,198.44	49.0	62,193,123	126,958,448
1977	112,616	9,513	11,838.12	51.8	67,671,264	130,676,822
1978	128,880	10,137	12,713.82	55.6	75,054,494	134,951,430
1979	146,995	10,566	13,912.08	60.9	82,723,286	135,929,178
1980	164,271	10,794	15,218.73	66.6	89,813,215	134,908,287
1981	182,659	10,938	16,699.49	73.1	98,778,141	135,218,017
1982	193,764	10,967	17,667.91	77.3	103,443,974	133,843,357
1983	207,897	11,095	18,737.90	82.0	114,266,699	139,404,129
1984	230,983	11,631	19,859.26	86.9	129,672,576	149,266,396
1985	251,818	12,048	20,901.23	91.4	140,891,926	154,095,929
1986	270,983	12,442	21,779.70	95.3	153,916,015	161,550,696
1987	295,946	12,946	22,860.03	100.0	167,173,336	167,173,336
1988	320,917	13,385	23,975.87	104.9	181,245,258	172,810,122
1989	343,861	13,780	24,953.63	109.2	193,896,851	177,629,021
1990	368,635	14,286	25,803.93	112.9	197,318,717	174,807,166
1991	373,138	13,978	26,694.66	116.8	198,907,627	170,334,988
1992	383,971	13,939	27,546.52	120.5	200,370,929	166,281,823
1993	384,784	13,885	27,712.21	121.2	202,247,504	166,835,674
1994	395,707	14,141	27,982.96	122.4	210,773,228	172,186,345

Sources: Wages: California Statistical Abstract 1995, "Personal Income in California by Major Source 1969 to 1994" Employees: California Statistical Abstract, "Employment and Unemployment, California and Metropolitan Areas" Exposure: WCIRB of California Class Experience (1961—88 3rd Report; 1989–1990 5th Report, 1991 4th Report, 1992 3rd Report, 1993 2nd Report and 1994 1st Report; 1990–1994 Preliminary Summary as of 11/12/96).

В
N
Z.
PPE
7

DEVELOPMENT OF CANDIDATE VARIABLES BENEFIT LEVEL CHANGES

Effective	Pronortion	Cumula	Cumulative Benefit Level	Level	Cumula	Calendar Year Cumulative Benefit Level	r Level	Annual CY	Annual Percent Change in CY Benefit Level	nge in el
Date	of Year	Indemnity	Medical	Total	Indemnity	Medical	Total	Indemnity	Medical	Total
1-Jan-1961	0.704	1.0000	1.0000	1.0000						
15-Sep-1961	0.296	1.0011	1.0000	1.0031	1.0003	1.0000	1.0009	0.032	0.000	0.092
-Jan-1962	0.748	1.0011	1.0000	1.0031						
l-Oct-1962	0.252	1.0011	1.0798	1.0052	1.0011	1.0201	1.0036	0.075	2.012	0.272
l-Jan-1963	1.000	1.0011	1.0798	1.0052	1.0011	1.0798	1.0052	0.000	5.852	0.158
l-Jan-1964	1.000	1.0011	1.0798	1.0052	1.0011	1.0798	1.0052	0.000	0.000	0.000
l-Jan-1965	1.000	1.0011	1.0798	1.0052	1.0011	1.0798	1.0052	0.000	0.000	0.000
-Jan-1966	0.748	1.0011	1.0798	1.0052						
l-Oct-1966	0.252	1.0011	1.3908	1.0726	1.0011	1.1582	1.0222	0.000	7.259	1.689
l-Jan-1967	1.000	1.0011	1.3908	1.0726	1.0011	1.3908	1.0726	0.000	20.083	4.928
l-Jan-1968	1.000	1.0011	1.3908	1.0726	1.0011	1.3908	1.0726	0.000	0.000	0.000
-Jan-1969	0.748	1.0421	1.3908	1.1015						
I-Oct-1969	0.252	1.0421	1.5424	1.1170	1.0421	1.4290	1.1054	4.100	2.747	3.062
-Jan-1970	1.000	1.0421	1.5424	1.1170	1.0421	1.5424	1.1170	0.000	7.935	1.043
-Jan-1971	1.000	1.0421	1.5424	1.1170	1.0421	1.5424	1.1170	0.000	0.000	0.000
-Jan-1972	0.249	1.0421	1.5424	1.1170						
I-Apr-1972	0.500	1.2881	1.5424	1.2856						
-Oct-1972	0.251	1.2881	1.6951	1.2985	1.2269	1.5808	1.2469	17.732	2.489	11.635
-Jan-1973	0.178	1.2881	1.6951	1.2985						
'-Mar-1973	0.822	1.2816	1.6951	1.2972	1.2828	1.6951	1.2974	4.553	7.232	4.049
-Jan-1974	0.247	1.2944	1.6951	1.3076						
-Apr-1974	0.501	1.3747	1.6951	1.3638						
-Oct-1974	0.252	1.3747	1.9951	1.4115	1.3549	1.7707	1.3619	5.623	4.461	4.974
-Jan-1975	1.000	1.4283	1.9951	1.4496	1.4283	1.9951	1.4496	5.418	12.673	6.438
-Jan-1976	0.331	1.4326	2.1328	1.4627						
-Mav-1976	0 669	1.4326	2.7214	1.5636	1.4326	2.5268	1.5302	0.300	26.650	5.560

CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

241

I

Effective	Proportion	Cumula	Cumulative Benefit Level	Level	Cumula	Cumulative Benefit Level	Level	CY	CY Benefit Level	
Date	of Year	Indemnity	Medical	Total	Indemnity	Medical	Total	Indemnity	Medical	Total
1-Jan-1977	1.000	1.5185	2.7214	1.6261	1.5185	2.7214	1.6261	6.000	7.702	6.268
1-Jan-1978	1.000	1.5185	2.7214	1.6261	1.5185	2.7214	1.6261	0.000	0.000	0.000
1-Jan-1979	0.496	1.5185	2.7214	1.6261						
1-Jul-1979	0.504	1.5185	3.0398	1.6554	1.5185	2.8820	1.6409	0.000	5.898	0.907
1-Jan-1980	1.000	1.5185	3.0398	1.6554	1.5185	3.0398	1.6554	0.000	5.479	0.885
1-Jan-1981	0.666	1.5641	3.0398	1.6852						
1-Sep-1981	0.334	1.5641	3.6873	1.7863	1.5641	3.2563	1.7190	3.000	7.119	3.842
1-Jan-1982	1.000	1.5641	3.9270	1.7845	1.5641	3.9270	1.7845	0.000	20.599	3.812
1-Jan-1983	1.000	2.1710	4.3629	2.2003	2.1710	4.3629	2.2003	38.800	11.100	23.300
1-Jan-1984	1.000	2.3316	4.7381	2.3213	2.3316	4.7381	2.3213	7.400	8.600	5.500
1-Jan-1985	1.000	2.3316	5.0935	2.3283	2.3316	5.0935	2.3283	0.000	7.500	0.300
1-Jan-1986	1.000	2.3316	5.0935	2.3283	2.3316	5.0935	2.3283	0.000	0.000	0.000
1-Jan-1987	0.496	2.3316	5.0935	2.3283						
1-Jul-1987	0.504	2.3316	5.4602	2.3330	2.3316	5.2784	2.3307	0.000	3.630	0.101
1-Jan-1988	1.000	2.3316	5.4602	2.3330	2.3316	5.4602	2.3330	0.000	3.445	0.099
1-Jan-1989	1.000	2.3316	5.4602	2.3330	2.3316	5.4602	2.3330	0.000	0.000	0.000
1-Jan-1990	1.000	2.3852	5.6841	2.3563	2.3852	5.6841	2.3563	2.300	4.100	1.000
1-Jan-1991	1.000	2.5021	6.2241	2.4011	2.5021	6.2241	2.4011	4.900	9.500	1.900
1-Jan-1992	0.497	2.5221	6.1618	2.4011						
1-Jul-1992	0.503	2.5221	6.1618	2.4131	2.5221	6.1618	2.4071	0.800	-1.000	0.251
l-Jan-1993	1.000	2.5221	6.1618	2.4131	2.5221	6.1618	2.4131	0.000	0.000	0.248
l-Jan-1994	0.496	2.2775	6.0078	2.1573						
l-Jul-1994	0.504	2.3891	6.3923	2.2134	2.3337	6.2016	2.1856	-7.469	0.646	-9.428
1-Jan-1995	0.496	2.3891	6.3923	2.2134						
1-Jul-1995	0.504	2.4608	6.5521	2.2510	2.4252	6.4728	2.2323	3.919	4.374	2.141
1-Jan-1996	0.497	2.4608	6.5521	2.2510						
1-Jul-1996	0.503	2.5297	6.6831	2.2848	2.4954	6.6180	2.2680	2.894	2.242	1.596

APPENDIX B (Continued)

— I 242

CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

|

APPENDIX C

Part 1

DEVELOPMENT OF CANDIDATE VARIABLES CALIFORNIA AGGREGATE EMPLOYMENT

	Avg Monthly	Annual Percent
Year	Employees	Change
1961	3,891,683	_
1962	4,071,877	4.6302
1963	4,216,436	3.5502
1964	4,346,448	3.0835
1965	4,464,625	2.7189
1966	4,707,406	5.4379
1967	4,840,158	2.8201
1968	5,041,894	4.1680
1969	5,272,325	4.5703
1970	5,240,190	-0.6095
1971	5,189,637	-0.9647
1972	5,913,892	13.9558
1973	6,383,331	7.9379
1974	6,588,356	3.2119
1975	6,564,524	-0.3617
1976	7,130,103	8.6157
1977	7,543,268	5.7947
1978	9,036,931	19.8013
1979	9,448,087	4.5497
1980	10,083,911	6.7297
1981	10,256,167	1.7082
1982	10,131,806	-1.2125
1983	10,312,305	1.7815
1984	10,900,212	5.7010
1985	11,378,074	4.3840
1986	11,644,237	2.3393
1987	12,094,751	3.8690
1988	12,556,920	3.8212
1989	13,005,986	3.5762
1990	13,328,057	2.4763
1991	12,796,072	-3.9915
1992	12,490,570	-2.3875
1993	12,253,883	-1.8949
1994	12,500,754	2.0146

Source: CA Statistical Abstract—Average Monthly Employment Covered by Unemployment Insurance—All Industries (1970 for 1961–1969; 1995 for 1970–1994).

APPENDIX C

Part 2

DEVELOPMENT OF CANDIDATE VARIABLES CALIFORNIA REAL GROSS STATE PRODUCT

	CA GSP	Deflator	Annual	Change	Pct. Change
Year	\$ Millions	1982 = 100	CA GSP	Deflator	CA Real GSP
1961		_		_	
1962	_	—	_	_	_
1963	65,905	31.4	_	_	_
1964	70,928	32.1	1.0762	1.0223	5.2747
1965	75,887	33.1	1.0699	1.0312	3.7592
1966	83,006	34.5	1.0938	1.0423	4.9424
1967	88,653	36.1	1.0680	1.0464	2.0695
1968	97,995	38.0	1.1054	1.0526	5.0108
1969	105,766	40.0	1.0793	1.0526	2.5335
1970	111,631	42.3	1.0555	1.0575	-0.1936
1971	119,192	44.9	1.0677	1.0615	0.5903
1972	132,199	47.0	1.1091	1.0468	5.9570
1973	146,473	49.9	1.1080	1.0617	4.3582
1974	160,979	53.9	1.0990	1.0802	1.7474
1975	179,858	59.1	1.1173	1.0965	1.8971
1976	201,536	62.9	1.1205	1.0643	5.2834
1977	227,590	67.3	1.1293	1.0700	5.5446

Series After Department of Commerce Methodology Revised

	Current	Deflator	Annual	Change	Pct. Change
Year	Dollars	1987 = 100	CA GSP	Deflator	CA Real GSP
1977	224,501	55.7		_	
1978	255,552	60.2	1.1383	1.0808	5.3221
1979	287,821	65.4	1.1263	1.0864	3.6721
1980	319,804	71.5	1.1111	1.0933	1.6326
1981	358,920	78.4	1.1223	1.0965	2.3537
1982	382,317	83.5	1.0652	1.0651	0.0128
1983	416,061	86.6	1.0883	1.0371	4.9306
1984	468,127	90.5	1.1251	1.0450	7.6654
1985	511,110	93.7	1.0918	1.0354	5.4532
1986	552,110	96.5	1.0802	1.0299	4.8874
1987	599,088	100.0	1.0851	1.0363	4.7110
1988	650,313	103.9	1.0855	1.0390	4.4759
1989	702,755	108.2	1.0806	1.0414	3.7695
1990	752,761	113.1	1.0712	1.0453	2.4750
1991	767,189	117.5	1.0192	1.0389	-1.8998
1992	787,896	120.8	1.0270	1.0281	-0.1064
1993		_	_	_	_
1994	_	_	_	_	_

Source: U.S. Dept of Commerce, Bureau of Economic Analysis (1995 California Statistical Abstract).

_ |

APPENDIX C

Part 3

Development of Candidate Variables California Unemployment Rate

Year	Unemployment Rate	Annual Percent Change
1961	6.9	_
1962	5.8	-15.9420
1963	6.0	3.4483
1964	6.0	0.0000
1965	5.9	-1.6667
1966	4.9	-16.9492
1967	5.7	16.3265
1968	5.4	-5.2632
1969	5.2	-3.7037
1970	7.3	40.3846
1971	8.8	20.5479
1972	7.6	-13.6364
1973	7.0	-7.8947
1974	7.3	4.2857
1975	9.9	35.6164
1976	9.2	-7.0707
1977	8.2	-10.8696
1978	7.1	-13.4146
1979	6.2	-12.6761
1980	6.8	9.6774
1981	7.4	8.8235
1982	9.9	33.7838
1983	9.7	-2.0202
1984	7.8	-19.5876
1985	7.2	-7.6923
1986	6.7	-6.9444
1987	5.8	-13.4328
1988	5.3	-8.6207
1989	5.1	-3.7736
1990	5.6	9.8039
1991	7.5	33.9286
1992	9.1	21.3333
1993	9.2	1.0989

Source: CA Statistical Abstract (1970 for 1961–1967; 1974 for 1967–1969; 1995 for 1970–1994).

APPENDIX D

HAZARDOUSNESS INDICES

Indemnity Frequency Hazardousness Index

To measure the change in hazardousness from policy year to policy year, each classification was first assigned to one of fifteen groups of similar hazardousness of both frequency and severity. The fifteen groups were developed from California's nine retrospective rating hazard groups. Each of the fifteen groups is a subset of one retrospective rating hazard group. That is, all members of a group share the same retrospective rating hazard group or severity profile. Several hazard groups were not subdivided because their classifications' frequency profiles were reasonably homogenous. In all calculations, a class used the frequencies of its respective group.

The change in hazardousness for year t was then calculated in two ways. First, the exposures for year t + 1 were extended by the indemnity frequencies for year t and this sum divided by the exposures for year t extended by the indemnity frequency for year t. This is the Laspeyres method. Second, the exposures for year t + 1 were extended by the indemnity frequency for year t + 1 and this sum divided by the exposures for year t extended by the indemnity frequency for year t + 1. This is the Paasche method. The geometric mean was then taken of the Laspeyres and Paasche indices. This geometric mean is a Fisher index and the index selected to measure the change in hazardousness for year t.

Indemnity Pure Premium Hazardousness Index

The same procedure was performed to develop the indemnity pure premium hazardousness index except that, instead of using frequencies, indemnity pure premiums were used.

Ω	
XIC	
ENI	
APP	
\triangleleft	

PART 1

INDEMNITY FREQUENCY HAZARDOUSNESS INDEX

	ť	Change in Frequency Hazardousness	ncy	Frequency	Annual	Cha not Changes i	Changes in Frequency not Accounted for by Changes in Exposure Distribution	ency r by istribution
Year	Method 1	Method 2	Geo Mean	Index	Change	Method 1	Method 2	Geo Mean
1961	1.0000	1.0000	1.0000	1.0000		1.0000	1.0000	1.0000
1962	0.9910	0.9895	0.9903	0.9903	-0.9738	1.0455	1.0439	1.0447
1963	0.9988	0.9986	0.9987	0.9890	-0.1282	1.0119	1.0117	1.0118
1964	1.0006	0.9882	0.9944	0.9834	-0.5649	1.0154	1.0029	1.000.1
1965	0.9993	0.9882	0.9937	0.9772	-0.6289	0.9875	0.9765	0.9820
1966	0.9841	0.9830	0.9836	0.9612	-1.6416	1.0238	1.0226	1.0232
1967	0.9892	0.9861	0.9876	0.9493	-1.2374	1.0437	1.0404	1.0421
1968	0.9983	0.9967	0.9975	0.9469	-0.2488	1.0302	1.0285	1.0294
1969	0.9868	0.9859	0.9864	0.9340	-1.3610	1.0731	1.0721	1.0726
1970	0.9900	0.9899	0.9900	0.9247	-1.0034	0.9769	0.9768	0.9768
1971	1.0010	1.0007	1.0008	0.9254	0.0824	1.0150	1.0147	1.0149
1972	1.0005	1.0005	1.0005	0.9259	0.0505	1.0534	1.0534	1.0534
1973	0.9989	0.9984	0.9986	0.9246	-0.1369	1.1415	1.1408	1.1411
1974	0.9855	0.9865	0.9860	0.9117	-1.3983	1.2042	1.2054	1.2048
1975	0.9845	0.9838	0.9841	0.8972	-1.5890	1.0698	1.0691	1.0695
1976	1.0053	1.0047	1.0050	0.9017	0.4996	1.0485	1.0479	1.0482
1977	1.0102	1.0088	1.0095	0.9102	0.9490	1.0420	1.0405	1.0413
1978	1.0134	1.0116	1.0125	0.9216	1.2494	1.0376	1.0357	1.0366
1979	0.9982	0.9974	0.9978	0.9196	-0.2159	0.9718	0.9710	0.9714
1080	0.0001	0.0256	0.0888	0 9094	11157	0.0631	0 0567	0.0500

CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

	Ċ	Change in Frequency Hazardousness	ancy s	Frequency	Annual Dervent	Cha not Changes i	Changes in Frequency not Accounted for by Changes in Exposure Distribution	ancy • by istribution
Year	Method 1	Method 2	Geo Mean	Index	Change	Method 1	Method 2	Geo Mean
1981	0.9818	0.9809	0.9813	0.8924	-1.8664	0.9648	0.9640	0.9644
1982	0.9797	0.9784	0.9790	0.8737	-2.0967	0.9923	0.9909	0.9916
1983	7760.0	0.9982	0.9980	0.8719	-0.2011	1.1042	1.1048	1.1045
1984	0.9984	0.9982	0.9983	0.8704	-0.1728	1.0881	1.0879	1.0880
1985	0.9929	0.9921	0.9925	0.8639	-0.7484	0.9805	0.9797	0.9801
1986	0.9888	0.9906	0.9897	0.8550	-1.0333	0.9721	0.9739	0.9730
1987	0.9981	0.9974	0.9978	0.8531	-0.2249	1.0283	1.0275	1.0279
1988	1.0002	1.0009	1.0006	0.8535	0.0574	1.0010	1.0018	1.0014
1989	0.9983	0.9981	0.9982	0.8520	-0.1788	1.0428	1.0426	1.0427
1990	0.9856	0.9867	0.9862	0.8403	-1.3816	1.0920	1.0932	1.0926
1661	0.9830	0.9826	0.9828	0.8258	-1.7178	0.9668	0.9664	0.9666
1992	0.9889	0.9874	0.9881	0.8160	-1.1852	0.8241	0.8228	0.8235
1993	0.9942	0.9944	0.9943	0.8114	-0.5717	0.8244	0.8246	0.8245

Formulas:

Change Due to Exposure Change: Method 1 [@SUMPRODUCT(New Exposure Dist'n, Old Claims Freq)]/ [@SUMPRODUCT(Old Exposure Dist'n, Old Claims Freq)] Method 2 [@SUMPRODUCT(New Exposure Dist'n, New Claims Freq)]/ [@SUMPRODUCT(Old Exposure Dist'n, New Claims Freq)] *Change Due to Frequency Change:* Method 1 [@SUMPRODUCT(New Claims Freq, Old Exposure)]/[@SUMPRODUCT(Old Claims Freq, Old Exposure)] Method 2 [@SUMPRODUCT(New Claims Freq, New Exposure)]/[@SUMPRODUCT(Old Claims Freq, Old Exposure)] Method 2 [@SUMPRODUCT(New Claims Freq, New Exposure)]/[@SUMPRODUCT(Old Claims Freq, New Exposure)]

l

APPENDIX D

— I

PART 1

CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

Ω	
ΝI	
Z	
PE	
A	

PART 2

INDEMNITY PURE FREQUENCY HAZARDOUSNESS INDEX

	Chan	Change in Pure Premium Hazardousness	mium	Pure Premium Hazardousness	Annual Percent	Chang not Changes i	Changes in Pure Premium not Accounted for by Changes in Exposure Distribution	emium r by istribution
Year	Method 1	Method 2	Geo Mean	Index	Change	Method 1	Method 2	Geo Mean
1961	1.0000	1.0000	1.0000	1.0000		1.0000	1.0000	1.0000
1962	0.9890	0.9864	0.9877	0.9877	-1.2327	1.0761	1.0733	1.0747
1963	0.9986	0.9950	0.9968	0.9845	-0.3180	1.0129	1.0093	1.0111
1964	1.0076	0.9946	1.0011	0.9856	0.1069	1.0003	0.9873	0.9938
1965	0.9950	0.9842	0.9896	0.9753	-1.0402	1.0374	1.0261	1.0317
1966	0.9800	0.9788	0.9794	0.9552	-2.0622	1.0944	1.0931	1.0938
1967	0.9670	0.9554	0.9612	0.9181	-3.8829	1.0870	1.0740	1.0805
1968	1.0110	1.0065	1.0088	0.9262	0.8754	1.0975	1.0926	1.0951
1969	0.9897	0.9865	0.9881	0.9152	-1.1882	1.1573	1.1536	1.1554
1970	0.9852	0.9818	0.9835	0.9001	-1.6498	1.0258	1.0222	1.0240
1971	0.9963	0.9946	0.9954	0.8960	-0.4560	1.1042	1.1023	1.1033
1972	0.9976	0.9966	0.9971	0.8934	-0.2865	1.2135	1.2123	1.2129
1973	0.9933	0.9912	0.9923	0.8865	-0.7718	1.1754	1.1728	1.1741
1974	0.9771	0.9756	0.9764	0.8655	-2.3630	1.1788	1.1770	1.1779
1975	0.9640	0.9526	0.9583	0.8294	-4.1725	1.1859	1.1718	1.1788
1976	0.9964	0.9941	0.9953	0.8255	-0.4744	1.1032	1.1007	1.1019
1977	0.9973	0.9924	0.9949	0.8213	-0.5134	1.1051	1.0997	1.1024
1978	1.0073	0.9988	1.0030	0.8237	0.3024	1.0771	1.0680	1.0726
1979	1.0009	0.9955	0.9982	0.8222	-0.1822	1.0972	1.0913	1.0942
1980	0.0818	0.0611	0.0717	0 7087	1 0 C	1001	1 0065	1 1007

CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

	Char	Change in Pure Premium Hazardousness	mium	Pure Premium Hazardousness	Annual Dervent	Chang not Changes i	Changes in Pure Premium not Accounted for by Changes in Exposure Distribution	mium : by istribution
Year	Method 1	Method 2	Geo Mean	Index	Change	Method 1	Method 2	Geo Mean
1981	0.9720	0.9654	0.9687	0.7737	-3.1298	1.1370	1.1293	1.1331
1982	0.9561	0.9497	0.9529	0.7373	-4.7112	1.2180	1.2099	1.2139
1983	0.9967	0.9926	0.9947	0.7333	-0.5343	1.3230	1.3176	1.3203
1984	1.0065	1.0045	1.0055	0.7374	0.5488	1.1430	1.1407	1.1419
1985	0.9893	0.9931	0.9912	0.7308	-0.8818	1.1258	1.1302	1.1280
1986	0.9907	0.9868	0.9887	0.7226	-1.1257	1.0446	1.0405	1.0425
1987	0.9974	7760.0	0.9975	0.7208	-0.2477	1060.1	1.0904	1.0902
1988	1.0007	1.0011	1.0009	0.7215	0.0905	1.0761	1.0765	1.0763
1989	0.9986	0.9938	0.9962	0.7187	-0.3836	1.1310	1.1256	1.1283
1990	0.9815	0.9834	0.9824	0.7061	-1.7561	1.2360	1.2384	1.2372
1991	0.9806	0.9798	0.9802	0.6921	-1.9773	0.9563	0.9555	0.9559
1992	0.9856	0.9839	0.9847	0.6816	-1.5257	0.7895	0.7881	0.7888
1993	0 0943	0 9952	0 0047	0.6780	-0.5266	0.7188	0.7195	0 7191

Source: W.C.I.R.B. of California Unit Statistical Reporting Plan. California Class Experience at 3rd report except 1992 at 2nd and 1993 at 1st report.

Formulus: Change Due to Exposure Change: Method 1 [@SUMPRODUCT(New Exposure Dist'n, Old Claim Severity)]/ [@SUMPRODUCT(Old Exposure Dist'n, Old Claim Severity)] Method 2 [@SUMPRODUCT(New Exposure Dist'n, New Claim Severity)]/ [@SUMPRODUCT(Old Exposure Dist'n, New Claim Severity)] Method 2 [@SUMPRODUCT(New Exposure Dist'n, New Claim Severity)]/ [@SUMPRODUCT(Old Exposure Dist'n, New Claim Severity)] Method 1 [@SUMPRODUCT(New Claim Severity, Old Exposure)]/[@SUMPRODUCT(Old Claim Severity, Old Exposure)] Method 2 [@SUMPRODUCT(New Claim Severity, New Exposure)]/[@SUMPRODUCT(Old Claim Severity, New Exposure)]

l

250

APPENDIX D

— I

PART 2

CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

APPENDIX E Part 1	LITIGATION RATES
----------------------	------------------

-

V	В	C	D	Е	Ц	C	Н		Ι	ſ
		CWCI Pn	CWCI Pre-Reform	CWCI Po:	CWCI Post-Reform	Factor to Adjust	Ŭ	onverted CW	Converted CWCI Pre-Reform	
		2nd Quarter Litigation	2nd Quarter Policy Year 2nd Quarter Policy Year Litigation Litigation Litigation	2nd Quarter Litigation	Policy Year Litigation	Rate to Indemnity Claim	2nd Li	Percent	Policy Year Litigation	Percent
Year	Quarter	Rate	Rate	Rate	Rate	Only Basis	Rate	Change	Rate	Change
1972	1st	5.9				6.1905	36.52			
1973	1st	5.6				5.3569	30.00			
1972	3rd	4.8				6.1905	29.71			
1972	4th	5.4				6.1905	33.43			
1972	2nd	5.3	5.36			6.1905	32.81		33.20	
1973	2nd	5.4	6.03			5.3569	28.93	-11.8335	32.28	-2.78
974	2nd	6.4	7.15			4.2448	27.17	-6.0854	30.35	-5.96
1975	2nd	7.6	8.10			4.0255	30.59	12.6145	32.61	7.43
1976	2nd	8.4	8.21			3.9553	33.22	8.5978	32.48	-0.38
1977	2nd	8.1	7.66			3.8454	31.15	-6.2503	29.47	-9.29
1978	2nd	7.4	7.46			3.6984	27.37	-12.1332	27.60	-6.33
979	2nd	7.5	7.00			3.7448	28.09	2.6212	26.21	-5.02
086	2nd	6.7	6.76			3.7493	25.12	-10.5571	25.35	-3.27
1981	2nd	6.8	7.55			3.7140	25.26	0.5367	28.04	10.59
982	2nd	8.0	7.88			3.5947	28.76	13.8667	28.31	0.95
1983	2nd	7.8	8.18			3.5038	27.33	-4.9643	28.64	1.19
1984	2nd	8.4	8.71			3.3112	27.81	1.7725	28.85	0.72
1985	2nd	8.9	10.34			3.2621	29.03	4.3817	33.72	16.89
1986	2nd	11.2	11.14			3.2093	35.94	23.8025	35.74	5.99
1987	2nd	1.11	11.29			3.1419	34.87	-2.9739	35.46	-0.78
1988	2nd	11.4	11.65			3.0582	34.86	-0.0319	35.63	0.46
1989	2nd	11.8	AN NA			2.9411	34.70	-0.4564	NA	ΝA
1990	2nd	Suspended	ΝA			2.7521	Suspended	ΝA	NA	ΝA
1991	2nd	13.8	13.99			2.7681	38.20	ΝA	38.72	ΝA
1992	2nd	14.1	ΥN			3.0393	42.85	12.1828	ΝA	ΝA

CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION 251

Щ	
Χ	
Ę	
PEI	
AP	

_____I

PART 1 (Continued)

)	D	Е	ц	Ð	Н		I	ſ
	CWCI Pr	CWCI Pre-Reform	CWCI Pos	CWCI Post-Reform	Eactor to Adjust	C	Jonverted CW	Converted CWCI Pre-Reform	
Quarter	2nd Quarter Litigation Rate	2nd Quarter Policy Year Litigation Litigation Rate Rate	2nd Quarter Policy Year Litigation Litigation Rate Rate	Policy Year Litigation Rate	Rate to Indemnity Claim Only Basis	2nd Quarter Litigation Rate	Percent Change	Policy Year Litigation Rate	Percent Change
2nd 2nd 2nd 2nd			56.0 59.0	57.88	3.1553				
Reform of Origi dar Yea r CWC	<i>Notes:</i> C—CWCI Pre-Reform 2nd Quarter Litigation Rate Total Number of Original Applications for Adjudics "Second Calendar Year Quarter. Definition Source: D—Policy Year CWCI Pre-Reform Litigation Rate PY T = 0.375 × CYT T + 0.625 CYT + 1, Based to	Litigation Rate ns for Adjudic inition Source: Jitigation Rate T + 1. Based c	ation filed wit EXUCI Bullet on parallelogre	th the Workers in, February 6 am method wi	Notes: C—CWCI Pre-Reform 2nd Quarter Littigation Rate Total Number of Original Applications for Adjudication filed with the Workers Compensation Appeals Board/Total Number of Claims. Total Number of Original Applications for Adjudication filed with the Workers Compensation Appeals Board/Total Number of Claims. "Second Calendar Year Quarter. Definition Source: CWCI Bulletin, February 6, 1973. Total claims includes med-only claims. D—Policy Year CWCI Pre-Reform Littigation Rate PM T = 0.375 x CVT T + 0.625 CVT T + 1. Based on parallelogram method with no reporting lag. Note that a calendar quarter—not a calendar year—is	peals Board/To s includes mec . Note that a c	otal Number d-only claims xalendar quar	of Claims. s. ter—not a caler	ndar year—i;
stimate -Reforn ple of is are e	being used to estimate a policy year. ECWCI Post-Reform 2nd Quarter Litigation Rate Based on a sample of indemnity claims open during Med-only claims are excluded.	Litigation Rat ms open durin	e e second qu	arter. Determi	being used to estimate a policy year. =-CWCI Post-Reform 2nd Quarter Litigation Rate Based on a sample of indemnity claims open during a second quarter. Determination of whether an attorney was involved is made for each claim. Med-only claims are excluded.	m attorney was	s involved is	made for each e	claim.
CWCI < C/Y : djust R	F—Policy Year CWCI Post-Reform Litigation Rate PY T = 0.375 × CY T + 0.625 CY T + 1. Based on para G—Factor to Adjust Rate to Indemnity Claim Only Basis	Litigation Rate T + 1. Based (ity Claim Only	e on parallelogra y Basis	um method wi	F—Policy Year CWCI Post-Reform Litigation Rate P/Y T = 0.375 × C/Y T + 0.625 C/Y T + 1. Based on parallelogram method with no reporting lag. G—Factor to Adjust Rate to Indemnity Claim Only Basis				
itigatio ure non- d inder 2 at 2n- CWCI orm 2n olicy Y VCI Pre	The CWCI's Litigation Rates are the number of Applications claims (which are non-Jitigated), this factor is used to convert th of med-only and indemnity claims to indemnity claims only. Th ard report, 1992 at 2nd report and 1993 at 1st report. H—Converted CWCI Pre-Reform 2nd Quarter Litigation Rate CWCI Pre-Reform 2nd Quarter Litigation Rate cWCI Pre-Reform Litigation Rate converted to at Policy Year CWCI Pre-Reform Litigation Rate Policy Year CWCI Pre-Reform Litigation Rate Policy Year CWCI Pre-Reform Litigation Rate	e number of / factor is used indemnity cla 993 at 1st repc id Quarter Liti ation Rate cor -Reform Litigation Rate con	Applications for to convert the uims only. The ort. gation Rate overted to an in verted to an in verted to an in	or Adjudicatio CWCP's rate f data is from t ndemnity clain ndemnity clain	The CWCI's Litigation Rates are the number of Applications for Adjudication ÷ Total Number of Claims. Since this is overwhelmed by medical-only claims (which are non-litigated), this factor is used to convert the CWCI's rate from an "All Claims" basis to an "Indemnity Claims" basis. This is the ratio of med-only and indemnity claims to indemnity claims only. The data is from the Bureau's class experience database covering policy years 1961–1991 at 3d report. 1992 at 2nd report and 1993 at 1st report. The data is from the Bureau's class experience database covering policy years 1961–1991 at 1H—Converted CWCI Pre-Reform 2nd Quarter Litigation Rate CWCI Pre-Reform 2nd Quarter Litigation Rate CWCI Pre-Reform Litigation Rate converted to an indemnity claim only basis: Col C × Col G Policy Year CWCI Pre-Reform Litigation Rate Policy Year CWCI Pre-Reform Litigation Rate converted to an indemnity claim only basis: Col D × Col G	of Claims. Sin s" basis to an " xperience data X Col G × Col G	ce this is ov Indemnity C thase coverin thase coverin	erwhelmed by 1 laims" basis. Th g policy years 1	medical-onl is is the rati 961–1991 s

252

CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

1

APPENDIX E

Part 2

FACTOR TO ADJUST LITIGATION RATE TO INDEMNITY CLAIMS ONLY BASIS

	А	В	A + B	(A + B)/B
		Incurred Claims		Correction
Year	Med-Only	Indemnity	Total	Factor
1961	590,123	89,341	679,464	7.6053
1962	610,218	95,745	705,963	7.3734
1963	621,304	99,376	720,680	7.2521
1964	613,813	99,559	713,372	7.1653
1965	624,771	103,549	728,320	7.0336
1966	640,366	107,601	747,967	6.9513
1967	645,128	109,981	755,109	6.8658
1968	654,184	118,573	772,757	6.5171
1969	659,713	124,065	783,778	6.3175
1970	606,247	117,435	723,682	6.1624
1971	619,880	122,227	742,107	6.0715
1972	692,801	133,475	826,276	6.1905
1973	675,018	154,932	829,950	5.3569
1974	605,127	186,491	791,618	4.2448
1975	584,591	193,222	777,813	4.0255
1976	611,465	206,908	818,373	3.9553
1977	636,973	223,863	860,836	3.8454
1978	654,758	242,645	897,403	3.6984
1979	650,266	236,912	887,178	3.7448
1980	613,630	223,191	836,821	3.7493
1981	574,589	211,710	786,299	3.7140
1982	527,867	203,441	731,308	3.5947
1983	584,794	233,559	818,353	3.5038
1984	627,773	271,618	899,391	3.3112
1985	617,048	272,771	889,819	3.2621
1986	608,364	275,370	883,734	3.2093
1987	627,052	292,759	919,811	3.1419
1988	623,028	302,703	925,731	3.0582
1989	630,176	324,655	954,831	2.9411
1990	602,945	344,132	947,077	2.7521
1991	562,022	317,859	879,881	2.7681
1992	514,609	252,344	766,953	3.0393
1993	447,016	207,407	654,423	3.1553

Source: W.C.I.R.B. of California Unit Statistical Reporting Plan. California Class Experience at 3rd report except 1992 at 2nd and 1993 at 1st report.

APPENDIX F

RATIO OF CUMULATIVE INJURIES TO TOTAL INDEMNITY
CLAIMS

Year	Total Cumulative Injuries	Cumulative Indemnity Injuries	Total Indemnity Claims	Cumulative ÷ Total Indemnity Claims (%)	Percent Change in Ratio
1977	6,665	5,895	223,511	2.6375	
1978	6,811	5,951	235,645	2.5254	-4.2482
1979	6,347	5,567	236,012	2.3588	-6.5982
1980	5,862	4,943	223,191	2.2147	-6.1084
1981	5,510	4,964	211,709	2.3447	5.8714
1982	6,717	6,032	203,441	2.9650	26.4534
1983	11,122	7,656	233,559	3.2780	10.5560
1984	14,041	10,506	271,618	3.8679	17.9977
1985	16,096	11,651	272,771	4.2713	10.4298
1986	16,195	12,254	275,370	4.4500	4.1829
1987	17,648	13,504	292,759	4.6127	3.6552
1988	21,103	15,948	302,703	5.2685	14.2187
1989	29,190	20,971	324,000	6.4725	22.8527
1990	41,568	29,318	345,517	8.4853	31.0964
1991	45,805	30,437	317,842	9.5761	12.8563
1992	27,075	15,977	251,233	6.3594	-33.5908
1993	17,561	9,360	207,412	4.5128	-29.0384
1994	16,365	8,590	200,642	4.2813	-5.1299

Source: W.C.I.R.B. of California Unit Statistical Reporting Plan. California Class Experience at most current report level as of 4/22/97.

- I

APPENDIX G

Part 1

DEVELOPMENT OF PRINCIPAL COMPONENTS OF ECONOMIC VARIABLES

STATGRAPHICS PLUS RESULTS

CALIFORNIA AGGREGATE EMPLOYMENT AND REAL GROSS STATE PRODUCT

Analysis Summary

Data variables: Annual Percent Change in CY AggE Annual Percent Change in CY rGSP

Data input: observations Number of complete cases: 29 Missing value treatment: listwise Standardized: no

Number of components extracted: 2

PRINCIPAL COMPONENTS ANALYSIS

Component Number	Eigenvalue	Percent of Variance	Cumulative Percentage	
1	24.5843	90.363	90.363	
2	2.6220	9.637	100.000	

This procedure performs a principal components analysis. The purpose of the analysis is to obtain a small number of linear combinations of the two variables which account for most of the variability in the data.

_|

Variable	Component	Component	
(Annual Percent Change)	1	2	
CYAggE	0.941545	-0.336888	
CYrGSP	0.336888	0.941545	

TABLE OF COMPONENT WEIGHTS

For example, the first principal component has the equation:

 $(0.941545 \times \text{Annual Percent Change CYAggE})$

+ (0.336888 × Annual Percent Change CYrGSP)

APPENDIX G

Part 2

DEVELOPMENT OF PRINCIPAL COMPONENTS OF ECONOMIC VARIABLES

STATGRAPHICS PLUS RESULTS

CALIFORNIA AGGREGATE EMPLOYMENT, REAL GROSS STATE PRODUCT AND UNEMPLOYMENT RATE

Analysis Summary

Data variables: Annual Percent Change in CY AggE Annual Percent Change in CY rGSP Annual Percent Change in CY UnEmp

Data input: observations Number of complete cases: 29 Missing value treatment: listwise Standardized: no

Number of components extracted: 3

PRINCIPAL COMPONENTS ANALYSIS

Component Number	Eigenvalue	Percent of Variance	Cumulative Percentage
1	309.5550	96.098	96.098
2	11.5599	3.589	99.687
3	1.0082	0.313	100.000

This procedure performs a principal components analysis. The purpose of the analysis is to obtain a small number of linear combinations of the three variables which account for most of the variability in the data.

Variable (Annual Percent Change)	Component 1	Component 2	Component 3
CYAggE	-0.188211	0.980960	-0.047901
CYrGSP	-0.115259	0.026374	0.992985
CYUnEmp	0.975342	0.192412	0.108101

TABLE OF COMPONENT WEIGHTS

For example, the first principal component has the equation:

 $(-0.188211 \times \text{Annual Percent Change CYAggE})$

— | $-(0.115259 \times \text{Annual Percent Change CYrGSP})$

+ (0.975342 × Annual Percent Change CYUnEmp)

Η
X
Ę
Ē
Ā
~

-

DEVELOPMENT OF SELF-INSURANCE SHARE INDEX

	Estima	ates of Workers Compensatio by Type of Insurance (000s)	Estimates of Workers Compensation Costs by Type of Insurance (000s)	1 Costs	Total Worl	Share of Total Workers Compensation Costs	ttion Costs	
Year	Insurance Losses Incurred by Private Insurance	State and Federal Fund Disburse- ments	Self- Insurance Costs	Total	Insurance Losses Incurred by Private Insurance	State and Federal Fund Disburse- ments	Self- Insurance Costs	- Annual Change in Self-Insurance Share Index
1960	100,894	37,124	15,635	153,653	0.6566	0.2416	0.1018	
1961	115,756	43,813	18,080	177,649	0.6516	0.2466	0.1018	0.0000
1962	130,313	50,971	20,560	201,844	0.6456	0.2525	0.1019	0.0001
1963	147,035	56,566	23,090	226,691	0.6486	0.2495	0.1019	-0.0000
1964	163,720	63,890	28,052	255,662	0.6404	0.2499	0.1097	0.0079
1965	174,367	64,012	29,320	267,699	0.6514	0.2391	0.1095	-0.0002
1966	185,708	68,448	31,260	285,416	0.6507	0.2398	0.1095	-0.0000
1967	215,195	72,071	38,090	325,356	0.6614	0.2215	0.1171	0.0075
1968	223,513	70,615	39,120	333,248	0.6707	0.2119	0.1174	0.0003
1969	245,448	79,090	49,330	373,868	0.6565	0.2115	0.1319	0.0146
1970	278,215	87,677	55,615	421,507	0.6600	0.2080	0.1319	-0.0000
1971	286,177	92,862	50,895	429,934	0.6656	0.2160	0.1184	-0.0136
1972	306,032	105,351	57,970	469,353	0.6520	0.2245	0.1235	0.0051
1973	357,995	123,231	67,370	548,596	0.6526	0.2246	0.1228	-0.0007
1974	402,542	139,348	76,000	617,890	0.6515	0.2255	0.1230	0.0002
1975	472,406	156,161	94,500	723,067	0.6533	0.2160	0.1307	0.0077
1976	557,880	176,918	107,000	841,798	0.6627	0.2102	0.1271	-0.0036
ries After (Series After Change in Reporting of Self-Insurance Costs	rting of Self-In	surance Costs					
1976 1977	557,880 658,426	176,918 194,901	220,000 275,000	954,798 1,128,327	0.5843 0.5835	0.1853 0.1727	0.2304 0.2437	0.0133

CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

259

	Estime	ues or workers by Type of In	Estimates of workers compensation Costs by Type of Insurance (000s)		Total Worl	Share of Total Workers Compensation Costs	tion Costs	
Year	Insurance Losses Incurred by Private Insurance	State and Federal Fund Disburse- ments	Self- Insurance Costs	Total	Insurance Losses Incurred by Private Insurance	State and Federal Fund Disburse- ments	Self- Insurance Costs	Annual Change in Self-Insurance Share Index
1978	736,873	207,940	302,000	1,246,813	0.5910	0.1668	0.2422	-0.0015
1979	845,126	232,217	345,000	1,422,343	0.5942	0.1633	0.2426	0.0003
1980	950,288	233,427	379,000	1,562,715	0.6081	0.1494	0.2425	-0.0000
1981	1,068,512	242,811	498,000	1,809,323	0.5906	0.1342	0.2752	0.0327
1982	1,192,510	259,317	580,731	2,032,558	0.5867	0.1276	0.2857	0.0105
1983	1,290,575	273,063	697,000	2,260,638	0.5709	0.1208	0.3083	0.0226
1984	1,538,604	319,663	797,000	2,655,267	0.5795	0.1204	0.3002	-0.0082
1985	1,866,429	402,878	974,000	3,243,307	0.5755	0.1242	0.3003	0.0002
1986	2,096,934	523,916	1,124,000	3,744,850	0.5600	0.1399	0.3001	-0.0002
1987	2,328,020	647,921	1,275,000	4,250,941	0.5476	0.1524	0.2999	-0.0002
1988	2,548,616	817,689	1,444,000	4,810,305	0.5298	0.1700	0.3002	0.0003
1989		Data Not	Available		0.534I	0.1732	0.2927	-0.0075
1990	3,265,136	1,069,415	1,730,000	6,064,551	0.5384	0.1763	0.2853	-0.0075
1991	4,031,640	1,316,256	1,900,000	7,247,896	0.5562	0.1816	0.2621	-0.0231
1992	4,280,764	1,348,998	2,277,689	7,907,451	0.5414	0.1706	0.2880	0.0259
1993	4,074,854	1,201,452	2,348,756	7,625,062	0.5344	0.1576	0.3080	0.0200
1994								
1995		ļ						
1996								

APPENDIX H (Continued)

— I

260

CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

APPENDIX I

DEVELOPMENT OF CANDIDATE VARIABLES REAL SEVERITY

	Non	Nominal Claim Severity	srity	California CPI	iia CPI	Re	Real Claim Severity	ţ
	Indemnit	Indemnity Claims		Calendar	Policy	Indemni	Indemnity Claims	
Year	Medical	Indemnity	Total	Year	Year	Medical	Indemnity	Total
1961	547.00	1,559.38	302.90	29.5	29.7	547.00	1,559.38	302.90
1962	568.93	1,623.81	320.00	29.9	30.1	560.58	1,599.99	315.31
1963	603.64	1,676.92	340.35	30.4	30.7	584.27	1,623.12	329.43
1964	611.22	1,652.77	342.72	31.0	31.2	581.03	1,571.12	325.79
1965	684.39	1,698.51	366.12	31.5	31.8	638.64	1,584.98	341.64
1966	768.24	1,736.82	393.14	32.2	32.5	700.54	1,583.78	358.50
1967	787.65	1,726.13	402.74	33.0	33.6	695.79	1,524.81	355.77
1968	858.81	1,877.64	457.61	34.4	35.1	725.69	1,586.61	386.68
1969	918.08	2,025.74	505.48	36.1	36.9	739.11	1,630.85	406.94
1970	974.80	2,097.31	541.35	37.9	38.5	751.46	1,616.80	417.32
1971	1,083.67	2,262.98	593.84	39.3	39.8	806.91	1,685.04	442.18
1972	1,164.52	2,687.19	666.94	40.6	41.6	830.46	1,916.34	475.62
1973	1,221.79	2,720.69	784.80	43.0	44.8	808.46	1,800.29	519.31
1974	1,221.20	2,619.53	961.29	47.4	49.4	732.75	1,571.79	576.80
1975	1,385.69	2,739.90	1,085.50	52.3	53.7	765.88	1,514.36	599.96
1976	1,510.52	2,748.98	1,149.00	55.6	57.2	783.08	1,425.12	595.66
1977	1,623.95	2,828.77	1,232.57	59.5	61.5	782.83	1,363.62	594.16
1978	1,785.11	2,874.84	1,306.45	64.4	67.3	787.18	1,267.72	576.11
1070			10017	• •				

CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

	Real Claim Severity	Indemnity Claims	Indemnity	1,160.27	1,194.44	1,387.52	1,701.16	1,740.71	1,835.38	1,849.10	1,824.18	1,844.62	1,930.19	2,020.26	2,029.45	1,834.39
	Ř	Indemni	Medical	824.77	910.81	1,023.60	1,107.78	1,104.54	1,215.22	1,308.89	1,387.01	1,457.05	1,571.04	1,641.52	1,592.99	1,496.16
(1)	California CPI	Policy	Year	86.2	93.9	98.0	100.9	105.8	110.0	113.9	118.8	124.4	130.9	137.3	142.7	147.2
(Continued)	Califor	Calendar	Year	82.4	91.4	97.3	98.9	103.8	108.6	112.0	116.6	121.9	128.0	135.0	140.6	145.6
	erity		Total	1,642.96	1,919.62	2,359.72	2,884.34	3,229.91	3,646.03	3,967.23	4,296.94	4,746.32	5,489.64	6,424.39	6,579.85	5,746.17
	Nominal Claim Severity	/ Claims	Indemnity	3,369.39	3,778.96	4,581.95	5,788.27	6,207.89	6,806.40	7,100.35	7,305.46	7,737.58	8,517.84	9,352.25	9,760.76	9,100.86
	Nomi	Indemnity Claims	Medical	2,395.10	2,881.61	3,380.19	3,769.27	3,939.12	4,506.58	5,026.02	5,554.70	6,111.86	6,932.90	7,598.95	7,661.59	7,422.81

Year

1980 1981

1982 1983

565.76

Total

606.75 714.58 847.70 905.67

Nominal Claim Severity from WCIRB of California's Unit Statistical Reports. Calendar Year California CPI from the California Statistical Abstract—1995 (1982 – 1984 = 100). Policy Year California CPI = $|(0.5832 \times CPI(t)) + (0.4168 \times CPI(t + 1))|$. Real Severity (t) = Real Severity (t – 1) × $|(Nominal Severity (t)/Nominal Severity (t – 1)) \div (PY CPI (t)/PY CPI(t – 1))|$.

APPENDIX I

-|

CALIFORNIA WORKERS COMPENSATION BENEFIT UTILIZATION

983.17 1,033.16 1,072.95 1,131.51 1,243.98 1,387.79 1,368.08

1,158.21

1991 1992

1990

1984 1985 1986 1987 1988 1988

149.4

4,834.73

7,473.47

6,889.82 7,422.81

1993

1994

1995 1996