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Abstract

This article introduces a relatively new method for cal-
culating risk load in insurance ratemaking: the use of
proportional hazards (PH) transforms. This method is
easy to understand, simple to use, and supported by theo-
retical properties as well as economic justification. After
an introduction of the PH-transform method, examples
show how it can be used in pricing ambiguous risks,
excess-of-loss coverages, increased limits, risk portfo-
lios, and reinsurance treaties.
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1. INTRODUCTION

Recently, there has been considerable interest in and extensive
discussion of risk loads within the Casualty Actuarial Society.
These discussions have focused on measures of risk and methods
to arrive at a ‘reasonable’ risk load. Although there are diverse
opinions on the appropriate measurement of risk, there is general
agreement on the distinction between process risk and parameter
risk, and on the importance of parameter risk in ratemaking.
(See Finger [5], Miccolis [18], McClenahan [15], Feldblum [4],
Philbrick [21], Meyers [16], Robbin [25], and Bault [1].)

Consistent with previous papers, this paper will consider only
pure risk-adjusted premiums (the expected loss plus risk load,
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excluding all expenses and commissions). These pure risk-ad-
justed premiums are sometimes referred to as premiums in the
paper.

Following Venter’s [28] advocacy of adjusted distribution
methods, Wang [30] proposes using proportional hazards (PH)
transforms in the calculation of the risk-adjusted premium. This
paper focuses on the practical aspects of implementation of PH-
transforms in ratemaking. More specifically, the paper shows
how PH-transforms can be used to quantify process risk, pa-
rameter risk, and dependency risk. It also discusses economic
justification after introducing implementation issues.

To utilize the PH-transform in ratemaking, a probability distri-
bution for claims is needed. A probability distribution can often
be estimated from industry claim data or by computer simula-
tions. Even though a probability distribution can be obtained
from past claim data, sound and knowledgeable judgements are
always required to ensure that the estimated loss distribution is
valid for ratemaking.

It is safe to say that no theoretical risk-load formula can claim
to be the right one, since subjective elements always exist in any
practical exercise of ratemaking. However, a good theoretical
risk-load formula can assist actuaries and help maintain logical
consistency in the ratemaking process. In this respect, it is hoped
that the PH-transform method becomes a useful tool for practic-
ing actuaries in insurance ratemaking.

The remainder of this paper is divided into four sections. Sec-
tion 2 introduces the PH-transform method and applies it to the
pricing of a single risk (including excess cover and increased
limits ratemaking). Section 3 discusses the use of PH-transforms
in pricing risk portfolios and reinsurance treaties. Section 4 dis-
cusses two simple mixtures of PH-transforms. The first mixture
can yield a minimal rate-on-line, and the second mixture suggests
a new measure for the right tail risk. Section 5 briefly reviews
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the leading economic theories of risk and uncertainty, and their
relationship to insurance ratemaking.

2. PROPORTIONAL HAZARDS TRANSFORM

In the pricing of insurance risks, it is common for the ac-
tuary to first obtain a best-estimate loss distribution based on
all possible information (e.g., empirical data) and/or judgement.
The best estimate loss distribution, serving as an anchor, is then
transformed into a heavier-tailed distribution, and the mean from
the latter is used to price the business, thereby producing a risk
load. Venter [28] advocated the adjusted distribution principle
and gave a theoretical justification by using a no-arbitrage pric-
ing argument. He observed that the only methods of premium
calculation that preserve layer additivity are those that can be
generated from transformed distributions, where the premium
for any layer is the expected loss for that layer under the trans-
formed distribution. Inspired by Venter’s insightful observation,
Wang [30] proposed the proportional hazards transform method
which is also the topic of this paper.

An insurance risk refers to a non-negative loss random vari-
able X, which can be described by the decumulative distribution
function (ddf): SX(u) = Pr!X > u". An advantage of using the
ddf is the unifying treatment of discrete, continuous, and mixed-
type distributions. In general, for a risk X, the expected loss can
be evaluated directly from its ddf:

E[X] =
! #

0
SX(u)du:

(A proof of this statement is given in Appendix A.) In practice,
the actuary does not know the true underlying loss distribution,
but instead may have a best-estimate loss distribution based on
available information. The PH-transform is a method for adjust-
ing the best-estimate distribution according to the levels of un-
certainty, market competition, and portfolio diversification.
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DEFINITION 1 Given a best-estimate loss distribution SX(u) =
Pr!X > u", for some exogenous index r (0< r $ 1), the pro-
portional hazards (PH) transform refers to a mapping SY(u) =
[SX(u)]

r, and the PH-mean refers to the expected value under the
transformed distribution:

Hr[X] =
! #

0
[SX(u)]

r du, (0< r $ 1):

The PH-mean was introduced by Wang to represent the risk-
adjusted premium (the expected loss plus risk load). As we shall
see, the PH-mean is quite sensitive to the choice of the index
r. It could be infinite for some unlimited loss distributions and
choices of r.

EXAMPLE 1 The following three loss distributions,

SU(u)= 1%u=(2b), 0$ u$ 2b (uniform),

SV(u)= e
%u=b (exponential), and

SW(u)= b
2=(b+u)2 (Pareto),

have the same expected loss, b. One can easily verify that

Hr[U] =
2b
1+ r

,

Hr[V] =
b

r
,

Hr[W] =

"#$
b

2r%1, r > 0:5;

#, r $ 0:5:
The PH-mean, interpreted as the risk-adjusted premium, pre-
serves the usually accepted ordering of riskiness based on heavi-
ness of tail (see Table 1). Here it is assumed that the distributions
are known to be of the type shown, whereas uncertainty about
the type of distribution could contribute further risk.
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TABLE 1

SOME VALUES OF THE PH-MEAN Hr[&]
U V W

r1 =
5
6 1:09b 1:2b 1:5b

r2 =
2
3 1:2b 1:5b 3:0b

EXAMPLE 2 When X has a Pareto distribution with parameters
(®,¸),

SX(u) =
%

¸

¸+u

&®
, and

the PH-transform SY(u) also has a Pareto distribution with pa-
rameters (r®,¸).

When X has a Burr distribution with parameters (®,¸,¿),

SX(u) =
%

¸

¸+u¿

&®
, and

the PH-transform SY(u) also has a Burr distribution with param-
eters (r®,¸,¿).

When X has a gamma (or lognormal) distribution, the PH-
transform SY(u) is no longer a gamma (or lognormal). In such
cases, numerical integration may be required to evaluate the PH-
mean.

2.1. Pricing of Ambiguous Risks

In practice, the underlying loss distribution is seldom known
with precision. There are always uncertainties regarding the best-
estimate loss distribution. Insufficient data or poor quality data
often result in sampling errors. Even if a large amount of high-
quality data is available, due to changes in the claim generating
mechanisms, past data may not fully predict the future claim
distribution. The PH-transform can be adjusted to give a higher
risk load when this parameter uncertainty is greater.
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FIGURE 1

MARGINS FOR PARAMETER UNCERTAINTY BY
PH-TRANSFORMS

As illustrated in Figure 1, the PH-transform, SY(u) = [SX(u)]
r,

can be viewed as an upper confidence limit for the best-estimate
loss distribution SX(u). A smaller index r yields a wider range
between the curves SY and SX . This upper confidence limit in-
terpretation has support in statistical estimation theory (see Ap-
pendix B). The index r can be assigned accordingly with respect
to the level of confidence in the estimated loss distribution. The
more ambiguous the situation is, the lower the value of r that
should be used.

EXAMPLE 3 Consider the following experiment conducted by
Hogarth and Kunreuther [6]. An actuary is asked to price war-
ranties on the performance of a new line of microcomputers.
Suppose that the cost of repair is $100 per unit, and there can
be at most one breakdown per period. Also, suppose that the
risks of breakdown associated with any two units are indepen-
dent. The best-estimate of the probability of breakdown has three
scenarios:

µ = 0:001, µ = 0:01, µ = 0:1:
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The level of confidence regarding the best estimate has two sce-
narios:

Non-ambiguous: There is little ambiguity regarding the best-
estimate loss distribution. Experts all agree with confidence
on the chances of a breakdown.

Ambiguous: There is considerable ambiguity regarding the
best-estimate loss distribution. Experts disagree and have little
confidence in the estimate of the probabilities of a breakdown.

Note that the loss associated with a computer component can
only assume two possible values, either zero or $100. For any
fixed u < 100, the probability that the loss exceeds u is the same
as the probability of being exactly $100, namely µ. For a fixed
u' 100, it is impossible that the loss exceeds u. Thus, the best-
estimate ddf of the insurance loss cost is

SX(u) =

'
µ, 0< u < 100;

0, 100$ u:
The PH-transform with index r yields a risk-adjusted premium
of 100µr.

In both cases a risk load is needed because there is frequency
uncertainty, but more load is needed in the ambiguous case. If
we choose r = 0:97 for the non-ambiguous case, and r = 0:87
for the ambiguous case, we get the premium structure shown in
Table 2.

For comparison purposes, Table 2 also shows the premium
structure using the standard deviation method1 set to agree with
the PH-mean at the 0.01 frequency. Note that for the Bernoulli
type of risks in this example, the standard deviation loads vary
more by frequency. However, as we shall see in Section 3.2, this

1The traditional standard deviation method calculates a risk-adjusted premium by the
formula E[X]+¯¾[X], where ¯ ' 0 is an exogenous constant.
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TABLE 2

THE RATIO OF THE RISK-ADJUSTED PREMIUM TO THE
EXPECTED LOSS

PH-Transform Method µ = 0:001 µ = 0:01 µ = 0:1

Non-ambiguous (r = 0:97) 1.23 1.15 1.07
Ambiguous (r = 0:87) 2.45 1.82 1.35

Standard Deviation Method µ = 0:001 µ = 0:01 µ = 0:1

Non-ambiguous (¯ = 0:01508) 1.48 1.15 1.05
Ambiguous (¯ = 0:0824) 3.60 1.82 1.25

pattern no longer holds for continuous-type risks. The main prob-
lem with standard deviation is in its lack of additivity when a risk
is divided into sub-layers.

In summary, the PH-transform can be used as a means of
provision for estimation errors. The actuary can subsequently
set up a table for the index r according to different levels of
ambiguity, such as the following:

Ambiguity Level Index r

Slightly Ambiguous 0:960% 1:000
Moderately Ambiguous 0:900% 0:959
Highly Ambiguous 0:800% 0:899
Extremely Ambiguous 0:500% 0:799

Note that the premium developed is particularly sensitive to
the choice of r, especially for small r, so care should be exercised
in its selection.

2.2. Pricing Excess Layers of a Single Risk

Since most insurance contracts contain clauses such as a de-
ductible and a maximum limit, it is convenient to use the general
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language of excess-of-loss layers. A layer (a,a+h] of a risk X
is defined by the loss function:

X(a,a+h] =

"((#(($
0, 0$ X < a;
(X % a), a$ X < a+ h;
h, a+h$ X,

where a is the attachment point (retention), and h is the limit.

In this subsection, we restrict our discussion to a single risk
X (individual or aggregate). For instance, X may represent an
underlying risk for facultative reinsurance, or the aggregate loss
amount for a risk portfolio being priced. Under this restriction,
there will be either no or one claim to a given layer. In other
words, the claim frequency to a given layer is Bernoulli. In Sec-
tion 3 we will discuss the pricing of excess layers of reinsurance
treaties where there can be multiple claims to a given layer.

One can verify that the loss variable X(a,a+h] has a ddf of

SX(a,a+h] (u) =

'
SX(a+u), 0$ u < h
0, h$ u,

and that the average loss cost for the layer (a,a+h] is

E[X(a,a+h]] =
! h

0
SX(a+u)du=

! a+h

a
SX(u)du:

Under the PH-transform SY(u) = [SX(u)]
r, the PH-mean for the

layer (a,a+h] is

Hr[X(a,a+h]] =
! #

0
[SX(a,a+h] (u)]

r du

=
! h

0
[SX(a+ u)]

r du=
! a+h

a
[SX(u)]

r du:

In other words, the expected loss and the risk-adjusted premium
for the layer (a,a+h] are represented by the areas over the inter-
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val (a,a+h] under the curves SX(u) and SY(u), respectively (see
Figure 1).

In Wang [30], it is shown that, for 0< r < 1, the PH-mean
has the following properties:

( Positive loading: Hr[X(a,a+h]]' E[X(a,a+h]].

( Decreasing risk-adjusted premiums:
For a < b, Hr[X(a,a+h]]'Hr[X(b,b+h]]:

( Increasing relative loading:

For a < b,
Hr[X(a,a+h]]
E[X(a,a+h]]

$ Hr[X(b,b+h]]
E[X(b,b+h]]

:

These properties are consistent with market premium struc-
tures (Patrick, [20]; Venter, [28]).

EXAMPLE 4 A single (ground-up) risk has a 10% chance of in-
curring a claim, and, if a claim occurs, the claim size has a Pareto
distribution (¸= 2,000, ®= 1:2). Putting the Bernoulli frequency
and the Pareto severity together, we have a ground-up loss dis-
tribution

SX(u) = Pr!X > u"
= Probability of occurrence)Pr!Loss Size > u"

= 0:1)
%

2,000
2,000+u

&1:2
:

The actuary is asked to price various layers of the (ground-
up) risk. Suppose that the actuary infers an index, say r = 0:92,
from individual risk analysis and market conditions. The actu-
ary may need to consider the risk loads for other contracts with
similar characteristics in the insurance and/or financial markets.
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TABLE 3

LAYER PREMIUMS USING PH-TRANSFORMS

Expected Percentage PercentageLayer X(a,b] H0:92[X(a,b]] H0:90[X(a,b]]

1K = $1,000 Loss (r = 0:92) Loading (r = 0:90) Loading

(0, 1K] 77.89 95.47 22.6% 100.45 29.0%
(5K, 6K] 20.51 27.99 36.5% 30.25 47.5%
(10K, 11K] 11.098 15.91 43.3% 17.41 56.8%
(50K, 51K] 1.982 3.26 64.5% 3.69 86.3%
(100K, 101K] 0.888 1.56 75.4% 1.79 102%
(500K, 501K] 0.132 0.269 104% 0.322 144%

(1,000K, 1,001K] 0.058 0.126 118% 0.152 165%

The PH-transform with r = 0:92 yields a ddf of

SY(u) = 0:1
0:92)

%
2,000

2,000+ u

&1:2)0:92
:

For any excess layer [a,a+ h), the expected loss to the layer is

E[X(a,a+h]] =
! a+h

a
0:1)

%
2,000

2,000+u

&1:2
du,

and the risk-adjusted premium by using a PH-transform (r =
0:92) is

Hr[X(a,a+h]] =
! a+h

a
0:10:92)

%
2,000

2,000+u

&1:2)0:92
du:

Risk-adjusted premiums for various layers are shown in Table
3. In Table 3 we also list the prices by using a slightly different
r = 0:90. Note that the developed prices are sensitive to the in-
dex r.

2.3. Increased Limits Ratemaking

In commercial liability insurance, a policy generally covers a
loss (it may include allocated loss adjustment expense) up to a



IMPLEMENTATION OF PH-TRANSFORMS IN RATEMAKING 951

specified maximum dollar amount that will be paid on any indi-
vidual loss. In the U.S., it is general practice to publish rates for
some standard limit called the basic limit (historically $25,000,
but now $100,000). Increased limit rates are calculated by ap-
plying increased limit factors (ILFs). Without risk load, the in-
creased limit factor is the expected loss at the increased limit
divided by the expected loss at the basic limit. The increased
limit factor with risk load is the sum of the expected loss and
the risk load at the increased limit divided by the sum of the
expected loss and the risk load at the basic limit:

ILF(!) =
E[X;!]+RL(0,!]

E[X;100,000]+RL(0,100,000]
:

It is widely felt that ILFs should satisfy the following condi-
tions (see Rosenberg [26], Meyers [16], and Robbin [25]). They
implicitly assume that insureds who buy different limits are nev-
ertheless subject to the same loss distributions.

1. The relative loading with respect to the expected loss is
higher for higher limits.

2. ILFs should produce the same price under any arbitrary
division of layers.

3. The ILFs should exhibit a pattern of declining marginal
increases as the limit of coverage is raised. In other words,
when x < y,

ILF(x+h)% ILF(x)' ILF(y+h)% ILF(y):
In the U.S., many companies use the ILFs published by the

Insurance Services Office (ISO). Traditionally, only the severity
distribution is used when producing ILFs. Until the mid-1980s,
ISO used the variance of the loss distribution to calculate risk
loads, a method proposed by Robert Miccolis [18]. From the
mid-1980s to the early 1990s, ISO used the standard deviation
of the loss distribution to calculate risk loads (e.g., Feldblum [4]).
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Meyers [16] presents a competitive market equilibrium approach,
which yields a variance-based risk load method; however, some
authors have questioned the appropriateness of the variance-
based risk load method for the calculation of ILFs (e.g., Robbin
[25]).

The following is an illustrative example to show how the PH-
transform method can be used in increased limits ratemaking.

EXAMPLE 5 Assume that the claim severity distribution has a
Pareto distribution with ddf

SX(u) =
%

¸

¸+u

&®
,

with ¸= 5,000 and ®= 1:1. This is the same distribution used
by Meyers, although he also considered parameter uncertainty.

Assume that, based on the current market premium structure,
the actuary feels that (for illustration only) an index r = 0:9 pro-
vides an appropriate provision for parameter uncertainty. When
using a Pareto severity distribution, there is a simple analytical
formula for the ILFs:

ILF(!) =
1%

%
¸

¸+!

&r®%1
1%

%
¸

¸+100,000

&r®%1 :
One can then easily calculate the increased limit factors at any
limit (see Table 4).

2.4. Some Properties of the PH-Mean

For a single risk X and for 0$ r $ 1, the PH-mean has the
following properties (see Wang [30]):

( E[X]$Hr[X]$max[X]. When r declines from one to zero,
Hr[X] increases from the expected loss, E[X], to the maximum
possible loss, max[X].
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TABLE 4

INCREASED LIMIT FACTORS USING PH-TRANSFORM

Policy Expected ILF Risk ILF
Limit ! Loss E[X;!] Without RL Load With RL

100,000 13,124 1.00 2,333 1.00
250,000 16,255 1.24 3,796 1.30
500,000 18,484 1.41 5,132 1.53
750,000 19,726 1.50 6,000 1.66

1,000,000 20,579 1.57 6,653 1.76
2,000,000 22,543 1.71 8,343 2.00

( Scale and translation invariant: Hr[aX +b] = aHr[X]+b, for
a,b ' 0.

( Sub-additivity: Hr[X+Y]$Hr[X]+Hr[Y].

( Layer additivity: when a single risk X is split into a number
of layers

!(x0,x1], (x1,x2], : : :",
the layer premiums are additive (the whole is the sum of the
parts):

Hr[X] =Hr[X(x0,x1]] +Hr[X(x1,x2]] + & & & :

Pricing often assumes that a certain degree of diversification
will be reached through market efforts. In real life examples,
risk-pooling is a common phenomenon. It is assumed that, in
a competitive market, the benefit of risk-pooling is transferred
back to the policyholders (in the form of premium reduction).
In the PH-model, the layer-additivity and the scale-invariance
have already taken into account the effect of risk-pooling. To
illustrate, consider a single risk with a maximum possible loss
of $100 million. Suppose one insurer is asked to quote premium
rates for each of the following as stand-alone coverages: sub-
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layers (0,10], (10,20], : : : , (90,100] and the whole risk (0,100].
The quoted premium for the entire risk (0,100] may exceed
the sum of individual premiums for each sub-layer. This is be-
cause the limit of $100 million may be a lot for a single insurer to
carry without a substantial profit margin. However, the market
mechanism would facilitate risk-sharing schemes among sev-
eral insurers (say, ten insurers each take a sub-layer). Thus,
when this risk pooling effect is transferred back to the policy-
holder, the premiums should be additive for different layers.
Likewise, if one insurer is asked to quote premium rates for a
10% quota-share of this risk as opposed to the whole risk, the
quoted premiums may exhibit non-linearity. However, the mar-
ket risk-sharing scheme would force the premiums to be scale
invariant—i.e., a 10% quota share demands 10% of the total pre-
mium.

Theoretically, in an efficient market (no transaction expenses
in risk-sharing schemes) with complete information, the optimal
cooperation among insurers is to form a market insurance port-
folio (like the Dow Jones index), and each insurer takes a layer
or quota-share of the market insurance portfolio.

In real life, however, the insurance market is not efficient.
This is mainly because of incomplete information (ambiguity)
and extra expenses associated with the risk-sharing transactions.
There exist distinctly different local market climates in different
geographic areas and in different lines of insurance. Catastrophe
risk varies from region to region. In some geographic regions,
due to high concentration and lack of information (ambigu-
ity), existing risk-sharing schemes are not sufficient to diversify
the risk to the extent one would wish. As a result the market
would demand a higher risk load (a smaller value of r in the PH-
model).

In summary, the index r may vary with respect to the local
market climate which is characterized by the levels of ambiguity,
risk concentration, and competition.
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3. PRICING RISK PORTFOLIOS AND REINSURANCE TREATIES

When pricing a (re)insurance contract that covers a group
of risks, the actuary often estimates claim frequency and claim
severity separately, due to the type of information available. One
straight-forward approach is to apply PH-transforms to the fre-
quency and severity distributions separately, and then take the
product of the loaded frequency and the loaded severity. An al-
ternative is to first calculate the aggregate loss distribution from
the estimated frequency and severity distributions, and then apply
the PH-transform to the aggregate loss distribution. This section
will discuss and compare both approaches.

3.1. Frequency/Severity Approach to Pricing Group Insurance

Let N denote the claim frequency with probability function pk
= Pr!N=k" and ddf SN(k) = pk+1 +pk+2+ & & & , (k=0,1,2, : : :).
The PH-mean for the frequency can be calculated as the sum

Hr[N] = SN(0)
r+ SN(1)

r+ SN(2)
r+ & & & ,

where convergence is required if N is unlimited (e.g., a Poisson
frequency is unlimited).

Depending on the available information, the actuary may have
different levels of confidence in the estimates for the frequency
and severity distributions. According to the level of confidence
in the estimated frequency and severity distributions, the actuary
can choose an index r1 for the frequency and an index r2 for the
severity. As a result, the actuary can calculate the risk-adjusted
premium for the risk portfolio as

Hr1[N])Hr2[X]:

EXAMPLE 6 Consider a group coverage of liability insurance.
The actuary has estimated the following loss distributions: (i) the
claim frequency has a Poisson distribution with ¸= 2:0, and (ii)
the claim severity is modeled by a lognormal distribution with
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a mean of $50,000 and coefficient of variation of 3 (which was
used by Finger [5] for a liability claim severity distribution). Here
we also assume a coverage limit of one million dollars per claim.
Suppose that the actuary has low confidence in the estimate of
claim frequency, but higher confidence in the estimate of the
claim severity distribution, and thus chooses r1 = 0:85 for the
claim frequency and r2 = 0:9 for the claim severity. The premium
can be calculated using numerical integrations:

H0:85[N] = 2:227, and H0:9[X] = 58,080:

Thus, the required total premium is

H0:85[N])H0:9[X] = 129,344:

Kunreuther et al. [13] discussed the ambiguities associated
with the estimates for claim frequencies and severities. They
mentioned that for some risks such as playground accidents,
there are considerable data on the chances of occurrence but
much uncertainty about the potential size of the loss due to ar-
bitrary court awards. On the other hand, for some risks such
as satellite losses or new product defects, the chance of a loss
occurring is highly ambiguous due to limited past claim data.
However, the magnitude of such a loss is reasonably predict-
able.

3.2. Frequency/Severity Approach to Pricing Per Risk
Excess-of-Loss Reinsurance Treaties

A reinsurance excess-of-loss treaty normally covers a block
of underlying policies where the attachment point and the policy
limit apply on a per risk basis. For such reinsurance treaties, the
claim frequency usually has a non-Bernoulli type distribution—
that is, the number of claims may exceed one. For some low limit
working layers where a substantial number of claims is expected,
the major uncertainty might be in the claim frequency rather than
in the severity.
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In the market, reinsurance brokers often structure the coverage
in a number of layers. It is important to have consistent pricing
on all layers. Here we give an example.

EXAMPLE 7 Consider a reinsurance excess-of-loss treaty. The
projected ceding company subject earned premium (SEP) for the
treaty is $10,000,000. The actuary is asked to price the following
excess layers which are all on a per risk basis:

1. $400K xs $100K,

2. $500K xs $500K, and

3. The combined layer $900K xs $100K.

Suppose that, based on past loss data of the ceding company,
after appropriate trending and development, the actuary has come
up with the following best-estimates:

( The number of claims which cut into the first layer has a Pois-
son distribution with mean ¸= 6.

( The size of losses greater than $100K can be modeled by a
single parameter Pareto with ddf

SX(u) =
%
100
u

&1:647
, u > 100:

Under this ground-up severity distribution, the loss to the first
layer has a Pareto (100,1:647) distribution truncated at 400
with a ddf of

S1(u) =

"(#($
%

100
u+100

&1:647
, 0< u < 400;

0, 400$ u,
which has a mean severity of $100,001.
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The loss to the second layer has a Pareto (500, 1.647) distri-
bution truncated at 500 with a ddf of

S2(u) =

"(#($
%

500
u+500

&1:647
, 0< u$ 500;

0, 500$ u,
which has a mean severity of $279,284.

In general, the frequency and severity distributions both
change with the attachment point. To ensure consistency, it is
important to work with the frequency and severity distributions
for losses above the minimum attachment point. For convenience
we refer to them as “ground-up” distributions, although they are
not “real” ground-up distributions. In practice, reinsurers are usu-
ally supplied with data of large losses only, the “real” ground-up
loss distribution below the attachment point is seldom known to
the reinsurer.

By transforming the “ground up” frequency and sever-
ity distributions separately, we can load for the different fre-
quency/severity risks accordingly.

For numerical illustration, we use the same PH-index r = 0:95
for both frequency and severity.

The PH-mean for a Poisson(6) distribution is 6.119, which
represents a 1.98% frequency loading. First, we apply the PH-
transform (r = 0:95) to the “ground-up” severity distribution and
allocate the loaded costs to each layer (see Table 5). Under
the Pareto (100, 1.647) “ground up” severity curve, the average
severity in the layer 500 xs 500 is $279,284, and the probability
of cutting into the second layer given that a loss has cut into
the first layer is 0.706. Therefore, the average loss to the second
layer, among all claims that have cut into the first layer, can be
calculated as the product 0:706)$279,284 = $19,717.
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TABLE 5

TRANSFORMING THE “GROUND UP” SEVERITY DISTRIBUTION

Average
Average Loss to the
Loss to the Layer After Relative
Layer Before Transform Loading

Layer Transform r = 0:95 Ratio

(1) 400 xs 100 $100,001 $105,726 1.057
(2) 500 xs 500 $ 19,717 $ 23,117 1.172
(3) 900 xs 100 $119,718 $128,843 1.076

(1)+ (2) 900 xs 100 $119,718 $128,843 1.076

TABLE 6

COMBINING LOADED “GROUND UP” FREQUENCY AND
SEVERITY (PH-INDEX r = 0:95)

Burning Cost Loaded Rate Relative
(expected loss) As % of SEP Loading

Layer As % of SEP Hr[N])Hr[X] Ratio

(1) 400 xs 100 6.000% 6.469% 1.078
(2) 500 xs 500 1.183% 1.414% 1.196
(3) 900 xs 100 7.183% 7.883% 1.098

(1)+ (2) 900 xs 100 7.183% 7.883% 1.098

Finally, we multiply the loaded “ground up” frequency and
loaded severity in each layer to get the premium rate for each
reinsurance layer (see Table 6). As a convention in reinsurance,
the burning costs and premium rates are expressed as a percent-
age of the subject earned premium (SEP), $10,000,000 in this
example.

Note that, with this approach, we get premiums that are layer-
additive. In other words, the total premium would not change
regardless of how we divide the coverage into layers.
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3.3. Aggregate Approach to Pricing Per-Risk Excess Treaty

As an alternative approach, the actuary can calculate/simulate
the aggregate loss distribution from the best-estimate frequency
and severity distributions, and subsequently apply the PH-
transform to the aggregate loss distribution.

For given frequency N and severity X, let

Z = X1 +X2 + & & &XN
represent the aggregate loss amount for the risk portfolio. Various
numerical and simulation techniques are available for calculating
the aggregate loss distribution (e.g., Heckman and Meyers [7],
and Panjer [19]).

In general, we get different results by transforming the fre-
quency and severity distributions separately versus transform-
ing the aggregate loss distribution. For the collective risk mod-
el, where claim severities are assumed mutually independent
and independent of the frequency, we have the following inequal-
ity:

Hr[Z]$Hr[N]Hr[X], 0< r < 1:

This is because, conditional on N = n, we always have

Hr[Z *N = n] =Hr[X1 + & & &+Xn]$ nHr[X]:
In other words, the PH-transform of the aggregate loss distribu-
tion takes account of the fact that the variability regarding the
aggregate loss is reduced in the pooling of N independent losses.
However, one should carefully examine the validity of the inde-
pendence assumption, especially with the presence of ambiguity
(parameter uncertainties) in the best-estimate loss distributions.
Parameter uncertainty can generate some correlation effect, al-
though the claim processes may be independent provided that
the true underlying distributions are known.

EXAMPLE 7 revisited: Now we re-consider the reinsurance treaty
example using an aggregate approach. For ease of computation,
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TABLE 7

APPLY PH-TRANSFORM TO THE AGGREGATE LOSS
DISTRIBUTIONS OF EACH PER RISK EXCESS LAYER

(r = 0:9025)

Burning Indicated Relative
Layer Cost Rate Loading
in 000’s As % of SEP As % of SEP Ratio

(1) 400 xs 100 6.000% 6.384% 1.064
(2) 500 xs 500 1.183% 1.408% 1.190
(3) 900 xs 100 7.183% 7.742% 1.078

(1)+ (2) 900 xs 100 7.183% 7.792% 1.085

here we assume independence among the individual claims in the
calculation of the aggregate loss distribution for each layer. For a
numerical comparison with the separate adjustment of frequency
and severity, we apply a PH-transform with an index r = r1) r2 =
0:95)0:95 = 0:9025 to the aggregate loss distribution of each
layer. The indicated rate for each layer is given in Table 7.

We give some modeling details regarding this specific exam-
ple. The claim frequency for the upper layer 500 xs 500 has a
Poisson distribution with mean 0.424. This can be derived from
the Poisson frequency for the lower layer 400 xs 100 and the
probability of cutting into the second layer given that a loss has
already cut into the first layer. Recall that the claim severity dis-
tribution for the layer 500 xs 500 has a Pareto (500,1:647) dis-
tribution truncated at the policy limit 500. This can be verified
using a conditional probability argument.

In this aggregate approach, we used a more severe PH-index
r = 0:9025 as compared to r = 0:95. The aggregate approach pro-
duces a premium structure similar to that obtained by transform-
ing frequency and severity separately (see Table 7 and Table 6).
The use of a more severe index offsets the risk reduction as a
result of pooling independent loss sizes.
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Another important observation can be made from Table 7.
With the aggregate approach, the premium rates are not additive
for layers. The premium rate for the first layer (6.384%) plus that
for the second layer (1.408%) is 7.792%, which is greater than
the rate for the combined layer (7.742%). This lack of layer ad-
ditivity may be a drawback of the aggregate approach in pricing
per risk excess reinsurance treaties.

3.4. Aggregate Approach to Pricing Aggregate Contracts

Some reinsurance contracts are written in aggregate terms
where the coverage triggers when the aggregate loss (or loss
ratio) for the whole book exceeds some specified amount. Usu-
ally these contracts specify the attachment point and coverage
limit in aggregate terms. In pricing such aggregate treaties, a
natural approach would be to use the aggregate loss distribu-
tion, simply because the coverage trigger is the aggregate loss
amount. In other words, the actuary needs to calculate/simulate
a probability distribution for the aggregate loss Z = X1 + & & &+
XN . Based on the claim generating mechanism as well as the
level of ambiguity, the actuary may assume some correlation
between individual risks. The PH-transform of the aggregate
loss distribution will automatically take into account the effect
of correlation. The higher the correlation between individual
risks, the greater the PH-mean for the aggregate loss distribu-
tion.

For some CAT events it might be plausible to consider the
dependency between claim frequency and claim severity. For
instance, the Richter scale value of an earthquake may affect
both the frequency and severity simultaneously, and for hurri-
cane losses, the wind velocity would affect both the frequency
and severity simultaneously. Regardless of the dependency struc-
ture, computer simulation methods can always be used to model
the aggregate losses based on a given geographic concentration.
The PH-transform of the aggregate loss distribution can capture
the correlation risk in the developed prices.
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4. MIXTURE OF PH-TRANSFORMS

While a single index PH-transform has one parameter r to
control the relative premium structure, one can obtain more flex-
ible premium structures by using a mixture of PH-transforms:

p1Hr1 +p2Hr2 + & & &+pnHrn ,
n)
j=1

pj = 1, 0$ rj $ 1 (j = 1, : : : ,n):

The PH-index mixture can be interpreted as a collective decision-
making process. Each member of the decision-making ‘commit-
tee’ chooses a value of r, and the index mixture represents differ-
ent rs chosen by different members. It also has interpretations as
(i) an index mixture chosen by a rating agency according to the
indices for all insurance companies in the market; (ii) an index
mixture which combines an individual company’s index with the
rating agency’s index mixture.

A mixture of PH-transforms has the same properties as that for
a single index PH-transform (see Section 2.4). For ratemaking
purposes, a mixture of PH-transforms enjoys more flexibility
than a single index PH-transform. Now we shall discuss two
special mixtures of the form

(1%®)Hr1 [X]+®Hr2[X], 0$ ®$ 1, r1,r2 $ 1:

4.1. Minimum Rate-on-Line

In most practical circumstances, very limited information is
available for claims at extremely high layers. In such highly am-
biguous circumstances, most reinsurers adopt a survival rule of
minimum rate-on-line. The rate-on-line is the premium divided
by the coverage limit, and most reinsurers establish a minimum
they will accept for this ratio (see Venter [28]).
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TABLE 8

LAYER PREMIUMS UNDER AN INDEX MIXTURE

Expected Risk-adjusted PercentageLayer X(a,b]
1K=$1,000 Loss Premium Loading

(0, 1K] 77.892 131.56 45.8%
(5K, 6K] 20.512 47.43 131%
(10K, 11K] 11.098 35.59 220%
(50K, 51K] 1.982 23.20 1,070%
(100K, 101K] 0.888 21.53 2,324%
(500K, 501K] 0.132 20.26 15,276%

(1,000K, 1,001K] 0.058 20.12 34,875%

By using a two-point mixture of PH-transforms with r1 $ 1
and r2 = 0, the premium functional

(1%®)Hr1[X]+®H0[X] = (1%®)Hr1 [X]+®max[X]
can yield a minimum rate-on-line at ®.

EXAMPLE 8 Reconsider Example 4. The best-estimate loss dis-
tribution (ddf) is

SX(u) = 0:1)
%

2,000
2,000+u

&1:2
:

By choosing a two-point mixture with r1 = 0:92, r2 = 0, and ®=
0:02, we get an adjusted distribution:

SY(u) = 0:98)0:10:92)
%

2,000
2,000+ u

&1:2)0:92
+0:02:

Note that SY being a proper loss distribution requires a finite
upper layer limit.

As shown in Table 8, this two-point mixture guarantees a
minimum rate-on-line at 0.02 (1 full payment out of 50 years).
Note that the average index r = (1%®)r1 +®r2 = 0:9016+ 0:90.
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We can see that this method yields distinctly different premiums
from those in Table 3 where the single indices r = 0:92 and r =
0:90 are used.

4.2. The Right-Tail Deviation

Consider a two-point mixture of PH-transforms with r1 = 1
and r2 =

1
2 :

(1%®)H1[X]+®H1=2[X] = E[X]+®(H1=2[X]%E[X]),
0<®< 1,

which is similar in form to the standard deviation method of
E[X]+®¾[X].

Now we introduce a new risk-measure analogous to the stan-
dard deviation.

DEFINITION 2 The right-tail deviation is defined as

D[X] =H1=2[X]%E[X] =
! #

0

*
SX(u)du%

! #

0
SX(u)du:

Analogous to the standard deviation, the right-tail deviation
D[X] satisfies the following properties:

( If Pr!X = b"= 1, then D[X] = 0.
( Scale-invariant: D[cX] = cD[X] for c > 0.
( Shift-invariant: D[X +b] =D[X] for any constant b.
( Sub-additivity: D[X +Y]$D[X]+D[Y].
( If X and Y are perfectly correlated, then D[X +Y] =D[X]+
D[Y].

It is shown in Appendix A that, for a small layer (a,a+h],
D[X(a,a+h]]$ ¾[X(a,a+h]], and D[X(a,a+h]] converges to ¾[X(a,a+h]]
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TABLE 9

THE RIGHT-TAIL DEVIATION VERSUS THE STANDARD
DEVIATION

Layer Expected Std-deviation Right-tail Percentage
1K = $1,000 loss of the loss deviation difference

L E[L] ¾[L] D[L] ¾[L]
D[L]

% 1

(0, 1K] 77.89 256.0 200.5 27.7%
(1K, 2K] 51.56 214.3 175.2 22.3%
(10K, 11K] 11.10 103.9 94.24 10.3%
(100K, 101K] .8879 29.76 28.91 2.93%

(1,000K, 1,001K] .05754 7.584 7.528 0.75%
(10,000K, 10,001K] .003640 1.908 1.904 0.19%

at upper layers (i.e., the relative error goes to zero when a be-
comes large). As a result, the right-tail deviation D[X] is finite
if and only if the standard deviation ¾[X] is finite.

EXAMPLE 9 Re-consider the loss distribution in Example 4 with
a ddf of

SX(u) = 0:1)
%

2,000
2,000+u

&1:2
:

For different layers with fixed limit at 1000, Table 9 compares
the standard deviation with the right-tail deviation.

Having stated a number of similarities, here we point out two
crucial differences between the right-tail deviation D[X] and the
standard deviation ¾[X] (see Wang [31]):

( D[X] is layer-additive, but ¾[X] is not additive.
( D[X] preserves some natural ordering of risks such as first
stochastic dominance,2 but ¾[X] does not.

2Risk X is smaller than risk Y in first stochastic dominance if SX(u)$ SY(u) for all u' 0;
or equivalently, Y has the same distribution as X+Z where Z is another non-negative
random variable.
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TABLE 10

LAYER ADDITIVITY: A COMPARISON

Expected Standard Right-Tail
Layer Losses Deviation Deviation

(0, 10K] 301 1378 1355
(10K, 20K] 80 834 809

(0, 20K] 381 2035 2164

Result Additive Sub-Additive Additive

These two crucial differences give the right-tail deviation
an advantage over the standard deviation in pricing insurance
risks.

Although for a small layer (a,a+h] we have D[X(a,a+h]]$
¾[X(a,a+h]], for the entire risk X the right-tail deviation often
exceeds the standard deviation, since the right-tail deviation is
layer-additive while the standard deviation is not. For example,
consider two sub-layers (0,10K] and (10K,20K], and a com-
bined layer (0,20K]. The right-tail deviation exceeds the standard
deviation for the combined layer (0, 20K], although the reverse
relation holds for each sub-layer (see Table 10).

Remark For a layer (a,a+h], the loss-to-limit ratio is de-
fined as the ratio of incurred loss to the limit of the layer. When
the layers are refined (h becomes small), the loss-to-limit ratio
approaches the ddf at that layer, which is also the frequency of
hitting the layer. This can be seen from the relation

lim
h,0

+ a+h
a SX(u)du

h
= SX(a):

If a ground-up risk is divided into small adjacent layers, the em-
pirical loss-to-limit ratios at various layers yield an approxima-
tion to the underlying ddf. As a pragmatic method for computing
risk loads, it has been a longstanding practice of some reinsurers
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to adjust the empirical loss-to-limit ratio by adding a multiple of
the square root of the empirical loss-to-limit ratio. As the layers
are refined (h becomes small), this pragmatic method approaches
the following:

E[X(a,a+h]] +®(D[X(a,a+h]] +E[X(a,a+h]]):

5. ECONOMIC THEORIES OF RISK LOAD

In this section we review some economic theories and show
how the PH-transform fits in.

5.1. Expected Utility Theory

Traditionally, expected utility (EU) theory has played a dom-
inant role in modeling decisions under risk and uncertainty. To
a large extent, the popularity of EU was attributed to the axioms
of von Neumann and Morgenstern [29].

Let V represent a random economic prospect and let SV(u) =
Pr!V > u" (i.e., the probability that the random economic
prospect V exceeds value u). Let the symbols - and . repre-
sent strict preference and indifference, respectively. Von Neu-
mann and Morgenstern proposed five axioms of decision under
risk:

EU.1 If V1 and V2 have the same probability distribution, then
V1 .V2.

EU.2 Weak order: / is reflective, transitive, and connected.
EU.3 / is continuous in the topology of weak convergence.
EU.4 If V1 ' V2 with probability one, then V1 / V2.
EU.5 If SV1 / SV2 , and for any p 0 [0,1], the probabilistic mix-

ture satisfies

(1%p)SV1 +pSV3 / (1%p)SV2 +pSV3 :
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Von Neumann and Morgenstern showed that any decision-
making which is consistent with these five axioms can be mod-
eled by a utility function u such that ‘V1 - V2 if and only if
E[u(V1)]' E[u(V2)].’
When EU is applied to produce an insurance premium for a

risk X, the minimum premium P that an insurance company will
accept for full insurance satisfies the EU-equation

u(w) = E[u(w+P%X)]
in which u and w refer to the insurer’s utility function and wealth
(see Bowers et al. [2]). The premium P from the EU-equation
does not satisfy layer-additivity. Thus, the PH-transform does not
fit in the expected utility framework.

5.2. The Dual Theory of Yaari

Modern economic theory questions the assumption that a firm
can have a utility function, even when it accepts that individuals
do. Yaari [32] proposed an alternative theory of decision under
risk and uncertainty.

While the first four EU axioms are apparently reasonable,
many people challenged the fifth axiom in the expected utility
theory. While keeping the first four EU axioms unchanged, Yaari
proposed an alternative to the fifth EU axiom:

DU.5* If V1, V2, and V3 are co-monotone and V1 /V2, for any
p 0 [0,1], the outcome mixture satisfies

(1%p)V1 +pV3 / (1%p)V2 +pV3:

Two risks X and Y are co-monotone if there exists a random
variable Z and non-decreasing real functions u and v such that
X = u(Z) and Y = v(Z) with probability one. Co-monotonicity is
a generalization of the concept of perfect correlation to random
variables without linear relationships. Note that perfectly cor-
related risks are co-monotone, but the converse does not hold.
Consider two layers (a,a+h] and (b,b+h] for a continuous vari-



970 IMPLEMENTATION OF PH-TRANSFORMS IN RATEMAKING

ate X. The layer payments X(a,a+h] and X(b,b+h] are co-monotone
since both are non-decreasing functions of the original risk X.
They are bets on the same event and neither of them is a hedge
against the other. On the other hand, for a 1= b, X(a,a+h] and
X(b,b+h] are not perfectly correlated since neither can be written
as a linear function of the other.

Under axioms EU.1–4 & EU.5*, Yaari showed that there ex-
ists a distortion function g : [0,1], [0,1] such that a certainty
equivalent to a random economic prospect V on interval [0,1] is! 1

0
g[SV(y)]dy:

In other words, the certainty equivalent to a random economic
prospect, 0$V $ 1, is just the expected value under the distorted
probability distribution, g[SV(y)], 0$ y $ 1.
Regarding the concept of risk-aversion, Yaari made the fol-

lowing observations:

At the level of fundamental principles, risk-aversion
and diminishing marginal utility of wealth, which are
synonymous under expected utility theory, are horses
of different colors. The former expresses an attitude
towards risk (increased uncertainty hurts) while the lat-
ter expresses an attitude towards wealth (the loss of a
sheep hurts more when the agent is poor than when
the agent is rich). [32, p. 95]

The PH-transform fits in Yaari’s economic theory with g(x)
= xr.

5.3. Schmeidler’s Ambiguity-Aversion

As early as 1921, John Keynes identified a distinction be-
tween the implication of evidence (the implied likelihood) and
the weight of evidence (confidence in the implied likelihood).
Frank Knight [10] also drew a distinction between risk (with
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known probabilities) and uncertainty (ambiguity about the prob-
abilities). A famous example on ambiguity-aversion is Ellsberg’s
[3] paradox which can be briefly described as follows: There are
two urns each containing 100 balls. One is a non-ambiguous urn
which has 50 red and 50 black balls; the other is an ambiguous
urn which also contains red and black balls but with unknown
proportions. When subjects are offered $100 for betting on a
red draw, most subjects choose the non-ambiguous urn (and the
same for the black draw). Such a pattern of preference cannot be
explained by EU (Quiggin, [24, p. 42]).

Ellsberg’s work has spurred much interest in dealing with
ambiguity factors in risk analysis. Schmeidler [27] brought to
economists non-additive probabilities in his axiomization of pref-
erences under uncertainty. For instance, in Ellsberg’s experiment,
the non-ambiguous urn with 50 red and 50 black balls is pre-
ferred to the ambiguous urn with unknown proportions of red
or black balls. This phenomenon can be explained if we assume
that one assigns a subjective probability 3

7 to the chance of get-
ting a red draw (or black draw). Since 3

7 +
3
7 =

6
7 which is less

than one, the difference 1% 6
7 =

1
7 may represent the magnitude

of ambiguity aversion.

In his axiomization of acts or risk preferences, Schmeidler
obtained essentially the same mathematical formulation (axioms
and theorems) as that of Yaari. A certainty equivalent to a random
economic prospect V (0$V $ 1) can be evaluated as

H[V] =
! 1

0
g[SV(u)]du,

where g : [0,1] 2, [0,1] is a distortion (increasing, non-negative)
function, and g[SX(u)] represents the subjective probabilities.

The major difference between the Schmeidler model and the
Yaari model lies in the interpretation (Quiggin, [24]). Yaari as-
sumes that the objective distributions (e.g., SX) are known and
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one applies a distortion (i.e., g) to the objective distribution.
Schmeidler argues that it is illogical to assume an objective dis-
tribution; instead, he interprets g 3 SX as non-additive subjective
probabilities which can be inferred from acts.

However, economic interpretations are important. For in-
stance, if the underlying distribution is assumed to be known,
then the process risks can be diversified away in a risk portfolio.
Ambiguity is uncertainty regarding the best-estimate probability
distribution, and thus may not be diversifiable in a risk portfolio.

The PH-transform fits in Schmeidler’s economic theory with
an interpretation of aversion to ambiguity (parameter risk).

5.4. No-Arbitrage Theory of Pricing

No-arbitrage is a fundamental principle in financial economic
theory, which requires linearity of prices. The theories of Yaari
and Schmeidler can be viewed as a more relaxed (or more gen-
eral) version of the no-arbitrage theory, i.e., they only require no
arbitrage (linearity) on co-monotone risks (e.g., different layers
of the same risk). Using a market argument, Venter [28] dis-
cussed the no-arbitrage implications of reinsurance pricing. He
observed that in order to ensure additivity when layering a risk,
it is necessary to adjust the loss distribution so that layer pre-
miums are expected losses under the adjusted loss distribution.
Venter’s observation is in agreement with the theories of Yaari
and Schmeidler. In fact, the PH-transform is a specific transform
which conforms to Venter’s adjusted distribution method.

6. SUMMARY

In this paper we have introduced the basic methodologies of
the PH-transform method and have shown by example how it
can be used in insurance ratemaking. We did not discuss how
to decide the overall level of contingency margin, which de-
pends greatly on market conditions. An important avenue for
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future research is to link the overall level of risk load with the
required surplus for supporting the written contract. Some pio-
neering work in this direction can be found in Kreps [11], [12]
and Philbrick [22].

The use of adjusted/conservative life tables has long been
practiced by life actuaries (see Venter, [28]). To casualty actuar-
ies, the PH-transform method contributes a theoretically sound
and practically plausible way to adjust the loss distributions.
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APPENDIX A: PROOFS OF SOME STATED RESULTS

THEOREM 1 For any non-negative random variable X (discrete,
continuous, or mixed), we have

E[X] =
! #

0
SX(u)du:

Proof For x' 0 it is true that
x=

! #

0
I(x > u)du,

where I is the indicator function (assuming values of 0 and 1).
For a non-negative random variable it holds that

X =
! #

0
I(X > u)du:

By taking expectation on both sides of the equation one gets

E[X] =
! #

0
E[I(X > u)]du=

! #

0
SX(u)du:

THEOREM 2 For a small layer [a,a+h) with h being a small
positive number, we have

( D[X(a,a+h]]$ ¾[X(a,a+h]], and
( lima,#D[X(a,a+h]]=¾[X(a,a+h]] = 1.

Proof Let p= SX(u) be the probability of hitting the layer
[a,a+h). Note that p, 0 as u,#. The payment by the small
layer [a,a+h) has approximately a Bernoulli type distribution:

Pr!X(a,a+h] = 0"= 1%p, Pr!X(a,a+h] = h"= p:

Thus, ¾(X(a,a+h]) =
*
p%p2h and D[X(a,a+h]] = (

4
p%p)h. The

two results come from the fact that
4
p%p$

*
p%p2 for 0$

p$ 1 and
lim
p,0

4
p%p*
p%p2

= 1:
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APPENDIX B: AMBIGUITY AND PARAMETER RISK

Most insurance risks are characterized by the uncertainty
about the estimate of the tail probabilities. This is often due to
data sparsity for rare events (small tail probabilities), which in
turn causes the estimates for tail probabilities to be unreliable.

To illustrate, assume that we have a finite sample of n obser-
vations from a class of identical insurance policies. The empirical
estimate for the loss distribution is

Ŝ(u) =
# of observations> u

n
, u' 0:

Let S(u) represent the true underlying loss distribution, which
is generally unknown and different from the empirical estima-
tion Ŝ(u). From statistical estimation theory (e.g., Lawless [14,
p. 402], Hogg and Klugman [8]), for some specified value of u,
we can treat the quantity

Ŝ(u)% S(u)
¾[Ŝ(u)]

,

as having a standard normal distribution for large values of n,
where

¾[Ŝ(u)]+
*
Ŝ(u)[1% Ŝ(u)]4

n
:

The ´% upper confidence limit (UCL) for the true underlying
distribution S(u) can be approximated by

UCL(u) = Ŝ(u)+
q´4
n

*
Ŝ(u)[1% Ŝ(u)],

where q´ is a quantile of the standard normal distribution:
Pr!N(0,1)$ q´"= ´. Keeping n fixed and letting t,#, the ra-
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tio of the UCL to the best-estimate Ŝ(u) is

UCL(u)

Ŝ(u)
= 1+

q´4
n

,--.1% Ŝ(u)
Ŝ(u)

,#,

which grows without bound as u increases.

As a means of dealing with ambiguity regarding the best-
estimate, the PH-transform

ŜY(u) = [ŜX(u)]
r, r $ 1,

can be viewed as an upper confidence limit (UCL) for the best-
estimate ŜX(u). It automatically gives higher relative safety mar-
gins for the tail probabilities, and the ratio

[ŜX(u)]
r

ŜX(u)
= [ŜX(u)]

r%1,#, as u,#,

increases without bound to infinity.


