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Abstract

How does one measure the effect of improved pol-
icy retention on such key variables as market share and
profitability?
This paper will analyze this problem by:

! using the theory of Markov chains to model policy
retention and to determine key values such as steady-
state probabilities;

! using current spreadsheet technology to solve the key
matrix equations from Markov chain theory; and

! applying these results to determine key business vari-
ables such as effects on profitability and market share.

1. INTRODUCTION AND PROBLEM STATEMENT

You run an insurance company. You know that retaining poli-
cies is good business, but you want to quantify its value.1 To
simplify the analysis, you assume that all policies are written
for a fixed policy term, expire at the same time, and have no
mid-term activity. It turns out that the theory of Markov chains
provides help with the analysis.

Markov chains assume discrete time periods and a system
with “states” and “transition probabilities,” the probabilities of
moving from one state to another in one time period. For exam-
ple, a physical system may consist of particles that move from a
state to state in each discrete time period.

1D’Arcy and Doherty [1] discuss the “aging phenomenon.” Their paper looks at this
phenomenon relative to the profitability of insuring a policyholder for several periods.
This paper views the same phenomenon from the aggregate financial viewpoint of an
entire corporation.
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The number of successes in a sequence of independent
Bernoulli trials with probability of success p is a Markov chain.
The system is defined to be in state k at time n if there have
been exactly k successes in the first n trials. The transition prob-
ability of going from state k to state k+1 is p and the transition
probability of staying at state k is q= 1"p. In this paper, the
term “Markov chain”2 refers to a system with stationary transi-
tion probabilities. This means that if a particle is in state j at time
t, then the conditional probability of going to state k at time t+1
does not depend on t, nor does it depend on any of the states
that the particle was in prior to time t.

For the policy retention problem of this paper we replace the
term “particle” by the term “customer.” We say that the customer
is in state k for k = 0,1,2 : : : if the customer has been insured with
the company for k consecutive time periods (one time period is
equal to one policy term).

k = 0 refers to a person not currently insured with the company.

k = 1 refers to a policyholder in his/her first policy term.

k = 2 refers to a policyholder who has renewed once.

To study retention we define retention probabilities #rk, k =
0,1,2, : : :$ such that
rk is the probability of renewing a policy that has been with the
company for k time periods (that is, rk is the probability that
a customer currently in state k will pass to state k+1 in the
next time period), and

r0 is the probability of writing a customer who is not currently
insured with the company.

We need an initial distribution #p(0)k , k = 0,1,2 : : :$ where p(0)k
is the proportion of the entire population that has been insured

2For discussion of Markov chains see Feller [2, p. 372] or Resnick [4, p. 60]. The notation
in this paper more closely follows that of Feller.
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with the company for k years. Note that 1"p(0)0 is the company’s
initial “market share.”

With this notation the matrix of transition probabilities3 is:

A=

!"""""""""""""""#

1" r0 r0 0 0 0 % % % 0 0

1" r1 0 r1 0 0 % % % 0 0

1" r2 0 0 r2 0 % % % 0 0

1" r3 0 0 0 r3 % % % 0 0

1" r4 0 0 0 0 % % % 0 0

% % % % % % % % % % % % % % % % % % % % % % % %
1" rN"1 0 0 0 0 % % % 0 rN"1
1" rN 0 0 0 0 % % % 0 rN

$%%%%%%%%%%%%%%%&
:

Here aij is the conditional probability of going from state i to
state j in one time period. The indices i and j range from 0 to
N. (See Appendix C for a discussion of chains with an infinite
number of states.) The maximum value N may be set at a number
of policy periods after which the retention is essentially constant.

For this retention problem only the first column (more cor-
rectly called the zeroth column) and the superdiagonal are non-
zero, along with aNN . This is because a customer in state j either
moves to state j+1 (if the policy renews) or to state 0 (if the
customer takes his/her business elsewhere). The retention rate
is simply the probability that the policy will renew at its next
expiration.

Notation Conventions

Superscripts within parentheses, such as (n), refer to time pe-
riods, or in the case of matrix elements, refer to n-step transi-

3Feller [2] contains an example that is mathematically equivalent to this Markov chain,
except that, in his example, the number of states is infinite. He refers to state k as the
“age,” and says that at the next time period the system will either pass to age k+1 or
will go back to age 0 and start afresh. See [2, pp. 382, 390, 398, 403].
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tion probabilities. The n-step transition probability of going from
state i to state j is the conditional probability that a customer in
state i will, in n periods, be in state j.

Plain superscripts refer to exponents, except t refers to matrix
transpose.

Subscripts refer to states of the system.

Vectors and matrices are in boldface.

2. GENERAL RESULTS ABOUT MARKOV CHAINS AND THE
STEADY-STATE DISTRIBUTION

Given an initial distribution of states p(0), the distribution of
states in the next period is given by p(1) =Atp(0), where At is the
transpose of A. This follows immediately, since p(1)k =

'
j ajkp

(0)
j .

Each term on the right represents the probability that the system
is in state j at time 0 and passes to state k at time 1. The summa-
tion over j then is the total probability of being in state k at time
1. The kth element of p(1) is thus the inner product of the vector
p(0) and the kth column of matrix A, which is the definition of
multiplication on the left by the transpose.

Similarly, the conditional probability a(2)jk of moving to state
k in two steps given initial state j is given by

a(2)jk =
(
m

ajmamk,

which means that the two-step transition matrix is given by
A(2) =A2. This is intuitively obvious by observing that, in or-
der to get from j to k in two steps, one must stop at some state
m at the first step. By induction, the n-step transition matrix4 is
given by An. By definition, the element a(n)jk is the probability,
given state j, of being in state k n-periods later.

4Feller [2, pp. 382, 383].
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Let B= transpose of A=At. Then the distribution at time n
is given by

p(n) = (At)p(n"1) = Bp(n"1) = (Bn)p(0) for any n& 1:
The steady-state (or invariant) probability distribution is defined
as that solution of the equation p' = Bp' for which

'
p'j = 1. It

turns out that the steady-state probabilities are very important
to our original business retention problem. We will discuss later
how to calculate p'.

A key result is that

Bnp(0)( p' as n() for any initial distribution p(0):

The proof is in Appendix B. This limiting result says that the
ultimate distribution of customers by state (remember: “state” is
the number of consecutive renewals) is independent of the initial
distribution but depends only on the steady state probabilities
associated with the retentions.

3. CALCULATING THE STEADY-STATE (INVARIANT)
DISTRIBUTION

There are several approaches to calculating the invariant dis-
tribution for our retention problem.

3.1. Use the Definition Directly

Recall that the matrix B for the retention problem is given by

B=At =

!""""""""""""""#

1" r0 1" r1 1" r2 1" r3 1" r4 % % % 1" rN"1 1" rN
r0 0 0 0 0 % % % 0 0

0 r1 0 0 0 % % % 0 0

0 0 r2 0 0 % % % 0 0

0 0 0 r3 0 % % % 0 0

% % % % % % % % % % % % % % % % % % % % % % % %
0 0 0 0 0 % % % 0 0

0 0 0 0 0 % % % rN"1 rN

$%%%%%%%%%%%%%%&
,
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where all the rk are strictly between 0 and 1.

The defining equations for invariance are:

pk = rk"1pk"1 for k = 1,2,3 % % %N " 1, (3.1)

pN = rN"1pN"1 + rNpN , and (3.2)

p0 = (1" r0)p0 + (1" r1)p1 + % % %+(1" rN)pN: (3.3)

From Equation 3.1 we obtain

pk = r0r1r2 % % %rk"1p0 for k = 1,2,3, : : :N " 1: (3.4)

From Equation 3.4 we can see that the terms 0 through N "1 on
the right-hand side of Equation 3.3 add to p0" rN"1pN"1. From
Equation 3.2 the last term on the right-hand side of Equation
3.3 equals rN"1pN"1. Thus, we can choose an arbitrary value
for p0, define the remaining pk by Equations 3.1 and 3.2, and
Equation 3.3 will be automatically satisfied. Once all the pk are
calculated, just rescale them so they add to 1 and these values
are the invariant probabilities.

Thus the retention problem has a particularly simple form of
transition matrix that allows the steady-state probabilities to be
calculated directly from the definition.

3.2. A Simple Machine-Oriented Approach5

The vector p', whose transpose is defined by

(p')t = (1,1, : : :1,1)(I"A+ONE)"1,
defines an invariant distribution. Here I is the identity matrix and
ONE is the square matrix all of whose entries are 1. Resnick
[4] proves this handy proposition. This result requires that A be
irreducible, which we prove in Appendix C.

5Resnick [4, p. 138].
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3.3. Use a Spreadsheet “Solver”

A spreadsheet “solver”6 can solve for the steady-state proba-
bilities. A typical spreadsheet solver

(a) maximizes, minimizes, or sets a target cell to a specific
value

(b) subject to constraint equations or inequalities

(c) by changing a set of “decision cells.”

The use of the target cell is optional. The solver can be used to
simply produce values of the decision cells that satisfy the given
constraints.

Recall that steady state probability vector is simply the so-
lution p' of the matrix equation Bx= x, for which

'
xj = 1,

where B=At. This equation can be rewritten as Cx= 0, where
C= B" I and I is the identity matrix.
Now setting up the solver is simple:

1. Set up the matrix C, which is a function of the transition
probabilities A.

2. Set up a vector x, the vector of decision variables that
are allowed to change when the solver is run.

3. Set up a vector z as the matrix product Cx.

4. Run the solver with the following constraints:

z= 0 and
(
xj = 1:

The resultant vector x is the steady-state probability vector p'.

We present this solution using the solver because solvers are
being commonly used to handle problems involving maximiz-
ing, minimizing, and satisfying constraints, and a solver for our

6The particular solver used in this paper is that from the Microsoft Excel spreadsheet.
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retention problem does not require the same linear algebra skills
that other solutions entail.

4. SPREADSHEET EXAMPLE TO MODEL THE RETENTION
PROBLEM

Recall that we have translated the retention problem into
Markov chain terms and have reviewed some characteristics of
Markov chains. Appendix A displays printouts from a spread-
sheet set up to analyze retentions. The spreadsheet is docu-
mented, but here are some of the highlights.

The Basic Data section asks us to input the retention prob-
abilities #rk, k = 0,1,2, : : :N$ and initial probability distribution
#p(0)k , k = 0,1,2 : : :N$. Recall that rk is the probability that a pol-
icyholder that has been insured for k policy periods will renew
when his/her policy expires, and r0 is the probability that the
company will capture as new business a customer not currently
insured with the company. The end of the Basic Data section
translates these retention probabilities into the matrix A of one-
step transition probabilities.

For example, in Appendix A the company’s initial market
share is 10%, since the proportion p(0)0 of the market not insured
by the company is 90%. Since N = 9 and p(0)N = :043, 4.3% of the
market has been insured with the company nine or more policy
periods. At the next renewal cycle r0 = 1:0% of the population
not insured by the company will be captured as new business.

The section labeled “Distribution At Time n” shows how the
distribution p(n) changes after n time periods. Recall that p(n) =
Bp(n"1), and that p(n) = Bnp(0), where B=At. We have shown
that p(n)( p' (the steady-state probability) as n().
The value of these calculations is that they allow us to get

a feel for how fast the limit is approached. In the real world, a
company does not have an infinite time horizon to wait for the
limiting behavior to be realized. The “Distribution At Time n”
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explanation also allows us to restrict the model to a finite plan-
ning horizon. Too many managerial changes during the conver-
gence period could invalidate the Markov chain assumption that
the transition matrix is stationary over time. The n-step transi-
tion matrices in Appendix A converge to a matrix which has the
steady-state distribution vector in each of its columns.

5. RETURN TO THE ORIGINAL RETENTION PROBLEM

When any action affects retention, it changes the transition
matrix A. Improved retention means larger superdiagonal ele-
ments (probabilities of renewal) and smaller elements in the first
column (probabilities of non-renewal). In this section, we will
study our original set of retention assumptions and their effect
on key business variables. The spreadsheet with those results is
shown as Appendix A. Then we will see how a shift in retention
(Appendix B) may change the results.

We have used the theory of Markov chains, along with spread-
sheet tools, to compute steady-state probabilities for a given set
of retention rates. We have shown that the distribution of states
of the system (recall that the “state” of an individual customer
is the number of consecutive policy renewals for that customer)
approaches the steady-state probabilities, as time goes on, re-
gardless of the initial distribution.

The spreadsheet in Appendix A gives us a sense for how
quickly this convergence takes place. It is easy to calculate the
distribution at time n, because the n-step transition matrix is just
the nth power of the one-step transition matrix. Mahler’s paper,
“A Markov Chain Model of Shifting Risk Parameters,” provides
a mathematical treatment of the rate of convergence [3].

Thus we have a wealth of tools that give us information about
the probability distribution of states throughout time. These prob-
abilities are not in themselves of much interest to management.
However, there are functions of these probabilities that are of
great interest. For example, the projected market share is of keen
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interest. Because we have included state 0 in our definition of
states (the customer is in state 0 if he/she is not currently in-
sured with the company), the market share at time n is given by
1"p(n)0 .
Loss ratios, expense ratios, and combined ratios greatly in-

terest management. Most observers would agree that renewing
an existing policy is much less expensive than writing a new
policy. It follows that increasing the retention rate will improve
the expense ratio. Most would also agree that the loss ratio for a
customer who has been on the company books for a long period
of time will be lower than for a new or recent customer. Actions
that improve retention should improve the loss ratio.

The last page of Appendix B, Combined Ratio Differential,
illustrates how to estimate this effect. To estimate the effect of re-
tention on combined ratio one needs a sense of how loss/expense
ratios vary by state (the number of consecutive policy renewals).
The phrase “needs a sense of” is intentionally vague. It could
mean that we have data on loss or expense ratios by state. More
likely it means that we have some information that would enable
us to make an assumption about how the loss or expense ratio
varies by state. For instance we may be able to say that a new
policyholder has a 10% worse loss ratio than a long-standing
policyholder. Or it could mean that we accept a management es-
timate of this differential and use the model to check the effect
of retention under different estimates.

Once we have made a reasonable assumption about these dif-
ferentials by state, we are ready to estimate the effect of improved
retention. This is simply a matter of:

1. entering the initial distribution and retention probabilities
in to the spreadsheet;

2. running the spreadsheet to determine the steady-state
probabilities and how quickly the system approaches
those limiting probabilities; and
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TABLE 1

ORIGINAL RETENTION ASSUMPTIONS

State k
0 1 2 3 4 5 6 7 8 9

Retention .0100 .8500 .9000 .9000 .9000 .9000 .9000 .9000 .9000 .9000

Steady-State
Probability .9132 .0091 .0077 .0069 .0063 .0057 .0051 .0046 .0041 .0371

Combined Ratio
Differential .2000 .1000 .0800 .0600 .0400 .0200 0 0 0 0

3. applying the differentials in loss/expense ratios to the
various probabilities to arrive at an “average differential”
or “average loss/expense ratio.”

Then we make the same calculation using the “improved reten-
tions” in Appendix B and compare the results to estimate the
effect of the change in retention.

The “Combined Ratio Differential” section in Appendix A
shows a calculation of this nature for the original retention prob-
abilities. Here we externally determined (or hypothesized) var-
ious combined ratio differentials by state relative to the com-
bined ratio for a long-standing (i.e., seven term or longer) pol-
icyholder. The results are summarized in Table 1. The retention
and combined ratio differentials are inputs to the calculation. The
steady-state probabilities and the average differential are calcu-
lated. From Appendix A the average differential is +:0446 us-
ing the steady-state probabilities as weights. That is, on aver-
age the book of business will have a 4.5% higher average com-
bined ratio than if the book consisted entirely of long-term cus-
tomers.

Now suppose that the company takes some action that im-
proves retention. Such an action might be a new billing option,
more advertising, etc. The number of such actions is limited only
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TABLE 2

IMPROVED RETENTION ASSUMPTIONS

State k
0 1 2 3 4 5 6 7 8 9

Retention .0120 .8700 .9200 .9200 .9200 .9200 .9200 .9200 .9200 .9200

Steady-State
Probability .8753 .0105 .0091 .0084 .0077 .0071 0066 .0060 .0055 .0637

Combined Ratio
Differential .2000 .1000 .0800 .0600 .0400 .0200 0 0 0 0

by the creativity of the sales or marketing manager. In the exam-
ple in Appendix B, our improved retention assumption is that rk
increases by .02 for k >= 1 and r0 increases by .002 (recall r0 is
the probability that the company writes a new customer). We can
use the same spreadsheet with the revised retention and obtain
the results shown in Table 2, assuming that the differentials have
not changed.

Now what has been the effect of the management action to
improve the retention? The ultimate market share increases from
8.7% to 12.5%. The ultimate loss ratio decreases by 0.8% (i.e.,
the combined ratio differential drops from 4.4% to 3.6%). Now
remember that these are “ultimate” results and we know that,
for Markov chains, it may take quite a few renewal cycles to
approach these limiting results!

The insurer must weigh these benefits against the costs. For
example, if an improved billing system produces the increased
retention, then the improved market share and loss ratio must
overcome the cost of maintaining and building the billing sys-
tem. If instead, a rate decrease is used to improve retention then
it is likely that the overall combined ratio itself will increase and
wipe out the benefits from the retention improvement. The ex-
act effect will depend on the price elasticity of demand for the
product.



STUDYING POLICY RETENTION RATES USING MARKOV CHAINS 787

5. COMPARISON TO SINGLE POLICYHOLDER APPROACH

The approach used in this paper examines the financial effects
of retaining policies on the entire company’s book of business.
Starting with an initial distribution of business by policy age
and a set of transition probabilities, we use Markov chain theory
to model the distribution over time. Because one of the states
of the system (i.e., state 0) consists of potential customers not
insured by the company, the model produces estimates of total
growth as well as distribution by policy age. We then hypothesize
differences in loss ratio by policy age to examine changes in
profitability over time. The Markov chain approach enables us
to examine the effects on growth and profitability of changes in
the transition probabilities.

This entire approach is an aggregate approach in that it looks
at the growth and profitability of a company’s entire book of
business over time. In contrast, D’Arcy and Doherty [1] approach
the “aging phenomenon” by tracing the profitability of a single
insured over time. They start with a new customer (correspond-
ing to state 1 in this paper) and calculate the profitability of
that customer’s policies from the initial date through the last re-
newal, discounting all calculations to the initial policy inception
date. D’Arcy and Doherty hypothesize differing levels of prof-
itability by policy age. In their model the probability of renewal
is constant over time.

D’Arcy and Doherty study the price that will optimize present
and future profits from a customer added to the books. How do
the approach of this paper and D’Arcy-Doherty relate? We can
express the D’Arcy-Doherty models in Markov chain terms as
follows:

The initial distribution p0 consists of a probability of 1.0 of
being a new policyholder.

The retention probabilities rk are constant (called W in [1]).
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The state 0 becomes an “absorbing state.” That is, there is
no more action for the individual policyholder once he/she non-
renews.

Using Markov chains to study the aging phenomenon in [1]
is not useful because the transition probabilities are so simple
that Markov chain theory is not needed. D’Arcy and Doherty
concentrate on a single policyholder and the transition matrix
does not satisfy the criteria for using the theorems about invariant
distributions.

D’Arcy and Doherty concentrate on the single policyholder
and are sophisticated in treating differing loss ratios and the time
value of money in arriving at proper prices. Their analysis could
be used as an input to this paper’s aggregate model. We could use
the models in [1] to enable us to calculate the expected present
value of profit for each policy renewal (i.e. for each state k). This
gives us a set of expected profits corresponding to the various
states in the retention model. There is no need to sum these dis-
counted present values for all the renewals of a single customer
as is done in [1]. We can then hypothesize an initial distribu-
tion and use the transition matrix as was done in this paper. Our
Markov chain model determines the distribution of states of the
system over time. With this information and the expected profits
by state, we can determine the company’s expected profit over
time. The Markov chain model allows us to easily vary the re-
tention rate by state of the system.7

Both papers refer to optimizing profitability over time. In [1]
this is done by calculating the present value of expected profits
over the life of an individual policyholder as a function of price.
The renewal rate W is adversely affected by increasing price,
so that there is an optimum price above which the profits begin
decreasing.

7The possibility of renewal rates changing by policy age is mentioned briefly in [1,
p. 38].
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In this paper, the expected profits for the entire corporation are
calculated using Markov chains. Increasing the price for policies
increases the profit at each renewal. However, price increases
lower the renewal probabilities rk. This decreases both the market
share and the number of customers in the higher states (i.e., long-
term policyholders). At some point raising the price adversely
affects renewal probabilities so much that total profit is adversely
affected.

Both papers mention elasticity of demand (with respect to
price) as critical values. Basically, the more elastic the demand,
the more difficult it is to increase overall profit through price
increases.

In general, we could use D’Arcy and Doherty [1] to establish
the expected profit by age of policy. Then we could plug this
information into the Markov chain model to determine aggregate
profitability over time and growth for the company.

6. OBSERVATIONS AND CAVEATS

Many companies have neither very good retention informa-
tion nor very good ideas of loss ratio differentials by retention.
The Markov chain model is useful even in these circumstances.
To illustrate, some company managements have wildly inflated
ideas of the benefits of improved retention on market share and
profitability. Let’s assume that the actuary can persuade manage-
ment to “guess” the improvement both in retention rate and in
combined ratio differentials by state. The company can then use
the model to produce profitability and market share change esti-
mates that are more realistic than management’s original “feel-
ing.” As the company obtains better data, some of the hypothe-
sizing can be replaced with observations. There is a high proba-
bility that retention data will improve because it is of universal
interest among top management.

In using this type of modeling one must be careful not to com-
pound too many assumed improvements. For example, suppose



790 STUDYING POLICY RETENTION RATES USING MARKOV CHAINS

the retention on long-standing business is 95%. A new billing
plan claims to increase this by 2% (additively). A few months
later the ability to “account sell” increases the number again by
2%. Then a fancy new endorsement produces another 2% in-
crease. Now the implied retention rate is 101%, which is absurd.
This sounds ridiculous, but companies do act this way when the
actions are separated in time and the company loses its memory
due to management changes.

A better way to view this is to express these increases as
reductions in the non-renewal or lapse rate and then compound
them properly. For example, we might say that each of the three
actions above reduces the lapse rate by 40% (i.e., reduces it from
.05 to .03), so that the resultant retention from this series of
actions becomes:

1" (:05* :60* :60* :60) = :989:
The assumption that the policy renewal process is a Markov

chain is a simplification of the real world. Recall that the Markov
property says that the probability of passing to a given future
state depends on the current state but does not depend on any
prior history. This implies, for example, that the probability r0
of capturing a new customer is the same whether or not that
customer has ever been previously insured with the company.
This is probably not an accurate assumption.

We can attempt to get around this assumption by defining two
“0” states: state “0a” for potential customers who have never
been with the company, and state “0b” for potential policyhold-
ers who had been previously insured. With this formulation the
transition matrix is such that current policyholders (state 1 or
higher) can never get to state 0a. It turns out that the invariant
distribution assigns probability 0 to state 0a (that is, everyone
eventually becomes a policyholder or former policyholder of the
company).

In this situation the distribution of states approaches the
invariant distribution very slowly. In one reasonable example
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(where the probability of capturing a new customer is a high 5%)
the limiting distribution was not approached even after sixty-four
time periods. Thus, in this situation the Markov chain model
is useful for finite time periods, but the study of the invariant
distribution is somewhat academic.

The model in this paper assumes that time is discrete, that
all customers have policies with inception dates at these discrete
time periods, and that the only possible actions are renewal or
non-renewal. Of course, we know that customers can cancel or
purchase policies at any time, and that endorsement activity is
probably more frequent than renewal activity. This would require
a continuous time Markov process with a richer set of options.

In selecting actions that improve financial results through “im-
proved retention,” we must verify that the action itself does not
adversely affect the profitability for each state. A classic action
that violates this condition is a rate decrease. Obviously, this ac-
tion would decrease the profitability of each state, even though
it improves retention.

7. CONCLUSION

This paper uses the theory of Markov chains to analyze re-
tention rates and how they affect key insurance variables. In the
paper, the Markov chain state for a customer is the number of
consecutive policy periods the customer has been insured with
the company. Determining the ultimate, or limiting, distribution
for Markov chains involves solving matrix equations of the form
Bx= x.

The paper shows how to do this using spreadsheets. Finally,
the paper illustrates how changing the retention rates (i.e. the
transition probabilities in the Markov chain) might change key
business variables such as profitability and market share. There
is also a discussion of how the model interrelates with an earlier
“policy age” model by D’Arcy and Doherty.
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APPENDIX A

INITIAL RETENTION ASSUMPTIONS

INTRODUCTION

This spreadsheet carries out the calculations for the insurance
retention problem. The retention problem is set up as as a Markov
Chain, where a customer is in state k if he/she has been insured
with the company for k consecutive periods. State 0 refers to a
potential customer not currently insured with the company. Each
state k has an associated “retention probability” rk, where rk is
the probability that a customer in state k renews his/her policy.
The customer non-renews, i.e. moves to state 0, with probability
1" rk.
The retention problem translates to a Markov chain as follows:

The states of the Markov chain are defined as in the retention
problem.

The matrix of transition probabilities A= (ai,j) is defined as
follows:

ak,k+1 = rk,

ak,0 = 1" rk, and

ak,j = 0 for all other j:

William Feller [2, p. 382] discusses this Markov chain prob-
lem. Sidney Resnick [4] describes this Markov chain as the “Suc-
cess Run Chain.”

The retention problem also requires a vector p(0), the initial
probability distribution of states.

With the transition probabilities A and the initial distribution
p(0) specified, the spreadsheet calculates the “steady-state,” or
invariant, distribution of states, to which the system converges;
the probability distributions at various points in time, to check
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for rate of convergence; and changes in market share and prof-
itability over time.

BASIC DATA

Section 1: Calculate the distribution given the matrix of tran-
sition probabilitiesA, where ai,j is probability of going from state
i to state j in one step. The initial distribution is p(0). This par-
ticular example is an effort to model insurance retention. State
i is the number of years the customer has been insured with
the company. The first state (zero) refers to a potential customer
not currently insured. The next state (one) refers to a first-year
insured, etc.

Input Section

Input the retention probabilities of going from state i to state
i+1. That is, the input for state 0 is the probability that someone
currently insured elsewhere will be written as new business. The
input for state i > 0 is the probability of renewing a policy of
someone that the company has insured for i years.

Then input the initial distribution p(0) of insureds. For i= 0,
this is the proportion of the population not currently insured with
the company. For i > 0, this is the proportion of the population
insured with the company for i consectutive policy terms. The
last column is the proportion insured with the company for 9 or
more consecutive terms.

State i
0 1 2 3 4 5 6 7 8 9

Retention
Probabilities 0.01 0.85 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

Initial
Distribution p(0) 0.9 0.01 0.009 0.008 0.007 0.007 0.006 0.005 0.005 0.043
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Following is the resultant matrix A of one-step transition
probabilities:

0.99 0.01 0 0 0 0 0 0 0 0
0.15 0 0.85 0 0 0 0 0 0 0
0.10 0 0 0.90 0 0 0 0 0 0
0.10 0 0 0 0.90 0 0 0 0 0
0.10 0 0 0 0 0.90 0 0 0 0
0.10 0 0 0 0 0 0.90 0 0 0
0.10 0 0 0 0 0 0 0.90 0 0
0.10 0 0 0 0 0 0 0 0.90 0
0.10 0 0 0 0 0 0 0 0 0.90
0.10 0 0 0 0 0 0 0 0 0.90

DISTRIBUTION AT TIME n

This section shows how to calculate the distribution at time
n, given the initial distribution p(0) and the matrix A.

Note that if p is the distribution of states at any time, then At

(the transpose of A) times p is the distribution in the next time
period. That is, the probability that the system is in state m in
the next time period is the mth column of matrix A times the
distribution p.

Matrix At

0.99 0.15 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
0.01 0 0 0 0 0 0 0 0 0
0 0.85 0 0 0 0 0 0 0 0
0 0 0.90 0 0 0 0 0 0 0
0 0 0 0.90 0 0 0 0 0 0
0 0 0 0 0.90 0 0 0 0 0
0 0 0 0 0 0.90 0 0 0 0
0 0 0 0 0 0 0.90 0 0 0
0 0 0 0 0 0 0 0.90 0 0
0 0 0 0 0 0 0 0 0.90 0.90
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Probability Distributions p(n) at time period n, for n= 1,2,3 : : :

p(0) State 1 2 3 4 5 6 7 8 9

0.900 0 0.9015 0.9028 0.9039 0.9049 0.9059 0.9067 0.9074 0.9080 0.9086
0.010 1 0.0090 0.0090 0.0090 0.0090 0.0090 0.0091 0.0091 0.0091 0.0091
0.009 2 0.0085 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077
0.008 3 0.0081 0.0077 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069
0.007 4 0.0072 0.0073 0.0069 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062
0.007 5 0.0063 0.0065 0.0066 0.0062 0.0056 0.0056 0.0056 0.0056 0.0056
0.006 6 0.0063 0.0057 0.0058 0.0059 0.0056 0.0050 0.0050 0.0050 0.0050
0.005 7 0.0054 0.0057 0.0051 0.0052 0.0053 0.0050 0.0045 0.0045 0.0045
0.005 8 0.0045 0.0049 0.0051 0.0046 0.0047 0.0048 0.0045 0.0041 0.0041
0.043 9 0.0432 0.0429 0.0430 0.0433 0.0431 0.0430 0.0430 0.0428 0.0422

Note that the n-step transition probability is given by raising
matrix A to the nth power. The distribution at time n is given by
(At)n times p(0).

Shown below are the transposes of some n-step transition ma-
trices:

Two-step

0.9816 0.2335 0.1890 0.1890 0.1890 0.1890 0.1890 0.1890 0.1890 0.1890
0.0099 0.0015 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
0.0085 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.7650 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.8100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.8100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.8100 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.8100 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8100 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8100 0.8100 0.8100
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Four-step

0.9675 0.3741 0.3388 0.3388 0.3388 0.3388 0.3388 0.3388 0.3388 0.3388
0.0097 0.0031 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027
0.0083 0.0020 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016
0.0076 0.0011 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008
0.0069 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.6197 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.6561 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.6561 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.6561 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.6561 0.6561 0.6561 0.6561 0.6561

STEADY-STATE PROBABILITIES

This section shows the steady-state probabilities found using
the solver.

The steady-state probability p' is characterized by At*p' =
p', or (At" I)*p' = 0, where I is the identity matrix.
Use the solver to find the solution. Let C=At" I. The steady-

state probability p' is the solution of the linear system Cx= 0
for which the elements of x sum to 1.0. After using the solver,
the vector x contains the steady-state probabilities, and the vector
z=Cx contains all zeros.

Matrix C=At" I x z=Cx

"0:01 0.15 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.91324 0
0.01 "1:00 0 0 0 0 0 0 0 0 0.00913 0
0 0.85 "1:00 0 0 0 0 0 0 0 0.00776 0
0 0 0.90 "1:00 0 0 0 0 0 0 0.00699 0
0 0 0 0.90 "1:00 0 0 0 0 0 0.00629 0
0 0 0 0 0.90 "1:00 0 0 0 0 0.00566 0
0 0 0 0 0 0.90 "1:00 0 0 0 0.00509 0
0 0 0 0 0 0 0.90 "1:00 0 0 0.00458 0
0 0 0 0 0 0 0 0.90 "1:00 0 0.00413 0
0 0 0 0 0 0 0 0 0.90 "0:10 0.03713 0

1.00000
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In this application of the solver, the “target cell” for the solver
is undefined, since there is no objective function to maximize or
minimize.

COMBINED RATIO DIFFERENTIAL

This section illustrates how studying the retention problem
helps businesses evaluate profitability and market share. Gener-
ally combined ratios are better for customers who have been re-
tained longer, due to lower expenses and/or better loss ratios. By
comparing the average combined ratios before and after improv-
ing retention, one can measure the financial effects of changing
policy retention.

Steady State Assumed Assumed Base
Probability Combined Ratio Combined Combined

State i x Differential Ratio Ratio

0 0.913242 N/A
1 0.009132 20.00% 115.54%
2 0.007763 10.00% 105.54%
3 0.006986 8.00% 103.54%
4 0.006288 6.00% 101.54%
5 0.005659 4.00% 99.54%
6 0.005093 2.00% 97.54%
7 0.004584 0.00% 95.54%
8 0.004125 0.00% 95.54%
9 0.037128 0.00% 95.54% 95.54%

Market share 8.68%
Average combined ratio differential 4.46%

Average combined ratio 100.00%
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APPENDIX B

IMPROVED RETENTION ASSUMPTIONS

BASIC DATA

Section 1: Calculate the distribution given the matrix of tran-
sition probabilities A, where ai,j is the probability of going from
state i to state j in one step. The initial distribution is p(0). This
particular example is an effort to model insurance retention. State
i is the number of years a customer has been insured with the
company. The first state (zero) refers to a potential customer not
currently insured. The next state (one) refers to a first-year in-
sured, etc.

Input Section

Input the retention probabilities of going from state i to state
i+1. That is, the input for state 0 is the probability that someone
currently insured elsewhere will be written as new business. The
input for state i > 0 is the probability of renewing a policy of
someone that the company has insured for i years.

Then input the initial distribution p(0) of insureds. For i= 0,
this is the proportion of the population not currently insured with
the company. For i > 0, this is the proportion of the population
insured with the company for i consectutive policy terms. The
last column is the proportion insured with the company for nine
or more consecutive terms.

State i
0 1 2 3 4 5 6 7 8 9

Retention
Probabilities 0.012 0.87 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

Initial
Distribution p(0) 0.90 0.01 0.009 0.008 0.007 0.007 0.006 0.005 0.005 0.043
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Following is the resultant matrix A of one-step transition
probabilities:

0.988 0.012 0 0 0 0 0 0 0 0
0.130 0 0.87 0 0 0 0 0 0 0
0.080 0 0 0.92 0 0 0 0 0 0
0.080 0 0 0 0.92 0 0 0 0 0
0.080 0 0 0 0 0.92 0 0 0 0
0.080 0 0 0 0 0 0.92 0 0 0
0.080 0 0 0 0 0 0 0.92 0 0
0.080 0 0 0 0 0 0 0 0.92 0
0.080 0 0 0 0 0 0 0 0 0.92
0.080 0 0 0 0 0 0 0 0 0.92

DISTRIBUTION AT TIME n

This section shows how to calculate the distribution at time
n, given the initial distribution p(0) and the matrix A.

Note that if p is the distribution of states at any time, then At

(the transpose of A) times p is the distribution in the next time
period. That is, the probability that the system is in state m in
the next time period is the mth column of matrix A times the
distribution p.

Matrix At

0.988 0.13 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
0.012 0 0 0 0 0 0 0 0 0

0 0.87 0 0 0 0 0 0 0 0
0 0 0.92 0 0 0 0 0 0 0
0 0 0 0.92 0 0 0 0 0 0
0 0 0 0 0.92 0 0 0 0 0
0 0 0 0 0 0.92 0 0 0 0
0 0 0 0 0 0 0.92 0 0 0
0 0 0 0 0 0 0 0.92 0 0
0 0 0 0 0 0 0 0 0.92 0.92
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Probability Distributions p(n) at time period n, for n= 1,2,3 : : :

p(0) State 1 2 3 4 5 6 7 8 9

0.900 0 0.8977 0.8957 0.8938 0.8921 0.8906 0.8892 0.8879 0.8867 0.8857
0.010 1 0.0108 0.0108 0.0107 0.0107 0.0107 0.0107 0.0107 0.0107 0.0106
0.009 2 0.0087 0.0094 0.0094 0.0094 0.0093 0.0093 0.0093 0.0093 0.0093
0.008 3 0.0083 0.0080 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0085
0.007 4 0.0074 0.0076 0.0074 0.0080 0.0079 0.0079 0.0079 0.0079 0.0079
0.007 5 0.0064 0.0068 0.0070 0.0068 0.0073 0.0073 0.0073 0.0073 0.0073
0.006 6 0.0064 0.0059 0.0062 0.0064 0.0062 0.0067 0.0067 0.0067 0.0067
0.005 7 0.0055 0.0059 0.0055 0.0057 0.0059 0.0057 0.0062 0.0062 0.0062
0.005 8 0.0046 0.0051 0.0055 0.0050 0.0053 0.0055 0.0053 0.0057 0.0057
0.043 9 0.0442 0.0449 0.0459 0.0473 0.0481 0.0491 0.0502 0.0510 0.0522

Note that the n-step transition probability is given by raising
matrix A to the nth power. The distribution at time n is given by
(At)n times p(0).

Shown below are the transposes of some n-step transition ma-
trices:

Two-step

0.9777 0.1980 0.1526 0.1526 0.1526 0.1526 0.1526 0.1526 0.1526 0.1526
0.0119 0.0016 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
0.0104 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.8004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.8464 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.8464 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.8464 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.8464 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8464 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8464 0.8464 0.8464
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Four-step

0.9598 0.3161 0.2786 0.2786 0.2786 0.2786 0.2786 0.2786 0.2786 0.2786
0.0116 0.0031 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026
0.0102 0.0021 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016
0.0095 0.0012 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008
0.0088 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.6775 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.7164 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.7164 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.7164 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.7164 0.7164 0.7164 0.7164 0.7164

STEADY-STATE PROBABILITIES

This section shows the steady-state probabilities found using
the solver.

The steady-state probability p' is characterized by At*p' =
p', or (At" I)*p' = 0, where I is the identity matrix.
Use the solver to find the solution. Let C=At" I. The steady-

state probability p' is the solution of the linear system Cx= 0
for which the elements of x sum to 1.0. After using the solver,
the vector x contains the steady-state probabilities, and the vector
z=Cx contains all zeros.

Matrix C=At" I x z=Cx

"0:012 0.13 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.87527 0
0.012 "1:00 0 0 0 0 0 0 0 0 0.01050 0

0 0.87 "1:00 0 0 0 0 0 0 0 0.00914 0
0 0 0.92 "1:00 0 0 0 0 0 0 0.00841 0
0 0 0 0.92 "1:00 0 0 0 0 0 0.00773 0
0 0 0 0 0.92 "1:00 0 0 0 0 0.00712 0
0 0 0 0 0 0.92 "1:00 0 0 0 0.00655 0
0 0 0 0 0 0 0.92 "1:00 0 0 0.00602 0
0 0 0 0 0 0 0 0.92 "1:00 0 0.00554 0
0 0 0 0 0 0 0 0 0.92 "0:08 0.06372 0

1.00000
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In this application of the solver, the “target cell” for the solver
is undefined, since there is no objective function to maximize or
minimize.

COMBINED RATIO DIFFERENTIAL

This section illustrates how changing the retention assump-
tions affects profitability. Generally combined ratios are better for
customers who have been retained longer, due to lower expenses
and/or better loss ratios. By comparing the average combined ra-
tios before (100.0%) and after improving retention (99.2%), one
can measure the financial effects of changing policy retention.

Steady State Assumed Assumed Base
Probability Combined Ratio Combined Combined

State i x Differential Ratio Ratio

0 0.875274 N/A
1 0.010503 20.00% 115.54%
2 0.009138 10.00% 105.54%
3 0.008407 8.00% 103.54%
4 0.007734 6.00% 101.54%
5 0.007116 4.00% 99.54%
6 0.006546 2.00% 97.54%
7 0.006023 0.00% 95.54%
8 0.005541 0.00% 95.54%
9 0.063719 0.00% 95.54% 95.54%

Market share 12.47%
Average combined ratio differential 3.66%

Average combined ratio 99.20%
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APPENDIX C

PROOF THAT A IS IRREDUCIBLE

In this appendix we prove that an invariant distribution ex-
ists for the Markov chain formulation of the retention problem.
Recall that the transition matrix for this problem is given by:

A=

!"""""""""""""""#

1" r0 r0 0 0 0 % % % 0 0

1" r1 0 r1 0 0 % % % 0 0

1" r2 0 0 r2 0 % % % 0 0

1" r3 0 0 0 r3 % % % 0 0

1" r4 0 0 0 0 % % % 0 0

% % % % % % % % % % % % % % % % % % % % % % % %
1" rN"1 0 0 0 0 % % % 0 rN"1
1" rN 0 0 0 0 % % % 0 rN

$%%%%%%%%%%%%%%%&
,

where all the rk are strictly between 0 and 1.

To prove the result we need to define the terms “aperiodic”
and “irreducible.”

State j is defined to be “periodic” if there exists an integer
t > 1 such that a(n)jj = 0 unless n is an integer multiple of t. Here
a(n)jj is the n-step probability of returning to state j. The matrix
A is aperiodic if no states are periodic.

We show that this system is aperiodic. Consider any state j.
For any k > 0, with 0< k +N " j the system can return to state
j in j+ k+1 steps through the sequence

j( j+1( j+2( %% % ( j+ k( 0( 1( %% % ( j

for k +N " j: (C.1)

For k > N " j, the system can return to state j in j+ k+1 steps
through the same sequence except that it “parks” at state N for
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k" (N " j) steps before going to state 0. For example, if j = 1,
N = 4, and k = 6, then the system returns to state j in k+ j+1
(= 8) steps through the sequence of states:

1( 2( 3( 4( 4( 4( 4( 0( 1:

This last complication only comes about because we set N as
the highest state. If we had allowed an infinite number of states
then Equation C.1 holds for all k > 0.

Thus we have shown that a system in state j can return to
state j in n steps for all n= #j+2,j+3,j+4, : : :$.8 This means
A has no period; i.e., A is aperiodic.

A chain is defined to be “irreducible” if and only if every state
can be reached from every other state. This means that, given any
two states j and k, there exists an integer n such that the system
can move from j to k in n steps.

The chain A is clearly irreducible since the system can move
from state j to state k through the sequence of states:

j( 0( 1( %% % ( k

We have now established that A is aperiodic and irreducible.

We now show directly that an invariant distribution p exists
for A by calculating it.

The defining equations for invariance are

pk = rk"1pk"1 for k = 1,2,3 % % %N " 1, (C.2)

pN = rN"1pN"1 + rNpN , and (C.3)

p0 = (1" r0)p0 + (1" r1)p1 + % % %+(1" rN)pN: (C.4)

From Equation C.2 we get

pk = r0r1r2 % % %rk"1p0 for k = 1,2,3 % % %N "1: (C.5)

8This is true for n= j+1 also, but this is not needed for the proof.
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From Equation C.5 we can see that the terms 0 through N "1 on
the right-hand side of Equation C.4 add to p0" rN"1pN"1. From
Equation C.3 the last term on the right-hand side of Equation
C.4 equals rN"1pN"1. Thus, we can choose an arbitrary value
for p0, define the remaining pk by Equation C.2 and C.3, and
Equation C.4 will be automatically satisfied. Once all the pk are
calculated, just rescale them so they add to 1 and these values of
p are the invariant probabilities.

The following theorem9 will now enable us to say that the n-
step distributions converge to the invariant distribution, regard-
less of the initial distribution.

Suppose a chain is irreducible and aperiodic and that there
exist probabilities #pk, k = 0,1,2, : : :$ with all pk & 0 that satisfy
the invariant distribution conditions:

p=Atp:

Then
a(n)jk ( pk as n()

independently of the initial state j, and the chain is ergodic.

We have already shown that A satisfies all the conditions
of the theorem. (Note the term “ergodic” means that the mean
recurrence time to revisit any state j is finite). What the con-
clusion means is that the n-step transition matrix An ultimately
approaches the matrix for which every column is the invariant
distribution.

9Feller, [2, p. 393]. Actually, the theorem in Feller is more powerful in that it provides
a converse which states that if the limits exist, then they form the invariant distribution.


