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Abstract

This paper combines a simple experience rating ex-
ample with a set of graphs in order to illustrate key
credibility concepts as they relate to experience rating.
As part of this graphical approach, credibility will be
related to linear regression.
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1. INTRODUCTION

Philbrick [1] uses his excellent target shooting example to
graphically illustrate some key concepts of credibility. Hewitt
[2] uses a die/spinner example to illustrate important ideas of
credibility. In this same spirit, this paper will combine a simple
experience rating example with a set of graphs to illustrate key
credibility ideas as they relate to experience rating. As part of
the graphical approach, credibility ideas will be related to linear
regression.

Prior and subsequent experience will be simulated for var-
ious sets of insureds for different sets of simple assumptions.
This simulated data for the various examples will be used to il-
lustrate that the slope of the regression line between prior and
subsequent experience is one estimate of the Bühlmann credi-
bility. Finally, these same examples will be used to illustrate
that the expected squared error between the actual and predicted
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subsequent experience is minimized when the weight given
to the observed experience is equal to the Bühlmann credibil-
ity.

2. EXPERIENCE RATING

The goal of experience rating is to use an individual insured’s
experience to help predict future loss costs.1 If the individual
risk’s experience were observed to be worse than average, we
would predict that his future experience would also likely be
somewhat worse than average. Therefore, we would be likely to
charge this insured somewhat more than average.

Credibility, as used in experience rating, quantifies how much
worse or better an insured’s future experience is expected to be
based on a particular deviation from average observed in the past.
In the simplest case:2

New Estimate = (Credibility)(Observation)

+ (1!Credibility)(Overall Mean)
= (Overall Mean)+ (Credibility)

" (Observation!Overall Mean):

In Appendix A, Bühlmann credibilities, Z, are calculated for
various situations, using the formulas:

Z =N=(N +K)

K = EPV/VHM

1See, for example, Meyers [3], Mahler [4], Finger [5], Gillam and Snader [6], and Tiller
[7].
2The actual applications have a number of complications beyond the scope of this
paper.
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where

Z =Bühlmann credibility,

N =Number of years of data (from a single insured),

K =Bühlmann credibility parameter,

EPV=Expected value of process variance for a single
unit of the risk process (i.e., for one insured
for one year),and

VHM=Variance of the hypothetical means for a single
unit of the risk process (i.e., for one insured
for one year).

3. SIMPLE EXAMPLE

The following very simplified assumptions will be used in
various combinations to illustrate credibility ideas. See Table 1
for a summary of the different situations illustrated.

TABLE 1

SUMMARY OF DIFFERENT SITUATIONS

Situation Quantity Types of Figure Credibility
Number* of Interest Insureds Number(s) Estimated Theoretical

1 Frequency 50 Good, 50 Bad 1, 2 40% 33%

1 Frequency 3 Years of Prior Data 3 58% 50%
50 Good, 50 Bad

2 Frequency 50 Excellent, 50 Ugly 4, 5 78% 81.8%

3 Frequency 50 Excellent, 50 Good, 6, 7 72% 71.4%
50 Bad, 50 Ugly

4 Unlimited 125 Excellent, 8, 9 51.5% 52.9%
Losses 125 Ugly

5 Limited 125 Excellent 10 71.4% 70.1%
Losses 125 Ugly

*See Appendix A for more details.
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Claim frequency for individual insureds is assumed to be Pois-
son.3 Claim severity is assumed to be given by a Pareto distribu-
tion4 with shape parameter 3 and scale parameter 20,000. Fre-
quency and severity are assumed to be independent. There are
four possible types of insureds with different Poisson parame-
ters:

Type Average Annual Claim Frequency

Excellent 5
Good 10
Bad 15
Ugly 20

In Appendix A, the usual Bühlmann credibility techniques
have been applied to various situations involving these four types
of insureds in order to quantify the credibility to be assigned
to the past experience of an insured. A set of graphs has been
constructed to illustrate these same situations.

These graphs illustrate the connection between Bühlmann
credibility and least squares linear regression. For the simple sit-
uations dealt with here, the slope of the least squares regression
line between the past and subsequent observations of insureds is
an estimate of the Bühlmann credibility. Appendix B provides a
mathematical demonstration of this relationship. Not only is this
relationship approximate,5 but the slope from the regression will
vary in particular examples due to random fluctuations. Thus,
the estimated credibility will not exactly equal the theoretical
Bühlmann credibility.

4. GRAPHS OF FREQUENCY EXAMPLES

Assume we have 100 insureds all in the same risk classi-
fication, territory, etc. The first graph, Figure 1, shows simu-

3The Poisson parameter for each insured stays the same over time.
4F(x) = 1! (20,000=(20,000+ x))3.
5As derived in Appendix B, one determines the expected value of a numerator
and denominator separately and then assumes that E[A=B]# E[A]=E[B] in the sit-
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FIGURE 1

SIMULATED CLAIMS EXPERIENCE

Situation 1: 50 Good Risks (Poisson 10) and 50 Bad Risks (Poisson 15)

lated claim counts for these 100 insureds divided into two equal
groups. In this graph, the “Good Risks” are labeled with crosses
and the “Bad Risks” with circles. In both the real world6 and
many of the subsequent graphs, the risks come without such
labels attached. (If they did come with such labels, we would
not need to use credibility.)

The 50 Bad Risks each have an expected claim frequency
of 15 while the 50 Good Risks each have an expected claim
frequency of 10. For each of the 100 insureds, a single prior
year of simulated claim counts has been plotted against a single
subsequent year of simulated claim counts. For example, one of

uations to which the result is being applied. In general, E[A]=E[B] is not an unbiased
estimator of A=B.
6In the real world, there is no way to precisely determine any individual’s expected future
frequency.
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FIGURE 2

SIMULATED CLAIMS EXPERIENCE
GOOD AND BAD RISKS

Situation 1: 50 Good Risks (Poisson 10) and 50 Bad Risks (Poisson 15)

the Good Risks had 4 claims in the prior year and 5 claims in the
subsequent year. This is indicated by a cross at the point (4,5).
There is considerable overlap between the groups. Nevertheless,
the Good Risks are more likely to be in the lower left while the
Bad Risks are more likely to be in the upper right of the graph.

The next graph, Figure 2, shows the same 100 insureds with-
out labels. In Figure 2 a least squares regression line has been
fit to the points. One could use this fitted line to predict a future
year’s experience based on an observation. Since the line slopes
upwards, a worse than average former year would lead one to
predict a worse than average subsequent year.

So if one observed 20 claims in a year for an insured, one
might predict about 15 claims for that insured next year, com-
pared to the overall average of 12.5. The formula for this least
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squares line is approximately:

Y = :40X +7:6:

The equation can be restated in the form of the “basic credibility
formula:”

Estimate = Z(Observation)+ (1!Z)(Overall Mean),
with the credibility Z = 40% and

(1!Z)(Overall Mean) = (60%)(12:5) = 7:5# 7:6:
With only 100 insureds, this result is subject to considerable

random fluctuation. Thus, the estimated credibility of 40% is
not equal to the theoretical Bühlmann credibility. The simulation
with many more insureds would give a credibility of 1/3, the
theoretical value as shown in Appendix A, Situation 1.

The credibility is just the slope of the straight line. It is the
weight given to the observation.

Note the way that the fitted line passes through the point
(12:5,12:5), denoted by a plus. Average experience in the prior
year yields an estimate of average experience in the subsequent
year. This follows from rewriting the basic credibility formula as
Estimate = Overall Mean+Z(Observation!Overall Mean).
Note that the line Y = X, with a slope of unity, would corre-

spond to 100% credibility, while the line Y = 12:5 with a slope of
zero, would correspond to zero credibility. In general, the slope
and the Bühlmann credibility will be between zero and one.

These general features displayed in Figure 2 will carry over
to subsequent figures. The least squares line will slope upwards
and pass through the point denoting average experience in the
prior and subsequent period. The slope will be (approximately)
equal to the credibility.

The next graph, Figure 3, is similar to Figure 2 but shows three
years of prior experience rather than one. Note that the X-axis is
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FIGURE 3

SIMULATED CLAIMS EXPERIENCE, 3 PRIOR YEARS
GOOD AND BAD RISKS

Situation 1: 50 Good Risks (Poisson 10) and 50 Bad Risks (Poisson 15)

now the annual claim frequency observed over three years. We
expect three years of data to contain more useful information
and thus be given more weight than would one year. In fact, a
fitted straight line has a larger slope of about 60% (actually 58%)
corresponding to a credibility of 60%. One way to increase the
credibility of data is to increase the volume of data.

In the case of Figures 2 and 3, the credibility is equal to
N=(N +K) where N is the number of years of data and K =
2. (See Appendix A, Situation 1.) This formula is used quite
often, with the “Bühlmann credibility constant” K dependent on
the statistical properties of the particular situation. Note that for
Figure 2 with one year of prior data, Z = 1=(1+2) = 33%, while
in Figure 3 with three years of prior data, Z = 3=(3+2) = 60%.

The next graph, Figure 4, shows 100 risks divided this time
into Excellent Risks and Ugly Risks. The Excellent Risks are
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FIGURE 4

SIMULATED CLAIMS EXPERIENCE

Situation 2: 50 Excellent Risks (Poisson 5) and 50 Ugly Risks (Poisson 20)

shown by asterisks and the Ugly Risks by wedges. The mean
frequencies are 5 and 20 rather than 10 and 15 as in the previous
exhibits. Therefore, the two groups are spread apart much more.
Since there is more dispersion between risks,7 each risk’s data
will be given more credibility than in the first graph.

This can be seen in the next graph, Figure 5, where a straight
line has been fit to these points. The line has a much larger slope
than the line in Figure 2, corresponding to higher credibility of
about 82%. (The estimated credibility is 78%. Again the results
of an experiment with only 100 risks differs from the theoreti-

7The experience is more likely to distinguish between excellent and ugly risks, than
between good and bad risks. This is quantified via the variance of hypothetical means
(VHM). As shown in Appendix A, the VHM in Situation 2 of 56.25 is much larger than
that in Situation 1 of 6.25.
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FIGURE 5

SIMULATED CLAIMS EXPERIENCE
EXCELLENT AND UGLY RISKS

Situation 2: 50 Excellent Risks (Poisson 5) and 50 Ugly Risks (Poisson 20)

cal result of 81.8% in Appendix A, Situation 2, due to random
fluctuation.) So due to the larger variation in hypothetical means
(holding everything else equal) in Figure 5 versus Figure 2, the
Bühlmann credibility increased from 33% to 82%. The value
of the individual risk’s information increased relative to the in-
formation contained in the overall mean. Conversely, the relative
value of the information contained in the overall mean decreased.

The next graph, Figure 6, combines the four different types of
insureds. This starts to approach the real world situations where
risks’ expected claim frequencies are assumed to be along a con-
tinuous spectrum, rather than being of discrete types.8 We can see

8One could approach a continuous situation similar to the Gamma–Poisson frequency
process. The Gamma–Poisson frequency process is explained, for example, in Hossack,
Pollard and Zehnwirth [8], Herzog [9], or Mahler [10].
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FIGURE 6

SIMULATED CLAIMS EXPERIENCE

Situation 3: 50 Excellent Risks (Poisson 5), 50 Good Risks (Poisson 10), 50 Bad Risks (Poisson 15),
and 50 Ugly Risks (Poisson 20)

plenty of overlap between the four types of insureds, although
since we labeled the insureds, we can discern the grouping of
different types.

The next graph, Figure 7, shows a line fit to data from all
four types. There the slope of 72% is between the slopes of 40%
and 78% that we got when dealing with just two groups in Fig-
ures 2 and 5. All else being equal,9 this makes sense since the
variation of the hypothetical means is in between the variations
of hypothetical means for those two situations. The theoretical
credibility of 71% determined in Appendix A, Situation 3, is be-
tween the theoretical credibilities of 33% and 82% for Situations
1 and 2 which deal with only two groups.

9Specifically, the expected value of the process variance is the same in all three situations.
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FIGURE 7

SIMULATED CLAIMS EXPERIENCE
EXCELLENT, GOOD, BAD, AND UGLY RISKS

Situation 3: 50 Excellent Risks (Poisson 5), 50 Good Risks (Poisson 10), 50 Bad Risks (Poisson 15),
and 50 Ugly Risks (Poisson 20)

5. GRAPHS OF PURE PREMIUM EXAMPLES

The following graphs will all involve 125 Excellent and 125
Ugly Risks and not only deal with claim frequency, but with
claim severity as well. By looking at dollars of loss rather than
numbers of claims, as can be seen on the next graph, Figure 8,
we introduce more random fluctuation.10 Therefore, the relative
value of the observation is less compared to the overall average;
the credibility goes down. One way to decrease the credibility of
data is to increase the variability of the data.

10In the absence of the labels, it would be somewhat easier to distinguish the Excellent
and Ugly risks in Figure 4 dealing with frequency only than in Figure 8 dealing with
dollars of loss.
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FIGURE 8

SIMULATED LOSS EXPERIENCE

Situation 4: 125 Excellent Risks (Poisson 5) and 125 Ugly Risks (Poisson 20), Pareto Severity
(3, $20,000)

As can be seen on the next graph, Figure 9, the slope of
the fitted line is 51.5%. As shown in Appendix A, Situation
4, the theoretical credibility is 53% compared to 82% for the
corresponding claim frequency Situation 2. The greater random
fluctuation, which is quantified by the larger “process variance,”
has decreased the credibility assigned to the observations.

In practical applications, one often limits the size of claims
entering into experience rating, since one way to decrease the
variability of the data is to cap losses. The final graph in this
series, Figure 10, shows the results of limiting each claim to
$25,000. (This capping can be just for the purposes of experi-
ence rating or could involve an actual policy limit.) The slope of
the fitted line between prior limited losses and subsequent lim-
ited losses is 71.4%. As determined in Appendix A, Situation 5,
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FIGURE 9

SIMULATED LOSS EXPERIENCE

Situation 4: 125 Excellent Risks (Poisson 5) and 125 Ugly Risks (Poisson 20), Pareto Severity
(3, $20,000)

the theoretical credibility of 70% when using limited losses com-
pares to 53% for total losses in Situation 4. Capping the losses
has reduced the random fluctuations (i.e., has reduced the pro-
cess variance) thereby increasing the credibility assigned to the
experience. (Basic limit losses are less volatile than total limits
losses.) For more on how to analyze experience rating plans, see
for example Meyers [3] or Mahler [4].

6. EFFECT OF RANDOM FLUCTUATIONS ON ESTIMATED
CREDIBILITIES

As mentioned above, the credibility estimated from regress-
ing actual data sets will be affected by random fluctuations and,
therefore, will not equal the theoretical Bühlmann credibility cal-
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FIGURE 10

SIMULATED LOSS EXPERIENCE
Each Claim Limited to $25,000

Situation 5: 125 Excellent Risks (Poisson 5) and 125 Ugly Risks (Poisson 20), Pareto Severity
(3, $20,000)

culated in Appendix A. The fewer insureds in the data set and/or
the larger the process variance,11 the larger is the impact from
random fluctuations.

Figures 11 and 12 show the results of simulation experiments.
Figure 11 deals with the frequency example with all four types
of insureds as illustrated in Figures 6 and 7. The situation in
Figure 7 with 200 insureds was simulated 10 separate times. This
resulted in 10 different estimates of the credibility, ranging from
63.4% to 77.8%, as shown in Figure 11. Similar simulation ex-

11If the expected claim frequencies had been smaller, then the process variance would
have been larger. For example, if the expected claim frequency for excellent risks were
.05 rather than 5, one would need many more insureds to get as good an estimate of the
credibility.
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FIGURE 11

SIMULATION EXPERIMENTS
CREDIBILITIES ESTIMATED BY REGRESSION

CLAIM COUNTS
EXCELLENT, GOOD, BAD, AND UGLY RISKS

Credibilities are those to be applied to one observation of one insured. The theoretically correct value
is 71.4%. Credibilities are estimated from the slope of the regression between one year of observations
for the class and a subsequent year of observations for the class.

periments were performed for data sets of 2,000 and 20,000. As
shown in Figure 11, with more insureds the credibility estimates
are more tightly bunched and closer to the theoretically correct
value.

Figure 12 is similar to Figure 11 but deals with the pure pre-
miums rather than frequencies. With only 250 insureds there is
considerable random fluctuation in the estimates. With 25,000
insureds the estimates are clustered between 50% and 54%. Due
to the larger process variance, the estimates are less tightly clus-
tered than they are in the examples involving frequency shown
in Figure 11.
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FIGURE 12

SIMULATION EXPERIMENTS
CREDIBILITIES ESTIMATED BY REGRESSION
LOSSES FOR EXCELLENT AND UGLY RISKS

Credibilities are those to be applied to one observation of one insured. The theoretically correct value
is 52.9%. Credibilities are estimated from the slope of the regression between one year of observations
for the class and a subsequent year of observations.

7. SQUARED ERRORS

Figures 13 through 17 illustrate the expected squared er-
rors between the prediction and future observation for various
weights applied to the observed data.

Figures 13 and 15 deal with the frequency example with all
four types of insureds as illustrated in Figures 6 and 7. Figure
13 displays the expected squared error12 as a function of the
weight (credibility) given to the observed frequency. The ex-
pected squared error is a parabola as a function of the weight.13

12The expected value of the squared difference between the future observation and the
prediction.
13This mathematical fact is demonstrated in Appendix C.



A GRAPHICAL ILLUSTRATION OF EXPERIENCE RATING CREDIBILITIES 671

FIGURE 13

EXPECTED SQUARED PREDICTION ERRORS VS. WEIGHT GIVEN
TO OBSERVED FREQUENCY

EXCELLENT, GOOD, BAD, AND UGLY RISKS

Equal numbers of: Excellent Risks (Poisson 5), Good Risks (Poisson 10), Bad Risks (Poisson 15),
and Ugly Risks (Poisson 20). Expected value of process variance = 12:5, variance of the hypothetical
means = 31:25. K = 12:5=31:25 = 0:4. Least squares credibilities are 71.4%, 88.2%, and 96.2%, for
1, 3, and 10 years of data, respectively.

For one year of observed data, the expected squared error is
minimized for a weight of 71.4%, the Bühlmann credibility for
this situation. For three years of observed data, the minimum
occurs for a weight of 88.2%. For ten years of observed data,
the minimum occurs for a weight of 96.2%.14

As seen in Figure 13, as the number of years of observations
increases, the prediction error from relying solely on the data
(weight = 100%) declines, while the prediction error from rely-
ing solely on the a priori mean (weight = 0) remains the same.
Thus, the place where the parabola reaches its minimum moves

14Note 10=(10+ :4) = 96:2%. Similarly 3=(3+ :4) = 88:2% and 1=(1+ :4) = 71:4%.
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FIGURE 14

EXPECTED SQUARED PREDICTION ERRORS VS. WEIGHT GIVEN
TO OBSERVED FREQUENCY

EXCELLENT, GOOD, BAD, AND UGLY RISKS

Equal numbers of: Excellent Risks (Poisson 5), Good Risks (Poisson 10), Bad Risks (Poisson 15),
and Ugly Risks (Poisson 20). Expected value of process variance = 12:5, variance of the hypothetical
means = 31:25. K = 12:5=31:25 = 0:4. Least squares credibilities are 71.4%, 88.2%, and 96.2%, for
1, 3, and 10 years of data, respectively.

to the right as the number of years of data increases; the credibil-
ity increases becoming 100% in the limit as the number of years
increases. For example, for one year of data the parabola reaches
its minimum at 71.4%, while for three years of data the corre-
sponding parabola reaches its minimum at 88.2%. Figure 14 is a
magnified version of Figure 13, which more clearly displays the
minima.

Figure 15 is similar to Figure 13, but here the expected
squared error is displayed as a function of the “credibility pa-
rameter.” In other words, we give N years of data weight Z =
N=(N +K), using the Bühlmann credibility formula with credi-
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FIGURE 15

EXPECTED SQUARED PREDICTION ERRORS VS. CREDIBILITY
PARAMETER USED TO DETERMINE WEIGHT GIVEN TO

OBSERVED FREQUENCY
EXCELLENT, GOOD, BAD, AND UGLY RISKS

Equal numbers of: Excellent Risks (Poisson 5), Good Risks (Poisson 10), Bad Risks (Poisson 15),
and Ugly Risks (Poisson 20). Expected value of process variance = 12:5, variance of the hypothetical
means = 31:25, K = 12:5=31:25 = 0:4.

bility parameter K.15 As shown in Appendix A, for Situation 3,
the Bühlmann credibility parameter is 0.4; as seen in Figure 15,
the expected squared error is indeed minimized for this value of
the credibility parameter. Note the same credibility parameter of
0.4 is optimal regardless of the number of years of data observed.

Figures 16 and 17 are similar to Figures 13 and 15, but deal
with the pure premiums rather than frequencies. Figure 16 shows
the expected squared errors, which are parabolas as a function of

15In Figure 15 K is not necessarily the Bühlmann credibility parameter. Rather, we use
a value of K to calculate a value of Z , which may not be the least squares Bühlmann
credibility. In the case of Figure 15, 0.4 is the Bühlmann credibility parameter.
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FIGURE 16

EXPECTED SQUARED PREDICTION ERRORS (BILLIONS) VS.
WEIGHT GIVEN TO OBSERVED FREQUENCY

EXCELLENT AND UGLY RISKS

Equal numbers of: Excellent Risks (Poisson 5) and Ugly Risks (Poisson 20). Expected Value of
Process Variance = 5,000 million, Variance of the Hypothetical Means = 5,625 million. K = 0:8889.
Least Squares Credibilities are 52.9%, 77.1%, and 91.8%, for 1, 3, and 10 years of data respectively.

the weight applied to the observed losses. Again, the expected
squared errors are minimized when the weight given to the ob-
served losses corresponds to the Bühlmann credibility.

Figure 17 shows the expected squared error as a function of
the credibility parameter. As shown in Appendix A, for Situation
4, the Bühlmann credibility parameter K = :8889. As seen in
Figure 17, this value of the credibility parameter minimizes the
expected squared errors.

8. CONCLUSIONS

Credibility, as used in experience rating, has been illustrated
via graphs. The estimated credibility was equal to the slope of
the line obtained from a least squares regression.
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FIGURE 17

EXPECTED SQUARED PREDICTION ERRORS (BILLIONS) VS.
CREDIBILITY PARAMETER USED TO DETERMINE WEIGHT

GIVEN TO OBSERVED LOSSES
EXCELLENT AND UGLY RISKS

Equal numbers of: Excellent Risks (Poisson 5) and Ugly Risks (Poisson 20). Expected value of
process variance = 5,000 million, variance of the hypothetical means = 5,625 million. K = 0:8889.

Prior and subsequent experience has been simulated for var-
ious sets of insureds for different sets of simple assumptions.
This simulated data for the various examples was used to il-
lustrate that the slope of the regression line between prior and
subsequent experience is one estimate of the Bühlmann credi-
bility. Finally, these same examples were used to illustrate that
the expected squared error between the actual and predicted sub-
sequent experience is minimized when the weight given to the
observed experience is equal to the Bühlmann credibility.

The regression technique shown here for illustrative purposes
could be employed in simple situations. Where greater accuracy
is desired or where the behavior is more complicated empirical
Bayesian and other techniques have been developed to estimate
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credibilities from data.16 In any case, the regression techniques
applied to simulations of simple examples are another useful way
to learn and understand the important basic ideas of credibility
and experience rating.

16See for example ISO [11], Venter [12], Mahler [13], or Mahler [14].
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APPENDIX A

CREDIBILITY FOR THE EXAMPLES

The formulas to be used are:17

K = EPV/VHM,

Z =N=(N +K),

where

K =Bühlmann credibility parameter,

EPV=Expected value of process variance for a single unit
of the risk process (i.e., for one insured for one year,

VHM=Variance of the hypothetical means for a single unit
of the risk process (i.e., for one insured for one year,

Z =Bühlmann credibility, and

N =Number of years of data (from a single insured).

The following information will be used in various combina-
tions to illustrate credibility ideas.

Claim frequency for individual insureds is assumed to be Pois-
son.18 Claim severity is assumed to be given by a Pareto distribu-
tion19 with shape parameter 3 and scale parameter 20,000.Fre-
quency and severity are independent. There are four possible
types of insureds with different Poisson parameters:

Type Average Annual Claim Frequency

Excellent 5
Good 10
Bad 15
Ugly 20

17These formulas are explained or derived in, for example, Mayerson [15], Hewitt [16],
Hewitt [2], Philbrick [1], Herzog [9], Venter [12], and Mahler [17].
18The Poisson parameter for each insured stays the same over time.
19F(x) = 1! (20,000=(20,000+ x))3.
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Situation 1: Frequency with Good and Bad Risks

A risk is selected at random from a class made up equally of
Good and Bad Risks.

Since the frequencies are Poisson, their variance is equal to
their mean. Therefore, the expected value of the process variance
is equal to the overall mean = 12:5.

VHM= $(10!12:5)2 + (15!12:5)2%=2 = 6:25:
K = EPV/VHM= 12:5=6:25 = 2:

For one year of data (as in Figure 2), Z = 1=(1+2) = 33%.

For three years of data (as in Figure 3), Z = 3=(3+2) = 60%.

Situation 2: Frequency with Excellent and Ugly Risks

A risk is selected at random from a class made up equally of
Excellent and Ugly Risks.

EPV= overall mean = 12:5:

VHM= $(5!12:5)2 + (20! 12:5)2%=2 = 56:25:
K = EPV/VHM= :222:

For one year of data (as in Figure 5), Z = 1=(1+ :222) =
81:8%.

Situation 3: Frequency with Excellent, Good, Bad, and Ugly
Risks

A risk is selected at random from a class made up equally of
Excellent, Good, Bad, and Ugly Risks.

EPV= overall mean = 12:5:

VHM= $(5!12:5)2 + (10! 12:5)2 + (15!12:5)2
+ (20! 12:5)2%=4 = 31:25:

K = 12:5=31:25 = :4:

For one year of data (as in Figure 7), Z = 1=(1+ :4) = 71:4%.
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Situation 4: Pure Premiums (Unlimited Losses) for Excellent and
Ugly Risks

A risk is selected at random from a class made up equally of
Excellent and Ugly risks.

With a Poisson frequency,20 the process variance of the pure
premiums = (mean frequency)(second moment of the severity).
(See, for example, Mahler [18].) Since the severity distribution
is assumed to be the same for all risks, the expected value of the
process variance = (overall mean frequency)(second moment of
the severity).

For a Pareto distribution, F(x) = 1! (¸=(¸+ x))®, the second
moment of the severity is 2¸2=$(®!1)(®! 2)%, which in this
case is 400 million. Therefore, since the mean frequency is 12.5,
EPV= (12:5) (400 million) = 5 billion.

For a Pareto distribution, the mean is ¸=(®! 1) = 10,000.
Thus, the hypothetical mean pure premiums are 50,000 and
200,000. Thus, the VHM= 5:625 billion.

Thus, K = EPV/VHM= 0:8889.

For one year of data (as in Figure 9), Z = 1=(1+ :8889) =
52:9%.

Situation 5: Limited Losses for Excellent and Ugly Risks

A risk is selected at random from a class made up equally
of Excellent and Ugly Risks. One observes the losses limited
to $25,000 per claim and attempts to predict the future limited
losses for the same insured.

20In general, for cases where frequency and severity are independent, the process variance
of the pure premium= (mean frequency)(variance of severity)+ (mean severity)2 (vari-
ance of frequency). For a Poisson, mean frequency = variance of the frequency. Thus, the
process variance of the pure premiums = (mean frequency)(variance of severity+mean
severity2) = (mean frequency)(second moment of severity).
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For a Pareto distribution, F(x) = 1! (¸=(¸+ x))®, the limited
second moment is given by21

E[X2;L] = E[X2]$1! (1+L=¸)1!®[1+ (®!1)L=¸]%:
In this case, E[X2;25,000] = 400 million $1! (1+1:25)!2[1+
(2)(1:25)]%= 123:5 million. As in Situation 4, EPV= (overall
mean frequency)(second moment of the severity) = (12:5)(123.5
million) = 1:544 billion.

For a Pareto distribution, the limited expected value is given
by22

E[X;L] = E[X]$1! (1+L=¸)1!®%:
In this case, E[X;25,000] = (10,000)(1! (1+1:25)!2) = 8,025.
Thus, the hypothetical mean pure premiums are (5)(8,025) =
40,125 and (20)(8,025) = 160,500. Therefore, VHM= 3:623 bil-
lion. K = EPV/VHM= 0:426. Note that while both the EPV and
VHM declined compared to Situation 4, the EPV declined more.
Therefore, the Bühlmann credibility parameter K declined from
0.8889 to 0.426. Thus, for one year of data (as in Figure 10)
Z = 1=(1+ :426) = 70:1%.

21See Mahler [19] or Klugman, Panjer, and Willmot [20].
22See Hogg and Klugman [21], Mahler [19], or Klugman, Panjer, and Willmot [20].
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APPENDIX B

REGRESSION AND CREDIBILITY

It turns out that in the example here,23 the Bühlmann credibil-
ity is approximately the slope of the least squares line between
prior and subsequent observations, as will be shown in this Ap-
pendix. Also, it will be shown that the regression line is expected
to pass approximately through the point (M,M), where M is the
overall mean.

Let Xi be the prior observations (for one year) for the insureds
in the portfolio and let Yi be the subsequent observations (for
one year) for the insureds in the portfolio. A regression line
y = ax+b, with slope a and intercept b, can be fit between the
prior and subsequent observations.24 Then the slope of the least
squares line is given by:25

a=
(§XiYi=O)! (§Xi=O)(§Yi=O)

(§X2i =O)! (§Xi=O)2
:

Where O is the number of insureds observed.

The numerator has an expected value equal to the covariance
of Xi and Yi, the observations in two separate years.

26 This is
assumed to be ¿2, the variance of the hypothetical means.27

The denominator has an expected value equal to the variance
of the observations in a single year.28 It is assumed that this

23This result holds in the case of the covariance structure assumed in Appendices A and
C. In particular, there are no shifting risk parameters over time. More general covariance
structures are discussed, for example, in Meyers [3], Mahler [4], Mahler [13], and Mahler
[14].
24As is done in Figures 2, 3, 5, 7, 9, and 10.
25For simplicity we have assumed that each insured is of the same size and gets the same
weight. Thus, we perform an unweighted regression.
26Recall that Cov[A,B] = E[AB]!E[A]E[B].
27One of the assumptions underlying Bühlmann’s credibility formula is that the covari-
ance between different years of data is the variance of the hypothetical means.
28Recall that Var[A] = E[A2]!E[A]2.
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expected value is ¿2 + ´2, the sum of the variance of the hypo-
thetical means and the expected value of the process variance.29

If one plugs in the expected values of both the numerator and
denominator, then we expect:30

a# ¿2=(¿2 + ´2) = Bühlmann credibility for one year:31

If X had been an observation for N years rather than one year,
then the expected value of the process variance (of the frequency
or pure premiums) would have declined by a factor of 1=N; it
would have been ´2=N rather than ´2 as for one year.32 On the
other hand, the variance of the hypothetical means would have
remained the same.33 Thus, with N years of data rather than
one, the expected value of the numerator would have been the
same, but the expected value of the denominator would have
been ¿2 + ´2=N and

a# ¿2=(¿2 + ´2=N) =N=(N + ´2=¿2) =N=(N +K)
= Bühlmann credibility for N years:

Thus, the slope of the regression line is approximately34 equal
to the Bühlmann credibility.

29The terms are each defined in terms of a single year of data. The total variance is equal
to the VHM plus EPV.
30Note that this estimator which is a ratio of two unbiased estimators can be biased. This
subject has been extensively discussed in relation to empirical Bayes credibility. See, for
example, ISO [11] and Venter [12].
31¿2=(¿2 + ´2) = VHM=(VHM+EPV) = 1=(1+EPV/VHM) =N=(N +K), withN = 1 and
K = EPV/VHM.
32See, for example, Mahler [17] or Mahler [14]. The process variance of the number of
claims increases by a factor of N, since variances add for (independent) years. However,
the claim frequency is the claim count divided by N , which introduces a factor of 1=N2

into the variances. The net result is a factor of N=N2 = 1=N for the process variance of
the claim frequency.
33See, for example, Mahler [17] or Mahler [14]. The hypothetical annual means of the
claim frequency are unchanged, thus, their variance is also unaffected. Alternately, the
hypothetical mean claim counts are multiplied by N and, thus, their variance is multiplied
by N2. However, claim frequency is divided by N, which introduces a factor of 1=N2

into the variance. The VHM is, thus, multiplied by N2=N2 = 1.
34In general E[A=B] &=E[A]=E[B]. Nevertheless, for the situations such as being dealt
with here, E[A=B]# E[A]=E[B].
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Also, one can show that the regression line is expected to pass
approximately through the point (M,M) where M is the overall
mean. The intercept of the least squares line is

b =
(§Yi=O)(§X

2
i =O)! (§XiYi=O)(§Xi=O)

(§X2i =O)! (§Xi=O)2
,

where O is the number of insureds observed each year,

§Yi=O has an expected value equal to the overall mean M,
and §X2i =O has an expected value of the second moment of the
average of N years of data. This is the sum of the variance of the
average of N years of data plus the square of the overall mean.
In turn, the variance of the average of N years of data35 is equal
to ¿2 + ´2=N.

Thus, the expected value of §X2i =O is equal to ¿2 + ´2=N +
M2.

The numerator of a is equal to §XiYi=O! (§Xi=O)(Yi=O).
Thus, the expected value of §XiYi=O is equal to that of the nu-
merator of a, ¿2, plus the expected value of (§Xi=O)(§Yi=O)
which is (M) (M). Therefore, the expected value of §XiYi=O is
¿2 +M2.

§Xi=O has an expected value equal to the overall mean M.

Thus, the expected value of the numerator of b with N years
of data is

M(¿2 + ´2=N +M2)! (¿2 +M2)M =M´2=N:

35Where Wj is the vector of data for year j

Var[(1=N)§Wj , (1=N)§Wk] = (1=N
2)Var[§Wj ,§Wk]

= (1=N2)§Var[Wj ,Wj]+ (1=N
2)§j &=kVar[Wj ,Wk]

= (1=N2)N(¿2 + ´2)+ (1=N2)((N2!N)(¿2))

= ¿2 +´2=N:
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The denominator of b is the same as that of a, and has an
expected value of ¿2 + ´2=N (for N years of data).

Thus, by substitution we expect

b # M´2=N

¿2 + ´2=N
:

Thus, since as was shown above,

a# ¿2=(¿2 + ´2=N),
aM +b #M¿2=(¿2 + ´2=N)+ (M´2=N)=(¿2 + ´2=N) =M:
Thus, we indeed expect the regression line y = ax+b to pass

approximately through the point (M,M). Prior experience for
an insured equal to the overall a priori expectation results in a
prediction equal to the overall a priori expectation.
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APPENDIX C

EXPECTED VALUE OF SQUARED ERRORS

This appendix discusses the expected value of the squared
errors that result from the use of credibility to estimate an in-
sured’s future experience from the insured’s past observed ex-
perience. The results of this appendix are illustrated in Figures
13 through 17. This appendix also shows how to calculate the
Bühlmann credibility, which is the value that minimizes this ex-
pected squared error.36

Assume we have a time series, Xi, and we wish to estimate a
future year of the same time series, XN+¢, by weighting together
observations Xi for i= 1 to N and the overall meanM. For exam-
ple, the Xi could be the observed frequencies for a single insured
over a series of individual years. If Zi is the weight applied to
year Xi, then

Estimate =
N!
i=1

ZiXi+

"
1!

N!
i=1

Zi

#
M:

Then the expected squared error comparing the estimate to
the observation37 is a quadratic function of the weights Zi:

38

V(Z) =
N!
i=1

N!
j=1

ZiZjCij ! 2
N!
i=1

ZiCi,N+¢+CN+¢,N+¢,

where Cij =Cov[Xi,Xj].

36It turns out that this value of credibility also minimizes the squared error between the
predictions and the true/hypothetical means and between the predictions and the Bayesian
estimates. See for example Mahler [17].
37The expected squared error compared to the observation, with respect to the hypothet-
ical mean, or with respect to the Bayesian estimate are each minimized by the value for
credibility calculated using the formula derived in this appendix.
38See for example Mahler [13].
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In the examples in Appendix A, the covariance structure is
that underlying the Bühlmann credibility formulation:

Cij = ¿
2 + ±ij´

2,

where Cij =Covariance of year i and year j,

´2 = Expected value of the process variance,

¿2 = Variance of the hypothetical means, and

±ij = 1 if i= j and 0 if i &= j:
Due to symmetry in this case, it turns out that the expected

squared errors are minimized for Zi = Zj. Let Z =
$N
i=1Zi = total

weight to be applied to N years of data. Then if Zi = Zj = Z=N,
substituting into the formula for the expected squared errors:

V(Z) =
N!
i=1

N!
j=1

ZiZj(¿
2 + ±ij´

2)!2
N!
i=1

Zi¿
2 + ¿2 + ´2

= Z2¿2 + ´2(Z=N)2N !2¿2Z + ¿2 + ´2
= Z2(¿2 + ´2=N)!2¿2Z + ¿2 + ´2:

For Situation 3 in Appendix A, ´2 = 12:5 and ¿2 = 31:25.
Thus, for ten years of data V(Z) = 32:5Z2!62:5Z +43:75. This
is one of the parabolas shown in Figure 13.

In order to minimize the expected squared error, we set
the derivative V'(Z) = 0. This results in Z = ¿2=(¿2 + ´2=N)
=N=(N+ ´2=¿2) =N=(N +K), where K = ´2=¿2 = EPV/VHM.
For example, for 10 years of data in Figures 13 or 14, the
parabola is minimized for Z = 31:25=(31:25+12:5=10) = 0:962.
Alternatively, K = 12:5=31:25 = 0:4 and Z = 10=(10+ :4) =
0:962. As seen in Figure 15, this value of K minimizes the ex-
pected squared error.


