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Abstract

This paper explores the important effects on credibil-
ity of three phenomena: shifting risk parameters, risk
heterogeneity, and parameter uncertainty. When any of
these phenomena are significant, the Bühlmann credibil-
ity formula no longer applies.
Covariance structures corresponding to these phe-

nomena both separately and in combination are shown.
Linear equations for the corresponding credibilities are
derived.
Possible applications to classification ratemaking,

overall rate indication calculation, and experience rat-
ing are illustrated in detail. The procedure for estimating
the parameters of the covariance structure is discussed
for each situation. Illustrative credibilities are then cal-
culated for each situation.
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1. INTRODUCTION

In Mahler [1] Markov chains were used to model shifting risk
parameters. This model was applied to calculate credibilities in
four situations. This paper will expand on that work in a number
of important areas.
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456 CREDIBILITY WITH SHIFTING RISK PARAMETERS

The phenomena of parameter uncertainty and risk hetero-
geneity will be incorporated. The behavior of credibility as the
size of risk changes will be explored. Possible implications for
ratemaking, classification pricing, and experience rating will be
discussed.

The three phenomena examined in this paper can be defined
as follows:

Shifting Risk Parameters: The parameters defining the risk pro-
cess for an individual insured are not constant over time. There
are (a series of perhaps small) permanent changes to the indi-
vidual insured’s risk process as one looks over several years.

Risk Heterogeneity: An insured is a sum of subunits, and not
all of the subunits have the same risk process.

Parameter Uncertainty: There are random fluctuations from
year to year in the risk processes of insureds. Parameter un-
certainty involves fluctuations that affect most or all insureds
somewhat similarly, regardless of size.

Each phenomena can be understood and distinguished in the
context of the dice examples to be presented.1 Insurance exam-
ples of each phenomena include:

Shifting Risk Parameters: An automobile insured’s risk parame-
ters might shift if a major new road were opened in his locality
or if he changed the location to which he commutes to work.
Similarly, the automobile experience of a town relative to the
rest of the state could shift as that town becomes more densely
populated.

Risk Heterogeneity: A workers compensation insured may own
several factories that have somewhat different risk character-
istics.

1See Table 3 for a summary of the dice examples.
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Parameter Uncertainty: Automobile insureds’ risk processes
might vary depending on the severity of the winter weather
in each year.

The so-called Bühlmann credibility formula is:

Z = E=(E+K), (1.1)

where E is a measure of size of risk and K is the Bühlmann
credibility parameter.

As will be shown, these three phenomena have different ef-
fects on the covariance structure between years of data and the
resulting credibilities. In the presence of any or all of these three
phenomena, the credibility formula in Equation 1.1 does not
hold.

Section 2 reviews the results of Mahler [1] relating to shifting
risk parameters over time. Section 3 extends the simple dice ex-
ample from Mahler [1] in order to incorporate parameter uncer-
tainty. Then parameter uncertainty and shifting risk parameters
are combined in one model. Section 4 extends the dice example
to include risk heterogeneity. Then the model is expanded to in-
clude both risk heterogeneity and parameter uncertainty or risk
heterogeneity and shifting risk parameters.

In Section 5 the model is expanded to include all three phe-
nomena. The general form of the covariances is given. Section 6
illustrates the calculations of credibilities for various situations.
The credibilities for very small risks are discussed. The effect of
varying volumes of data by year is discussed. Finally, the case
in which no weight is given to the grand mean is discussed.

Section 7 shows how the techniques developed in the prior
sections might be applied to the calculation of classification rate
relativities. Section 8 extends the results in Section 7 to the use
of data from outside the state. Section 9 shows how these tech-
niques might be applied to the calculation of an overall rate indi-
cation. Section 10 shows how these techniques might be applied
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to experience rating. Section 11 covers miscellaneous subjects.
Section 12 contains conclusions and a summary.

In order to calculate credibilities there are three steps nec-
essary. First, we must specify the covariance structure between
years of data. This structure will vary depending on the phenom-
ena that are important as well as the particular situation.2 The
different covariance structures are listed in Table 1. The general
form of the covariance structure is given by Equations 5.10 and
5.11. Second, we must estimate and/or select the parameters ap-
pearing in the covariance structure. Finally, we must solve the
appropriate set of linear equations for the credibilities. Table 2
lists the different sets of linear equations for the credibilities.

1.1. Bühlmann Credibility3

The Bühlmann credibility formula, Equation 1.1, is the least
squares credibility corresponding to the following covariance
structure between years of data:

Cov[Xi,Xj] = ¿
2 + (´2=E)±ij , (1.2)

where ´2 is the Expected Value of the Process Variance (for a
risk of size 1),

¿2 is the Variance of the Hypothetical Means,

±ij =

!
0 i != j
1 i= j,

and E is some measure of size of risk. If the Bühlmann credibility
parameter is defined as K = ´2=¿2, then Equation 1.2 can be
rewritten as:

Cov[Xi,Xj] = ¿
2"1+ (K=E)±ij#: (1.3)

2For example, are we dealing with a single split experience rating plan?
3Bühlmann credibility is discussed, for example, in Mayerson [2], Hewitt [3], Hewitt [4],
Philbrick [5], Herzog [6], Venter [7], Klugman, Panjer and Willmot [8], and Mahler [9].
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TABLE 2

LINEAR EQUATIONS TO SOLVE FOR CREDIBILITIES

Situation

Y years of data Xi being used to
predict Year Y+¢. Weight to the
overall mean.

Y"
i=1

Cov[Xi,Xk]Zi =Cov[Xk ,XY+¢],

k = 1,2, : : :Y (2.4)

Y years of data Xi being used to
predict Year Y+¢. No weight to the
overall mean.

Y"
i=1

Cov[Xi,Xk]Zi =Cov[Xk ,XY+¢]+¸=2,

k = 1,2, : : :Y
Y"
i=1

Zi = 1 (6.7)

Y years of classification data, both
from within and outside the state,
being used to predict classification
relativities for Year Y+¢. No weight
to the overall mean. Sij = covariances
within the state. Tij = covariances
outside the state. Uij = covariances
between state and outside the state.

"
j

ZjSij +
"
j

WjUij =
¸

2
+ Si,Y+¢,

i = 1,2, : : :Y"
i

ZiUij +
"
i

WiTij =
¸

2
+UY+¢,j ,

j = 1,2, : : :Y"
i

Zi+
"
j

Wj = 1 (8.1)

Y years of experience rating data,
primary and excess, being used to
predict Year Y+¢. Sij = covariances
of primary losses. Tij = covariances
of excess losses. Uij = covariances
between primary and excess losses.

Y"
i=1

(ZPiSik +ZXiUki) = Sk,Y+¢+Uk,Y+¢,

k = 1,2, : : :Y (10.12)
Y"
i=1

(ZPiUik +ZXiTki) =UY+¢,k +Tk,Y+¢,

k = 1,2, : : :Y (10.13)

In those situations where size of risk is not important, Equa-
tion 1.3 could be rewritten by setting E = 1:

Cov[Xi,Xj] = ¿
2"1+K ±ij#: (1.4)

For Y years of data each of size E, the covariance structure
given by Equation 1.3 corresponds to a Bühlmann/least squares
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credibility assigned to these Y years of data of:4

Z =
EY

EY+K
: (1.5)

As displayed in Table 1, in the presence of any or all of the
three phenomena discussed above, the simple covariance struc-
ture of Equation 1.3 and the simple credibility formula of Equa-
tion 1.5 no longer apply.

2. SHIFTING RISK PARAMETERS

The parameters defining the risk process for an individual in-
sured are not constant over time. For example, for automobile
insurance the expected claims frequency of an insured compared
to the average changes over time. Mahler [1] presents a Markov
chain model of shifting risk parameters which quantifies the ef-
fects of shifts over time in the risk process of an insured via the
covariances between years of data.

2.1. Covariances, Shifting Risk Parameters

For this Markov chain model, in most cases the covariances
can be approximated by:5

Cov[Xi,Xj] = ¿
2¸$i%j$+ ±ij´

2, (2.1)

where

±ij =

!
0 i != j
1 i= j,

´2 is the Expected Value of the Process Variance,

¿2 is the Variance of the Hypothetical Means,

4See Section 3.1 for an example of the calculation of Bühlmann credibility. The
Bühlmann credibility is calculated as Cov[Xi,Xj]=Cov[Xi,Xj ]. This is the ratio of the
variance of the hypothetical means to the expected value of the process variance (each
for Y years of data each of size E).
5This is Equation 7.1 in Mahler [1].
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and ¸ is the dominant eigenvalue (other than unity) of the trans-
pose of the transition matrix of the Markov chain.

X has different meanings depending on the application. Xi
could be the claim frequency for an insured in year i, the loss
ratio for a state in year i, the relativity for a class in year i, the
die roll in trial i, etc.

From Equation 2.1,

Var[X] = Cov[X,X] = ¿2 + ´2, and

Total Variance = VHM+EPV,

the usual relationship that the total variance can be split into the
Variance of the Hypothetical Means and the Expected Value of
the Process Variance.

As the separation between years of data increases, the (ex-
pected) covariance and correlation between years declines.

For example, if ¿2 = VHM= 1,000, ´2 = EPV= 5,000, and
¸= :9, then the variance-covariance matrix given by Equation
2.1 for four consecutive years of data would be:

6,000 900 810 729
900 6,000 900 810
810 900 6,000 900
729 810 900 6,000

This contrasts with the situation in the absence of shifting
risk parameters; if ¸= 1, then the variance-covariance matrix has
entries of 6,000 along the diagonal and 1,000 off the diagonal.
With no shifting risk parameters, Equation 2.1 reduces to the
usual Bühlmann covariance structure Cov[Xi,Xj] = ¿

2 + ±ij´
2.

2.2. Rate of Shifting Risk Parameters

It is not vital to understand the precise derivation of ¸; rather
it is important to understand that ¸ quantifies the rate at which
the parameters shift. The smaller ¸ is, the faster the parameters
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shift. The closer ¸ is to unity, the slower the parameters shift. In
the limit for ¸= 1, there is no shifting of parameters.

The “half-life” is a useful way to quantify the rate of shifting
parameters. The half-life is defined as the length of time nec-
essary for the correlations between years to have declined by a
factor of one-half:

¸half-life = :5,

half-life =
ln :5
ln¸

=
%:693
ln¸

:
(2.2)

The longer the half-life, the slower the rate of shifting parameters
over time.

2.3. Correlations Between Years of Data, Shifting Risk
Parameters

If the Markov chain model holds, the correlations between
different years of data should decline approximately exponen-
tially. For i != j, Equation 2.1 gives Cov[Xi,Xj] = ¿2¸$i%j$.
Thus, as the distance between years grows, the expected co-

variance between the data from those years declines. Another
feature of the Markov chain model is that even though the risk
parameters of individuals vary over time, the overall portfolio
of insureds looks (relatively) stable from year to year. Specifi-
cally, Equation 2.1 gives the same variance for each year of data,
Var[Xi] = Var[Xj] = ¿

2 + ´2.

Therefore, the correlations between different years of data are:

Corr[Xi,Xj] =

#
¿2

¿2 + ´2

$
¸$i%j$, and

(2.3)

lnCorr[Xi,Xj] = ln

#
¿2

¿2 + ´2

$
+ $i% j$ ln¸, i != j:



464 CREDIBILITY WITH SHIFTING RISK PARAMETERS

Therefore, if the Markov chain model holds, the log-correla-
tions for years separated by a given amount should decline ap-
proximately linearly. The slope of this line is (approximately)
ln¸. The intercept is approximately

ln

#
¿2

¿2 + ´2

$
:

Note that ¿2=(¿2 + ´2) = VHM/Total Variance = credibility in the
absence of shifting risk parameters.

Thus given a data set, we can determine whether this (sim-
ple) Markov chain model might be appropriate. We determine
whether the log-correlations as a function of the separation be-
tween years (not including zero separation) can be approximated
by a straight line.6 Then we can estimate the parameter ¸ and
the ratio ¿2=(¿2 + ´2) from the slope and intercept of the fitted
straight line.

2.4. Credibilities, Shifting Risk Parameters

These estimates can be used in turn to estimate credibilities.
If we have data Xi from years 1,2, : : :Y and are estimating year
Y+¢, then the least squares credibilities Zi to be assigned to in-
dividual years of data are found by solving the Y linear equations
in Y unknowns:7

Y"
i=1

Cov[Xi,Xk]Zi =Cov[Xk,XY+¢], k = 1,2, : : :Y:

(2.4)

3. PARAMETER UNCERTAINTY

Parameter uncertainty and its effect on credibilities is dis-
cussed in Meyers [10], Mahler [11] and Mahler [12]. Random

6In many cases there is a large amount of random fluctuation so even if the expected
log-correlations are precisely along a straight line, the log-correlations estimated from
the data will vary widely around a straight line. See Figure 10 in Mahler [1].
7See Equations 2.8 in Mahler [1].
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fluctuations occur from year to year in the risk processes of
insureds. Parameter uncertainty involves fluctuations that affect
most or all insureds somewhat similarly, regardless of size.

While the distinction between parameter uncertainty and shift-
ing risk parameters is not always clear-cut, parameter uncer-
tainty tends to involve fluctuations not related to the insured
while shifting risk parameters tend to involve (a series of per-
haps small) permanent changes to the individual insured’s risk
process. For example, shifting risk parameters would occur if a
workers compensation insured implemented a new safety pro-
gram.

An example of parameter uncertainty occurs in workers com-
pensation insurance, where the level of losses is affected by eco-
nomic events that affect even very large employers. This creates
a potential random fluctuation in the loss potential above and
beyond what we normally think of as the process variance. The
important feature is that while the large size of an employer re-
duces the impact of the random fluctuations inherent in observed
accidents per year, it either does not reduce or only partially re-
duces the impact of (seemingly) random changes in the overall
economy.

There is a kernel of uncertainty in the frequency of work-
ers compensation claims that will not be reduced by observing
more workers during a single year. In these circumstances, the
credibilities as a function of the size of risk E will not be of the
Bühlmann form E=(E+K).

The covariance structure in the presence of parameter uncer-
tainty is somewhat more complicated, as shown in Equations 3.4
and 3.5. When both parameter uncertainty and shifting risk pa-
rameters are present, the covariance structure, as shown in Equa-
tions 3.19 and 3.20, contains a combination of the features of
each phenomenon separately. These covariance structures will
be developed in the context of the simple dice example from
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TABLE 3

VARIOUS DICE EXAMPLES

Shifting Different
Risk Risk Parameter Colors of

Parameters Heterogeneity Uncertainty Section(s) People Dice

No No No 3.1 Joe No
No No Yes 3.2, 3.4 Joe, Mary No
Yes No No 3.5 Joe, Beth No
Yes No Yes 3.6 Joe, Mary,

Beth
No

No Yes No 4.1 Joe Yes
No Yes Yes 4.4 Joe, Mary Yes
Yes Yes No 4.9 Joe, Rose,

Gwen
Yes

Yes Yes Yes 5.1 Joe, Mary,
Rose, Gwen

Yes

Joe initially selects either N identical dice in the cases without different colors of dice, or N identical
red dice and N possibly different green dice.
Mary flips a coin prior to each trial (year).
Beth, prior to each trial, may alter all the dice from one type to another. (For example, 6-sided dice
could be switched to 4-sided dice.)
Rose, prior to each trial, may alter the type of all the red dice.
Gwen, prior to each trial, may alter the type of one or more of the green dice; Gwen acts independently
on each green die.

Mahler [1]. Table 3 summarizes the various examples that will
be presented.

Section 3.1 will present this simple dice example. Section
3.2 will expand on the dice example in order to incorporate pa-
rameter uncertainty. Section 3.3 will discuss how this example
relates to parameter uncertainty in general. Section 3.4 will ex-
pand the example to observing several years of data. Section 3.5
will introduce shifting risk parameters into the example, in the
absence of parameter uncertainty. Section 3.6 extends the ex-
ample to include both parameter uncertainty and shifting risk
parameters. Section 3.7 compares the credibilities correspond-
ing to the various covariance structures discussed. Many readers
may find it helpful to go directly to this graphical comparison of
results.
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3.1. Simple Dice Example, No Shifting Risk Parameters, No
Parameter Uncertainty

Assume Joe selects N dice of the same type and rolls them.
Assume Joe selected either four-sided,8 six-sided9 or eight-sided
dice10 with a priori probabilities of 25%, 50%, and 25%, respec-
tively. Joe tells you how many dice he rolled and the resulting
sum, but you do not know which type of dice Joe selected. Joe
will roll the same dice again.

The process variances for 4, 6, and 8-sided dice are respec-
tively 1.25, 2.92, and 5.25. Therefore, the expected value of the
process variance (for one die) is (25%)(1:25)+ (50%)(2:92)+
(25%)(5:25) = 3:08. The means for 4, 6, and 8-sided dice are re-
spectively 2.5, 3.5, and 4.5. Therefore, the a priori overall mean
is (25%)(2:5)+ (50%)(3:5)+ (25%)(4:5) = 3:5. The variance of
the hypothetical means is .500.

In this case, the Bühlmann credibility for estimating the sum
of the next roll of the dice can be written as:

Z =
N

N +K
(3.1)

where

K =
Expected Value of the Process Variance (for N = 1)
Variance of the Hypothetical Means (for N = 1)

=
´2

¿2
=
3:08
:5

= 6:16:

The credibility Z is to be applied to the data (the sum of Joe’s
dice), while the complement of credibility 1%Z is to be applied
to the a priori grand mean of 3.5.

8With numbers 1, 2, 3, and 4 on the faces.
9With numbers 1 through 6 on the faces.
10With numbers 1 through 8 on the faces.
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3.2. Parameter Uncertainty, Dice Example

Assume that in a modification of the previous example, Mary
flips a single coin11 and adds the result to each of Joe’s N die
rolls.12 Each head adds 1

2 to the result of a die, while each tail
subtracts 12 from the result of a die. You are again told the result
of the combination of Joe’s and Mary’s actions but see neither
the coin nor the dice.

While the addition of a coin flip does not change any of the
means, the overall risk process has changed. The amount of cred-
ibility we would assign to a single observation has also changed.
As will be shown, there is a fundamental change in the behavior
of the credibility as a function of N, the number of dice per roll.

The expected value of the process variance is the sum of the
expected value of the process variances from Joe’s and Mary’s
actions, since these processes are independent. The expected
value of the process variance of Mary’s actions is :25N2 since
we multiply the result of a single coin flip by N and since
Var[NX] =N2Var[X]. Thus, since the EPV for Joe’s action is
3:08N, the overall expected value of the process variance is
3:08N + :25N2.

The hypothetical means have not been changed by the intro-
duction of the coin flips. Therefore, the variance of the hypo-
thetical means remains :5N2.

This covariance structure can be written as:

Cov[Xi,Xj] = :5N
2 + (3:08N + :25N2)±ij : (3.2)

Equation 3.2 can be rewritten for more general situations than
this specific dice example. It will be useful to substitute E, rep-
resenting some measure of size of risk such as expected losses,
for N, the number of dice that Joe rolls in this specific example.

11For simplicity, we assume the coins are fair, with equal probability of heads or tails.
12Equivalently, one could add N times the result of the single coin flip to the sum of the
die rolls.
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If ´2 = expected value of the process variance = 3:08, u2 =
variance due to parameter uncertainty = 0:25, ¿2 = variance of
the hypothetical means = 0:5, and E is a measure of size of risk,
then Equation 3.2 can be rewritten as

Cov[Xi,Xj] = ¿
2E2 + (´2E+u2E2)±ij : (3.3)

Suppose that, instead of the sum of the dice, one were es-
timating the average per die rolled, in a manner analogous to
claim frequency, claim severity or pure premium. Then, since
the quantity of interest is divided by E, all the variances and
covariances in Equation 3.3 are divided by E2:

Cov[Xi,Xj] = ¿
2 + (´2=E+ u2)±ij : (3.4)

Letting J = u2=¿2 and K = ´2=¿2, Equation 3.4 can be rewrit-
ten as:

Cov[Xi,Xj] = ¿
2"1+ ((K=E)+ J)±ij#: (3.5)

Equations 3.4 and 3.5 are the covariances in the presence of
parameter uncertainty. A new parameter J has been introduced
in addition to Bühlmann’s K.

The credibility is the variance of the hypothetical means for
N dice divided by the sum of the variance of the hypothetical
means for N dice and the expected value of the process variance
for N dice:

Z =
:5N2

3:08N + :25N2 + :5N2
=

N

1:5N +6:16
: (3.6)

With J = u2=¿2 = :25=:5= :5 and K = ´2=¿2 =3:08=:5=6:16,
this is of the form:13

Z =
N

(1+ J)N +K
, J > 0 and K > 0: (3.7)

The form of the credibility as a function of size is funda-
mentally different. As N&', Z& 1=(1+ J)< 1. Therefore, no

13The notation in Meyers [10], Mahler [11] and Mahler [12] has been changed so that
J there is called 1+J here. As will be seen, this cosmetic difference makes it easier to
write the formulas involving more than one year of data.
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matter how many dice Joe rolls, the credibility assigned to the
observation stays less than 1=(1+ J) or 1=1:5 = 67% in this case.
The fact that Joe is rolling more and more dice cannot eliminate
the noise added by Mary’s single coin flip, which is added to
each and every die, and thus cannot increase the credibility be-
yond 67%.14

This is an example of the phenomenon of parameter uncer-
tainty. We can think of this risk process as Joe selects (at random)
which type of dice to roll and then Mary’s coin flip alters the
parameters of the risk process. If for example, Joe selects 6-sided
dice, then prior to Mary’s coin flip we are uncertain whether this
time the expected value of Joe’s roll is 3N or 4N. Once Mary
flips her coin, if it is tails, the expected value of Joe’s roll is 3N
(after subtracting :5N) and if it is heads, the expected value of
Joe’s roll is 4N (after adding :5N). The variance of this parameter
uncertainty is :25N2.

The value of J which quantifies the impact of parameter un-
certainty in the credibility formula was:

J = :25=:5 = :5 =
variance due to parameter uncertainty
variance of the hypothetical means

=
u2

¿2
:

(3.8)

The larger the J , the greater the impact of parameter uncertainty.

3.3. Parameter Uncertainty in General15

When parameter uncertainty is important, the within class
variance will have two pieces. The “good” piece increases as
N and is the expected value of the process variance in the ab-
sence of parameter uncertainty. The “bad” piece increases as N2

and is the variance introduced by parameter uncertainty. Unlike

14If instead Mary had flipped N coins, one for each die rolled by Joe, then the credibilities
would not have behaved in this manner. Instead they would have followed the usual
Bühlmann formula, in this case, Z =N=(N +6:66). The Bühlmann credibility parameter
would have been 6:16+ :5 = 6:66.
15See Meyers [10] and Mahler [11].
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the good piece, the bad piece increases as quickly as the variance
between classes, which also increases as N2. Thus taking many
observations (in a single year) will not get rid of the effect of
parameter uncertainty.

This effect is assumed to be due to the different possible states
of the universe. Taking more observations will not get rid of the
variation inherent in the universe.

In the simple example, Mary’s single coin flip represented this
random variation in the universe from year to year. In the case of
workers compensation insurance, changes in the economy affect
the relative costs of claims. These changes can affect firms with
1,000 workers as much as those with 100 workers. Such changes
are therefore expected to affect the risk process in a manner
similar to Mary’s single coin flip (although there is a continuous
spectrum of possible states of the economy).

If parameter uncertainty has an important impact on workers
compensation insurance, one would expect the credibility to be
of the form of Equation 3.7:

E

(1+ J)E+K
, J > 0, K > 0,

where E represents the size of risk. This is one of the refinements
introduced in the NCCI’s Revised Experience Rating Plan.16

3.4. Dice Example, Several Years of Data

The dice example with parameter uncertainty will be extended
to the situation in which more than one year of data is observed.

Assume Joe selects N dice of a given type and rolls them
in each of Y years, while Mary flips a separate coin each year.
Then the expected value of the process variance is Y times what
it was for a single year: 3:08NY+ :25N2Y. The variance of the

16See Gillam [13], and Mahler [12].
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hypothetical means is Y2 times what it was for a single year:
:5N2Y2. Therefore, the credibility is:

Z =
:5N2Y2

:5N2Y2 +3:08NY+ :25N2Y

Z =
NY

NY+ :5N +6:16

Z =
NY

N(Y+ :5)+6:16
:

(3.9)

In general, for size of risk E and number of years Y Equation
3.9 can be written as:

Z =
EY

E(Y+ J)+K
, J > 0, K > 0: (3.10)

The credibility has a different form. In the presence of param-
eter uncertainty, the accumulation of Y separate years does not
enter into the formula in the same way as size of risk E. There is
the “extra” term involving E, where E is multiplied by J , which
is the ratio of the variance due to parameter uncertainty divided
by the variance of the hypothetical mean. For one year of data
Equation 3.10 reduces to Equation 3.7, the previous result for
parameter uncertainty in a single year, which for this example is
Z = E=(1:5E+6:16).

For any fixed number of years, Z has the form E=(Linear
in E), although the values of the coefficients depend on Y. For
fixed size of the insured E, the formula reduces to the usual
Bühlmann formula in terms of Y, the number of years. For fixed
E as Y&', Z& 1. Increasing the number of years of obser-
vations overcomes the impact of parameter uncertainty. We can
in fact average over the different assumed random states of the
universe in each year by averaging over time.

Observing a fleet of 100 cars for 10 years is not the same as
observing a similar fleet of 1,000 cars for a single year. In the
latter case, we cannot average out those aspects peculiar to that
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one individual year. For example, a gasoline shortage due to an
oil embargo or a severe winter might produce unusual results in
an individual year regardless of the size of the fleet.

In summary, in the presence of parameter uncertainty, one
must carefully distinguish between size of risk and number of
years of data.

3.5. Shifting Parameters Over Time, Dice Example

Shifting risk parameters over time were discussed in Section
2. In Mahler [1], shifting risk parameters were introduced into the
simple dice example in Section 3.1 by altering the risk process
as follows:

Joe selects a die and rolls it. Then prior to the next trial, Beth
may at random replace that die with another die. Assume Beth’s
replacement process works such that:

1. A four-sided die will be replaced 20% of the time by a
six-sided die.17

2. A six-sided die will be replaced 10% of the time by a
four-sided die and 15% of the time by an eight-sided die.

3. An eight-sided die will be replaced 30% of the time by
a six-sided die.

Then the process repeats: Joe rolls a die and Beth (possibly)
replaces the die.

Beth’s risk process is just a simple example of a Markov
chain. See Appendix A for a discussion of Markov chains. There
are three “states”: 4-sided die, 6-sided die, and 8-sided die. For
each trial there is a new, possibly different, state. The probability
of being in a state depends only on the state for the previous trial.

17The remaining 80% of the time the die is left alone.
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Beth’s Markov chain is completely described by the “transition
probabilities” between the states.

Generally, the transition probabilities for a Markov chain are
arranged in a matrix P. For Beth’s “risk process,” the matrix of
transition probabilities is:

Four Six Eight

Four .80 .20 0
Six .10 .75 .15
Eight 0 .30 .70

As shown in Mahler [1], in this case, the covariances between
years of data are given by:

Cov[Xi,Xj] = (:468)(:769)
$i%j$+(:032)(:481)$i%j$+ ±ij(3:08):

(3.11)

In general, for years of data Xi and Xj :

Cov[Xi,Xj] =
"
k>1

³k¸
$i%j$
k + ±ij´

2, (3.12)

where ´2 is the Expected Value of the Process Variance, ±ij = 0
for i != j and 1 for i= j, ¸k are the eigenvalues of the transpose
of the transition matrix and the ³k are a function of the transition
matrix P and the means of the states.18 In general,"

k>1

³k = ¿
2 = variance of the hypothetical means:

Equation 3.11 can be approximated by:

Cov[Xi,Xj]( (:5)(:769)$i%j$+ ±ij(3:08): (3.13)

Equation 3.13 can be written in general as:

Cov[Xi,Xj]( ¿2¸$i%j$+ ±ij´2: (3.14)

18See Mahler [1].
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where ¸ is the dominant eigenvalue of the transpose of the transi-
tion matrix (other than unity), ¿2 is the variance of the hypothet-
ical means, and ´2 is the expected value of the process variance.
Taking as before K = ´2=¿2, Equation 3.14 could be rewritten
as:

Cov[Xi,Xj] = ¿
2"¸$i%j$+K±ij#: (3.15)

For a size of risk E, Equation 3.15 becomes:

Cov[Xi,Xj] = ¿
2"¸$i%j$+(K=E)±ij#: (3.16)

One could then use Equation 2.4 to solve linear equations for
the credibilities.

In the absence of shifting risk parameters ¸= 1 and Equation
3.16 becomes the usual Bühlmann covariance structure, Equation
1.3:

Cov[Xi,Xj] = ¿
2"1+ (K=E)±ij#:

3.6. Combining Parameter Uncertainty and Shifting Risk
Parameters

Let us now combine the models of parameter uncertainty and
shifting risk parameters. Assume that Joe selects N dice (of the
same kind) and rolls them. Mary then flips a coin and adds the
result (+1=2 if heads and %1=2 if tails) to the result of each
die. The sum is the result of one trial or year. After each trial,
Beth (possibly) changes the type of all N dice, with transition
matrix P.

Beth does not affect the variance of a single year. As discussed
previously in the example involving just Joe and Mary, the total
variance of a year of data for this example is (3:08N + :25N2)+
:5N2 = 3:08N + :75N2.

The covariances between different years are what they were
in the absence of Mary, because Mary’s action in one year is
independent of her action in another year.
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Therefore, the covariances of the years of data are for this
example:19

Cov[Xi,Xj] = "(:468)(:769$i%j$) + (:032)(:481$i%j$)#N2

+ ":25N2 +3:08N#±ij : (3.17)

In general, where E is a measure of the size of the insured:

Cov[Xi,Xj] =

%&'"
k>1

³k¸
$i%j$
k

()*E2 + ±ij"´2E+u2E2#:
(3.18)

where ´2 = Expected Value of the Process Variance and u2 =
variance due to parameter uncertainty. Given Y years of data, we
can solve Y linear equations in Y unknowns, Equations 2.4, for
the credibilities to be assigned to each year of data. Note that
the solution is the same if we divide all of the variances and
covariances by E2:

Cov[Xi,Xj]=E
2 =

"
k>1

³k¸
$i%j$
k

+ ±ij"(Variance Due to Parameter Uncertainty)
+ ((Expected Value of the Process Variance)=E)#:

This isolates the effect of the size of risk E. As will be discussed
subsequently, this is the form that will apply in insurance appli-
cations where one is estimating claim frequency rather than total
number of claims, pure premiums rather than total losses, etc.

As was done previously, the covariances can be approximated
in terms of ¸, the dominant eigenvalue of the transpose of the
transition matrix (other than unity). For claim frequency, pure
premiums, etc., the covariances in the presence of parameter un-

19Note that for i= j, Cov[Xi,Xj] = Var[Xi] = (:468+ :032)N
2 + :25N2 +3:08N = 3:08N

+:75N2, as stated above.
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certainty and shifting risk parameters are then approximately

Cov[Xi,Xj]( ¿2¸$i%j$+(´2=E+u2)±ij : (3.19)

Taking as before J = u2=¿2 and K = ´2=¿2, Equation 3.19 can
be rewritten as:

Cov[Xi,Xj] = ¿
2"¸$i%j$+(K=E+ J)±ij#: (3.20)

In the absence of shifting risk parameters over time, ¸= 1
and Equation 3.20 would reduce to Equation 3.5. In the absence
of parameter uncertainty, J = 0 and Equation 3.20 would reduce
to Equation 3.16. In the absence of both phenomena Equation
3.20 would reduce to the usual Bühlmann covariance structure.
These covariance structures are compared in Table 1.

3.7. Graphical Comparison of Results

Assuming the covariances given by Equation 3.20, we can
solve Equation 2.4 for the corresponding credibilities. This has
been done for the dice example, which had parameters J = :5,
K = 6:16, and ¸= :769.

Figure 1 compares the behavior of the credibilities with and
without parameter uncertainty as well as with and without shift-
ing risk parameters over time, for five dice per year.20 In general,
both phenomena reduce the credibility assigned to the data by
introducing additional noise to the results.

In this particular case with five dice, it so happens that each
phenomenon individually results in roughly the same credibility
being assigned to a single year of data.21 Yet we see a radically
different behavior as the number of years increases. With just
parameter uncertainty, in the limit the effect of parameter un-
certainty vanishes; the sum of the credibilities approaches unity.

20In Equation 3.20, E = 5.
21The relative importance of parameter uncertainty increases as the number of dice in-
creases. In this case Z = Y=(Y+ :5+6:16=N) for Y years and N dice with parameter
uncertainty but no shifting risk parameters.
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FIGURE 1

With just shifting risk parameters over time, the sum of the cred-
ibilities approaches a limit strictly less than unity.22

The credibilities in the presence of both phenomena are lower
than those with only one of the phenomena. These credibili-
ties approach an even lower limit as the number of years ap-
proaches infinity than when we had solely shifting risk parame-
ters.23 While similar behavior would be expected in general, the
details will depend on the amount of parameter uncertainty and
the speed at which the parameters shift.

Figure 2 compares for 5 years of data the dependence of the
sum of the credibilities on the number of dice per year with the
presence or absence of the two phenomena. As expected, with
no shifting or parameter uncertainty, we get the usual Bühlmann

22In this example, the sum of the credibilities approaches .528.
23In this case, with both phenomena present, this limit is .480.
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FIGURE 2

credibility, which goes to unity as the number of dice approaches
infinity.24 With parameter uncertainty, the credibilities are some-
what less. Also, as the number of dice approaches infinity, the
credibility approaches a limit less than unity.25

With shifting risk parameters over time, the credibilities are
less than in the absence of shifting risk parameters. As seen in
Figure 2, as the number of dice approaches infinity, the credibil-
ities approach a value less than unity.26 With both phenomena
present, the credibilities are lower.27

24In this case, Z = 5=(5+6:16=N) for the sum of the credibilities for 5 years.
25In this case, Z = 5=(5:5+6:16=N) which approaches 1=1:1 = 90:9% as N approaches
infinity. Using 5 years of data, one cannot get rid of the effects of parameter uncertainty
(although it has less effect than if one relied on fewer than 5 years).
26In this case, the limit is .755.
27As the number of dice N&', the sum of the credibilities in this case approaches the
limit .625.
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4. RISK HETEROGENEITY

The phenomenon of risk heterogeneity and its effect on cred-
ibilities was discussed in Mahler [11] and Mahler [12]. As
stated in Hewitt [14], “For loss ratio distribution purposes—two
$50,000 risks don’t make a $100,000 risk. Nor is a $100,000
risk for one year the same as a $50,000 risk for two years.” Risk
heterogeneity involves an insured which is a sum of individual
subunits, where not all the subunits have the same risk process.

Assume we have a large workers’ compensation insured. It
might consist of several locations or several factories. It is rea-
sonable to assume that the factories making up this insured will
be affected by some of the same efforts of management. There-
fore, if one factory has better than average expected losses for
its mix of classifications, it is likely that another factory that is
part of the same insured will have better than average expected
losses.

Thus, the combined experience of the different factories has
higher credibility for experience rating than the experience of a
single factory. However, since the factories also differ in some
ways, the larger risk is to some extent heterogeneous. The cred-
ibility will not increase as quickly as if the factories were iden-
tical; the credibilities are not of the form: Z = E=(E+K).

In general, subunits are combined into one overall insured.28

If the subunits of the overall insured have the same risk pro-
cess,29 then we have the familiar Bühlmann assumptions as in
the simple dice example. If on the other hand the subunits of the
overall insured are selected at random from the total available
population, then there is no increase in the experience rating

28The term “subunit” is intended to be vague. It is intended to convey the general concept
rather than a particular situation.
29“Risk process” refers to the random process that generates the observed quantity of
interest. So in the dice example, it would be determined by the number of sides of the
dice being rolled. In a Poisson frequency example it would be determined by the average
frequency.
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credibility of the overall risk compared to its subunits. If the
subunits are more similar to each other on average than the total
available population, then there is some increase in the experi-
ence rating credibility as risk size increases, but not as quickly
as in the Bühlmann case where Z = E=(E+K).

As with the prior phenomena, the behavior in the presence
of risk heterogeneity will be demonstrated via the simple dice
example from Mahler [1]; the example in Section 3.1 will be
expanded upon in Section 4.1 in order to incorporate risk het-
erogeneity.

Section 4.2 discusses risk heterogeneity in general. Equation
4.3 is the corresponding covariance structure. Section 4.3 dis-
cusses a refinement to this covariance structure for very small
risks.

In Section 4.4, the phenomena of parameter uncertainty and
risk heterogeneity are combined in the dice example. Equation
4.13 is the corresponding covariance structure for insurance ap-
plications. Section 4.5 gives formulas for credibility in the ab-
sence of shifting risk parameters. Section 4.6 discusses a refine-
ment for very small risks to the covariance structure with risk
heterogeneity and parameter uncertainty. Sections 4.7 and 4.8
illustrate how this refinement might be applied to workers com-
pensation experience rating.

In Section 4.9, the phenomena of risk heterogeneity and shift-
ing risk parameters are combined in the dice example. Equation
4.34 is the corresponding covariance structure for insurance ap-
plications. Section 4.10 discusses the behavior with size of risk
for this covariance structure for risk heterogeneity and shifting
risk parameters.

4.1. Risk Heterogeneity, Dice Example

As before Joe selects dice, either four-sided, six-sided or
eight-sided dice. However, he selects N red dice all of one type
and N green dice of possibly different types. Then Joe rolls the
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dice and tells you the result:

(1%h) (the sum of N red dice)+ (h) (the sum of N green dice),
where h is a known parameter 0) h) 1:

Assume Joe selected the type of red dice as either four-sided, six-
sided, or eight-sided, with a priori probabilities of 25%, 50%, and
25%, respectively. All N of the red dice are of the same type.

Joe independently selected the type of each green die as either
four-sided, six-sided, or eight-sided, with a priori probabilities30

of 25%, 50%, and 25%. The N green dice will usually be a
mixture of the three types.

The important feature that distinguishes this example from
the prior examples is the different manner in which the green
dice are selected compared to the red dice. The N red dice are
identical, while the N green dice are a random mixture.

Thus, the green and red dice contribute differently to the vari-
ance of the hypothetical means. For a single die with means of
2.5, 3.5 or 4.5 selected with probabilities 25%, 50% and 25%,
the variance of the hypothetical means is 0.5. For N identical
dice each hypothetical mean is multiplied by N, so the variance
of the hypothetical means for the sum of the N red dice is :5N2.
For N randomly selected dice the variances add. For the sum of
the N green dice the variance of the hypothetical means is :5N.

Since the green and red dice are chosen independently of each
other, the variance of the hypothetical means for (1%h) (N red
dice)+ h (N green dice) is:

(1%h)2(:5N2)+ h2(:5N) = :5N2(1%h)2 + :5Nh2:
This is the key effect of risk heterogeneity: the variance of

the hypothetical means increases more slowly than the square of
the risk size.

30The a priori probabilities for the green dice and red dice were selected to be equal
solely for simplicity of illustration. This is not an essential feature.
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Therefore, one feature of risk heterogeneity is that there is
less variation between larger risks than between smaller risks.
Specifically, for the dice example, the coefficient of variation31

of the hypothetical means is (
*
:5=3:5)

+
(1%h)2 +h2=N, which

decreases to a positive constant as N increases.

Here, as in Mahler [11] and Mahler [12], the variance of the
hypothetical means increases in a combination of a linear and a
quadratic term. The question of how quickly the variance of the
hypothetical means increases goes back to the origins of work-
ers compensation experience rating.32 While a rate of increase
between linear and quadratic was indicated, the assumption of a
quadratic increase was used for practical reasons. This led to the
now famous formula for credibility, Z = E=(E+K), which was
used for experience rating workers compensation, as discussed
in Whitney [15] and Michelbacher [16].

The expected value of the process variance for a single die is
3.08. For the sum of N green dice or N red dice, the expected
value of the process variance is N(3:08), since the die rolls are in-
dependent. The expected value of the process variance for (1%h)
(N red dice)+h (N green dice) is: (1% h)2N(3:08)+ h2N(3:08).
This model might have some applicability to large commercial

insureds. For example, assume a commercial automobile fleet
involves N drivers. There are many features such as driver se-
lection, driver training, vehicle maintenance, use of vehicle, etc.,
that are likely to cause the N drivers’ risk processes to be more
similar than those of the general population of drivers for sim-
ilarly classified fleets. On the other hand, the N drivers are un-
likely to each have the exact same risk process.

In the dice example, each driver’s result could be taken as
(1%h) (roll of a red die)+ h (roll of a green die). Then the red
31The coefficient of variation is the standard deviation divided by the mean. The overall
mean in the dice example is 3.5.
32Whitney [15, p. 287] states that the variance of the hypothetical means seemed to
increase as P5=4, where P was the loss pure premium.



484 CREDIBILITY WITH SHIFTING RISK PARAMETERS

die captures that part of the risk process that is similar across
the particular fleet33 while the green die captures those aspects
that mirror the variation across the total classification to which
this fleet belongs. The smaller h, the more similar the drivers’
risk processes across the fleet, and the smaller the impact of risk
heterogeneity.

The credibility is:

Z =VHM/(VHM+EPV)

=
:5N2(1%h)2 + :5Nh2

:5N2(1% h)2 + :5Nh2 +3:08N(1%h)2 + 3:08Nh2

=
N +

,
h

1%h
-2

N +
,

h

1% h
-2
+6:16+6:16

,
h

1%h
-2 : (4.1)

If h= 0, then Z =N=(N +6:16), the familiar Bühlmann result
in the absence of risk heterogeneity, as in Equation 3.1.

If h= 1, then Z = 1=(1+6:16) = 14%, the Bühlmann credi-
bility for a single die. If the subunits are chosen totally at random,
(h= 1), then there is no increase in credibility with size of risk.

Let I = h2=(1% h)2 while K = 6:16, the usual Bühlmann cred-
ibility parameter in this case. Then we can rewrite Equation 4.1
as:

Z =
N + I

N + I+K + IK
: (4.2)

Equation 4.2 is of the same general form as given in Mahler
[11] and Mahler [12].34 The additional parameter I is zero in
the absence of risk heterogeneity. In the presence of risk het-
erogeneity I > 0, and the credibility is of the form: (size+
constant)=(size+different constant).

33While the red dice are identical, the outcomes of the rolls are independent. They rep-
resent the same risk process, not the same outcome of that risk process.
34However, the definition of the parameters is not precisely the same.
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While there are some specific assumptions that could be al-
tered,35 this is one reasonable model which captures the key
effect of risk heterogeneity; the Variance of Hypothetical Means
has a piece which increases more slowly than N2 does.

4.2. Risk Heterogeneity in General

The key impact of risk heterogeneity in general is that the
covariance between years of claim counts, losses, etc. increases
more slowly than the square of the size of risk. Put another way,
the covariance between years of claim frequency, pure premi-
ums, etc. decreases with the size of risk. Here, as in Mahler [11]
and Mahler [12], the assumption will be made of a covariance
structure in the presence of risk heterogeneity of:

Cov[Xi,Xj] = r
2"1+ I=E+(K=E)±ij#, I,K + 0: (4.3)

Between different years, Equation 4.3 gives a covariance of
r2"1+ I=E#, which has one term independent of size of risk and
one term that declines as one over the size of risk. If I = 0, there
is no risk heterogeneity, and Equation 4.3 reduces to the usual
Bühlmann covariance structure.

In Equation 4.3, the Variance of the Hypothetical Mean fre-
quencies, pure premiums, etc. is r2"1+ I=E#. Assuming the
mean claim frequency, pure premium, etc. is (largely) indepen-
dent of the risk size E, then the coefficient of variation of the
hypothetical means declines as E increases. As measured by the
coefficient of variation of the hypothetical means, larger insureds
are more similar to each other than smaller insureds are to each
other. Larger insureds are likely to be a sum of somewhat dissim-
ilar subunits; if we added up enough randomly selected subunits,
then we would approach the overall average. Thus with risk het-
erogeneity, in some sense insureds get closer to average as they
get very large.

35For example, h, the parameter that quantifies the heterogeneity, was assumed to not
depend on N.
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For one year of data, substituting the covariance structure
given by Equation 4.3 into Equation 2.4 gives the following
equation for the credibility:36

(1+ I=E+K=E)Z = 1+ I=E:

Thus, the credibility is of the form:

(size+constant)=(size+different constant),

Z =
E+ I

E+ I+K
: (4.4)

With three years of data, all of size E, Equations 2.4 become
the following 3 linear equations in three unknowns:

(1+ I=E+K=E)Z1 + (1+ I=E)Z2 + (1+ I=E)Z3 = 1+ I=E,

(1+ I=E)Z1 + (1+ I=E+K=E)Z2 + (1+ I=E)Z3 = 1+ I=E, and

(1+ I=E)Z1 + (1+ I=E)Z2 + (1+ I=E+K=E)Z3 = 1+ I=E:

This has solution:

Z1 = Z2 = Z3 =
E+ I

3E+3I+K
:

If we let Z be the sum of these three credibilities,

Z = Z1 +Z2 +Z3 =
(E+ I)3

E3+3I+K
:

If instead of 3 years of data we have Y years of data, all
of size E, then the sum of the credibilities obtained by solving
Equations 2.4 is:

Z =
(E+ I)Y

EY+YI+K
: (4.5)

Equation 4.3 for the covariance structure and Equation 4.5
for the credibility have the same general behavior as in the dice

36The factors of r2 on each side of the equation cancel out, and have no effect on the
credibility.
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example with risk heterogeneity, although the parameters are
somewhat different. Equations 4.3 and 4.5 are in the form that
will later be applied to insurance examples. Also, the covariance
structure in Equation 4.3 will form the basis for the covariance
structure when other phenomena besides risk heterogeneity are
present.

4.3. Very Small Risks and Risk Heterogeneity

For the phenomena of risk heterogeneity we will now intro-
duce a refinement for very small sizes of risk. In the dice example
in Section 4.1, risk heterogeneity only applies for risks above a
certain size, those with more than one die.

Similarly, in insurance examples we might expect that the ef-
fects of risk heterogeneity will apply only above a certain size.
For commercial automobile insurance, this might be when there
is more than one vehicle or more than five vehicles. For work-
ers compensation insurance, this minimum size might be more
than one worker, more than a dozen workers, or more than one
location. In general, below a certain size, we might expect that
there are no subunits which are being grouped and, therefore,
no risk heterogeneity. In any case, we will assume there is some
minimum size, ­, which depends on the particular application,
below which the phenomena of risk heterogeneity does not ap-
ply.

Then for sizes of risk less than ­, Equation 4.5 will not
give the appropriate credibility. It will give too much credi-
bility to the very smallest risks; as E& 0 in Equation 4.5,
Z& (I=(I+K=Y))> 0.

In practical applications we can apply special caps to the effect
of credibility for small risks.37 In the NCCI Revised Experience
Rating Plan for workers compensation insurance, there are caps

37In general one should cap the effects of credibility. See for example Mahler [17] and
Mahler [18].
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on the maximum debit for small risks.38 In addition, below a
certain size risks are not eligible for experience rating.39

It is worthwhile to explore the expected behavior of the cred-
ibilities for very small risks. For experience rating one may de-
vise a simplified merit rating plan to apply to smaller risks. For
classification rating one must assign the data of every class a
credibility, no matter how small the volume of data.

We will assume a covariance structure and derive a formula
for the credibilities that apply for risks of the smallest sizes.
Equation 4.3 is assumed to be valid for risks of size+ ­

Cov[Xi,Xj] = r
2"1+ I=E+(K=E)±ij#, E + ­: (4.6)

For E = ­:

Cov[Xi,Xj] = r
2"1+ I=­+(K=­)±ij#:

We assume that for E < ­, the term related to risk hetero-
geneity, I=­, does not decline as the risk size declines below ­,
and thus acts as if the risk was homogeneous.40 In other words:

Cov[Xi,Xj] = r
2"1+ I=­+(K=E)±ij#, E )­: (4.7)

Thus, for risks of size less than ­, the Variance of the Hy-
pothetical Means is r2 + r2I=­, independent of size. This is the
type of behavior we expect in the absence of risk heterogeneity.41

While the dice example was useful for developing the ideas in

38See Mahler [12]. Recently the maximum debit has been revised. It is now given via
a continuous formula for all sizes: 1+ (:00005)[E+2E=g], where g is NCCI’s state
specific parameter.
39The minimum is based on premiums and varies by state. For example, for Mas-
sachusetts it is currently $5,500 in annual premium.
40The term related to risk homogeneity, r2, is independent of the size of risk, and thus
below ­ remains the same.
41Although r2 can be thought of as the piece of the VHM which is related to risk
homogeneity, the VHM for small risks is assumed to be r2 + r2I=­. If one desired, one
could reparametrize the covariances setting ¿2 = r2 + r2I=­ and then use ¿2 rather than
r2. However, such a reparametrization would not in and of itself alter the credibilities.
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this paper, it has its limitations. In the dice example N can never
be less than one.

Using the covariance structure given by Equation 4.6, for E +
­ the credibilities are given by Equation 4.5

Z =
Y(E+ I)

YE+YI+K
, E +­: (4.8)

However, for E )­, the covariances are given by Equation
4.7, and the solution to Equations 2.4 is, in the absence of shifting
risk parameters and parameter uncertainty:

Z =
Y(1+ I=­)

Y"1+ (I=­)#+(K=E)

Z =
YE

YE+K ,
, E )­

(4.9)

where K , = K(­=I+­).
Equation 4.9 is of the same form as the Bühlmann credibil-

ity formula, but with the parameter K adjusted by a factor of ­=
(I+­).

The credibilities given by Equation 4.9 approach zero as the
risk size approaches zero. As expected, for E =­, Equations 4.8
and 4.9 give the same credibility:

Z =
Y(­+ I)

(Y)­+YI+K
=

Y(­+ I)
Y(­+ I) +K

=
Y

Y+K
,

­

­+ I

-,
1
­

-

=
Y

Y+K ,=­
=

Y­

Y­+K ,
:

Equations 4.8 and 4.9 together combine the usual Bühlmann
credibility formula for small risks with that applicable in the
presence of risk heterogeneity for large risks.
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4.4. Risk Heterogeneity and Parameter Uncertainty, Dice
Example

The dice models of risk heterogeneity and parameter uncer-
tainty can be easily combined. Joe picks N identical red dice and
N randomly selected green dice as in Section 4.1, and Mary flips
a coin as in Section 3.2. Then the result is:

(1%h)(Sum of N Red Dice)+h(Sum of N Green Dice)

+N(Coin Flip),

where the coin flip is counted as %1
2 if tails and +

1
2 if heads.

Then, per Sections 3.2 and 4.1, the Expected Value of the
Process Variance is the sum of Joe and Mary’s individual process
variances:

(3:08)(1% h)2N +(3:08)h2N + :25N2:
The presence of the coin flips has not altered the hypothetical

means. Therefore, according to Section 4.1, the variance of the
hypothetical means is:

:5N2(1% h)2 + :5Nh2:
The EPV and VHM can be combined into the covariance

structure:

Cov[Xi,Xj] = :5N
2(1%h)2 + :5Nh2

+ "(3:08)(1%h)2N +(3:08)h2N + :25N2#±ij :
(4.10)

The credibility is:

Z =VHM/(VHM+EPV)

=
:5N2(1%h)2 + :5Nh2

:5N2(1% h)2 + :5Nh2 +3:08N(1% h)2 +3:08Nh2 + :25N2

=
N +

,
h

1% h
-2

N +
,

h

1%h
-2
+6:16+6:16

,
h

1%h
-2
+

:5N
(1%h)2

: (4.11)



CREDIBILITY WITH SHIFTING RISK PARAMETERS 491

As before let I = h2=(1% h)2 while K = 6:16, the usual
Bühlmann credibility parameter. Let J = :5=(1%h)2, which for
h= 0 reduces to the situation in Section 3.2 where J was .5.
Then Equation 4.11 can be rewritten as:

Z =
N + I

N(1+ J)+ I+K + IK
: (4.12)

4.5. Credibilities, No Shifting Risk Parameters

For insurance applications to frequency, pure premiums, etc.,
it will be useful to rewrite the covariance structure in Equation
4.10 with a somewhat different parametrization than in the dice
example. Combining the features of Equations 3.5 and 4.3, the
covariance structure with risk heterogeneity and parameter un-
certainty is:42

Cov[Xi,Xj] = r
2"1+ (I=E)+ ((K=E)+ J)±ij#, I,J ,K + 0:

(4.13)

When one uses Y years of data to predict a future year, Equa-
tions 2.4 become with the covariances from Equation 4.13:

(K=E+ J)Zi+
Y"
j=1

(1+ I=E)Zj = 1+ I=E, i= 1,2, : : : ,Y:

By symmetry the credibilities for the individual years, Zi, are
all equal.

Let Zi = Z=Y, where Z =
.
Zi, the total credibility applied to

the data.43 Then the sum of the credibilities for Y years of data

42Where as before E is the size of risk, I quantifies risk heterogeneity, J quantifies
parameter uncertainty, and K is the Bühlmann credibility parameter. The size of risk
enters as 1=E since we are estimating quantities such as frequency or pure premiums
rather than the sum of die rolls, the total number of claims, the total losses.
43The credibility applied to each year is in this case the total credibility divided by the
number of years.
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each of size E is:

Z =
(E+ I)Y

E(Y+ J)+YI+K
; I,J ,K + 0: (4.14)

For one year of data, Y = 1, Equation 4.14 becomes:44

Z =
E+ I

E(1+ J)+ I+K
: (4.15)

While Equation 4.14 with Y = 1 differs slightly from Equation
4.12, they have the same essential form as a function of size of
risk.

Equation 4.14 is of the same general form as given in Mahler
[11] and Mahler [12].45 In the absence of parameter uncertainty,
J=0 and the credibility is given by Equation 4.5. In the presence
of parameter uncertainty, J > 0. In the absence of risk hetero-
geneity I = 0 and the credibility is given by Equation 3.10. In
the presence of risk heterogeneity, I > 0.

The parameter I largely affects the credibilities for smaller
risks. The parameter J largely affects the credibilities for larger
risks. The maximum credibility as the size of risk approaches
infinity is Y=(Y+ J)< 1. The credibility is of the form: (linear
function of size)/(linear function of size).

Equation 4.14 for the credibility in the presence of risk hetero-
geneity and parameter uncertainty is the form used in the NCCI
Revised Experience Rating Plan for workers compensation. The
primary and excess credibilities depend on a state specific pa-
rameter g as follows:46

Zp = (E
,+700g)=(1:1E,+3270g), and

Zx = (E
,+5,100g)=(1:75E,+208,925g),

(4.16)

44This is the same general form of the credibilities in the presence of risk heterogeneity
and parameter uncertainty, shown in Mahler [12]. This is the same basic form as Equation
4.4 of Mahler [12], with a slightly different treatment of the parameters I and K.
45However, the definition of the parameters is not precisely the same.
46See Mahler [12]. The parameter g is the average cost per case divided by 1,000; g
is rounded to the nearest 0.05. Recently the NCCI has revised the excess parameters
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where E, is the expected losses for the sum of 3 years of data.
E, is the equivalent of 3E = YE in Equation 5.9. Equations
4.16 are the same as Equation 4.14 with Y = 3 and the param-
eters:47

Primary Excess

I 700g=3 1,700g (4.17)
J .3 2.25
K 2,570g 203,825g

Note that as E& 0 in Equation 4.14, Z& YI=(YI+K). Thus
the minimum credibility is 1=(1+ (K=IY)). This is greater than
zero for I > 0. For the NCCI Revised Experience Rating Plan the
minimum primary credibility is 1=(1+ (2,570=700)) = 21:4%.
The minimum excess credibility is 1=(1+ (203,825=5,100)) =
2:4%.

As E&' in Equation 4.14, Z& (YE)=(Y+J)E =Y=(Y+J)
= 1=(1+ J=Y). This is less than 1 for J > 0. For the NCCI
Revised Experience Plan, the maximum primary credibility is
1=(1+ :3=3) = 1=1:1 = 90:9%. The maximum excess credibility
is 1=1:75 = 57:1%.

Without parameter uncertainty, J = 0 and Equation 4.14 be-
comes:

Z =
(E+ I)Y

EY+YI+K
=

E+ I
E+ I+K=Y

: (4.18)

somewhat to take effect during 1998 and later. Jx = 1:125 rather than 2.25. Kx = 150,000g
rather than 203,825g. In addition, only 30% of Medical Only losses will be included in
experience rating.
47This differs from the values shown in Mahler [12] due to the somewhat different treat-
ment of the parameters here. The important point is that the credibilities are of the form
Linear/Linear. The Revised Experience Rating Plan was developed under the direction
of Gary Venter while he was at the National Council on Compensation Insurance. As
described in Gillam [13], this was the form of credibilities that worked well in the tests
performed by the NCCI. Note that while in Section 10 of the current paper explicit
recognition of the impact of the covariance of primary and excess losses is taken, this
was not the case in the derivation of the credibilities in the NCCI Revised Experience
Rating Plan.
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For one year of data (and only risk heterogeneity) Equation
4.18 becomes:

Z =
E+ I

E+ I+K
: (4.19)

Without risk heterogeneity I = 0, and Equation 4.14 becomes:

Z =
YE

E(Y+ J)+K
: (4.20)

For one year of data (and only parameter uncertainty) Equa-
tion 4.19 becomes:

Z =
E

E(1+ J) +K
: (4.21)

4.6. Very Small Risks, Risk Heterogeneity and Parameter
Uncertainty

As in Section 4.3, we will introduce a refinement for very
small sizes of risk. In the dice example, risk heterogeneity applies
only for risks above a certain size, those with more than one die.
Similarly, in insurance examples we might expect that the effects
of risk heterogeneity will apply only above a certain size.

We will assume a covariance structure and derive a formula
for the credibilities that apply for risks of the smallest sizes.
Equation 4.13 is assumed to be valid for risks of size+­:
Cov[Xi,Xj] = r

2"1+ (I=E)+ ((K=E)+ J)±ij#, E + ­:
(4.22)

For E = ­:

Cov[Xi,Xj] = r
2"1+ (I=­)+ ((K=­)+ J)±ij#:

We assume that for E < ­, the term related to risk hetero-
geneity, I=­, does not decline as the risk size declines below
­, and thus acts as if the risk were homogeneous.48 In other

48The term related to risk homogeneity, r2, is independent of the size of risk, and thus
below ­ remains the same.
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words:

Cov[Xi,Xj] = r
2"1+ (I=­)+ ((K=E)+ J)±ij#, E ) ­:

(4.23)

Using the covariance structure given by Equation 4.22, for
E +­ the credibilities are given by Equation 4.14:

Z =
Y(E+ I)

(Y+ J)E+YI+K
, E +­: (4.24)

However, for E )­, the covariances are given by Equation
4.23, and the solution to Equations 2.4 is, in the absence of
shifting risk parameters:

Z =
Y(1+ (I=­))

Y(1+ (I=­))+ (K=E)+ J

=
YE((I+­)=­)

YE((I+­)=­)+ JE+K

=
YE

(Y+ J ,)E+K ,
, E ) ­ (4.25)

where

J , = J
,

­

I+­

-
and K , = K

,
­

I+­

-
:

Equation 4.25 is of the same form as Equation 4.20, but with
the parameters J and K each adjusted by a factor of ­=(I+­).
This is the Bühlmann credibility formula with an additional pa-
rameter J , to account for parameter uncertainty. For very small
risks, the parameter J , has very little effect; thus Equation 4.25
gives approximately the same result as the usual Bühlmann cred-
ibility formula.

The credibilities given by Equation 4.25 approach zero as the
risk size approaches zero. As expected, for E =­, Equations
4.24 and 4.25 give the same credibility:
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Z =
Y(­+ I)

(Y+ J)­+YI+K
=

Y(­+ I)
Y(­+ I)+ J­+K

=
Y

Y+ J
,

­

­+ I

-
+K

,
­

­+ I

-,
1
­

-
=

Y

Y+ J ,+K ,=­
=

Y­

(Y+ J ,)­+K ,
:

4.7. Very Small Risks, Workers Compensation Experience Rating

For example, consider the NCCI Revised Experience Rat-
ing Plan with parameters given in Equations 4.17 and Y = 3.
Take solely for illustrative purposes ­ = $1,000g. If g = 2, cor-
responding to an average claim size of $2,000, then ­ = $2,000.
This would correspond to $6,000 in expected losses49 over 3
years. Assuming the expected loss rate is about 40% of the man-
ual rate, then $6,000 in expected losses corresponds to about
$15,000 in premium over 3 years.

This would be among the smallest risks eligible for experience
rating. Nevertheless, let us ignore the eligibility criterion, and
compare the primary credibilities given by Equations 4.14 and
4.25 for risks with expected annual losses less than ­ = 1,000g.
For g = 2, we get parameters in Equation 4.17 of:

Primary Excess

I 466.67 3,400
J 0.3 2.25
K 5,140 407,650

Using Equation 4.14 with Y = 3, we get primary credibilities
of:

Zp =
3E+1,400
3:3E+6,540

:

49At first, second, and third reports as limited for experience rating.
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FIGURE 3

For example, for E = 100g = 200, the primary credibility
would be 2,000=7,200 = 27:8%. In contrast, using Equation
4.25 with Y = 3, ­ = 2,000, J , = J (­=(I+­)) = :243, and K , =
K(­=(I+­)) = 4167:6, we get primary credibilities of:

Zp =
3E

3:243E+4167:6
, E ) 2,000:

For example, for E = 100g = 200, the primary credibility
would be 600=4816:2 = 12:5%.

As shown in Figure 3, the credibilities given by Equation 4.25
decline quickly to zero, while those from Equation 4.14 have a
minimum value of YI=(YI+K) = 1,400=(1,400+5,140) = :214.

For example, for expected annual losses of 100g, the pri-
mary credibilities are 27.8% from Equation 4.14 and 12.5% from
Equation 4.25. For 1,000g the credibilities from the two equa-
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tions are equal. Similarly for E = 100g = 200, the excess cred-
ibilities are 2.6% from Equation 4.14 and .4% from Equation
4.25.

For E = 200, weighting together the primary and excess cred-
ibilities, assuming a D-ratio50 of roughly 30%, produces credi-
bilities of 10% from Equation 4.14 and 4% from Equation 4.25.
The contrast is even greater for much smaller risks.

Expected NCCI Alternate
Annual Formulas51 Formula 4.25 with ­ = 1,000g

Losses Zp Zx Zp Zx
10g 22.1% 2.5% 1.4% 0.04%
100g 27.8% 2.6% 12.5% 0.4%
1,000g 56.6% 3.8% 56.6% 3.8%

The lower credibilities from Equation 4.25 make much more
sense for very small risks. For g = 2, 10g = $20 in expected an-
nual losses.52 The alternative formula corresponding to Equation
4.25 gives a credibility of .4% (assuming a D-ratio of roughly
30%),53 which at least has a possibility of being reasonable. The
NCCI formulas corresponding to Equation 4.14 are not applied
to such small risks, nor could they be. The resulting credibility
of 8.4% (assuming a D-ratio of roughly 30%)54 is way too high.
Thus, the refinement to the covariance structure for very small
risks, as in Equation 4.23, is at least a step in the right direction
towards obtaining reasonable experience rating credibilities for
very small risks.

50The D-ratio is the ratio of primary losses to primary plus excess losses.
51Equation 4.16 with g = 2 and E, equal to three times expected annual losses.
52A single full-time clerical employee might have $20 or more in expected annual losses
for workers compensation. This is very far below the size of risk that is experience rated.
53(1:4%)(30%)+(:04%)(1% 30%) = :448%, where from the table Zp = 1:4% and Zx =
:04%.
54(22:1%)(30%)+(2:5%)(1% 30%) = 8:38%, where from the table Zp = 22:1% and Zx =
2:5%.
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Figure 3 also displays the result of choosing ­ = 10,000g
rather than ­ = 1,000g. The credibilities are relatively insensitive
to the choice between these two values of ­. Either value of ­
used with Equation 4.25 allows a smooth transition down to zero
from the NCCI credibilities for very small risks. The transition at
E =­ between Formulas 4.24 and 4.25 will be smoothest when
the slopes at E = ­ are similar.

If the credibility Z is given by Formula 4.24, then

dZ

dE
=

Y(K % IJ)
((Y+ J)E+YI+K)2

=
Y(K % IJ)

(YE(1+ I=E)+ JE+K)2
:

If instead the credibility is given by Formula 4.25, then

dZ

dE
=

YK ,

((Y+ J ,)E+K ,)2
=

YK(1+ I=­)
(YE(1+ I=­)+ JE+K)2

:

At E =­, the denominators of the derivatives of the two for-
mulas for Z are equal.

Thus, it follows that at E =­, the ratio of the derivative with
respect to E of Z given by Formula 4.25 to the derivative with re-
spect to E of Z given by Formula 4.24 is: (1+ I=­)=(1% IJ=K).
The transition will be smoothest when the slopes of the curves
are close, which occurs when this ratio of derivatives is close
to unity.55 In most applications IJ=K will be small, and thus
1=(1% IJ=K) will be close to unity.56 Thus, if ­ is at least 5I,
the ratio of derivatives at ­ will be close to unity, producing a
smooth transition between the two credibility formulas.

Figure 3 also displays the result of choosing ­ = 100g. This
value would not allow a smooth transition between the two cred-
ibility formulas. The credibilities using ­ = 100g differ signifi-
cantly from those obtained from using ­ = 1,000g. Which value
of ­ is most appropriate is an empirical question whose answer

55The ratio is greater than unity since 1+ I=­ > 1 and 1% IJ=K < 1.
56For the NCCI Revised Experience Rating Plan, IJ=K is .027 for primary losses and
.019 for excess losses.
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depends on obtaining as much information as possible about the
covariance structure in the particular situation.

4.8. W and B Values, Workers Compensation Experience Rating

In workers compensation experience rating it is common to
display tables of W (weighting) and B (ballast) values rather
than primary and excess credibilities.57 The primary and excess
credibilities are then given in terms of W,B and expected losses
as:58

Zp =Expected Losses/(Expected Losses+B), and

Zx =WZp:

Thus, B acts like a Bühlmann credibility parameter, except
that B varies by size of risk. W quantifies for a given size of
risk how much smaller the excess credibility is than the primary
credibility. For three years of data, each with expected annual
losses of E, Zp = 3E=(3E+B).

We can calculate the ballast value B that corresponds to the
primary credibilities calculated in the prior section. Prior to the
imposition of a minimum value, B = 3E(1=Zp% 1), where E is
the expected annual losses and Zp is the primary credibility.

59

Using Equation 4.25, which assumes risk homogeneity below
risk size ­, with parameters Ip = 466:67, Jp = 0:3, Kp = 5,140
and ­p = 2,000 from the prior section, we can calculate the
primary credibility and corresponding value of B. For exam-
ple, for expected annual losses of E = 200, Zp = 12:5% and
thus B = 600((1=:125)%1) = 4,200. Keeping the other param-
eters fixed, we can alter ­p, resulting in different graphs of B
versus E, as shown in Figure 4.60

57See Gillam and Snader [19], Gillam [13] or Mahler [12].
58Mahler [12] relates these equations to Equations 4.16.
59Thus, for 3 years of data, with expected losses 3E,

3E=(3E+B) = 3E=(3E+3E - (1=Zp% 1)) = Zp:
60For example, for ­p = 1,000g = 2,000 and E = 100g = 200, B = 2,100g = 4,200.
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FIGURE 4

As seen in Figure 4, the assumption of no risk heterogeneity
below ­, with respect to primary credibilities, corresponds ap-
proximately to the imposition of a minimum ballast value. As the
value of ­ varies from 100g to 10,000g, the minimum B varies
from around 800g to 2,500g.

For E ) ­p from Equation 4.25 we have

Zp =
YE

(Y+ J ,p)E+K ,p
( YE

YE+K ,p
where K ,p = Kp

#
­p

Ip+­p

$
and J ,p is small.

For E )­, the credibilities approximately follow the usual
Bühlmann formula, thus the minimum ballast value should be
approximately

Kp

#
­p

Ip+­p

$
:
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For Ip = 700g=3, Kp = 2,570g, and illustrative values of ­ we
get:

­p ­p=(Ip +­p) Kp K,p

100g 30.0% 2,570g 771g
300g 56.3% 2,570g 1,447g

1,000g 81.1% 2,570g 2,084g
3,000g 92.8% 2,570g 2,385g
10,000g 97.7% 2,570g 2,511g

Thus, for this range of values for ­, the range of minimum
ballast values K ,p is from about 800g to 2,500g.61 In any case,
some minimum ballast value is appropriate regardless of the
value of ­. The minimum B should be a function of the state
specific parameter g, and must be less than Kp.

Similarly the weighting value W is equal to W = Zx=Zp. For
E )­p and E )­x, using Equation 4.25, W ( (YE=(YE+K ,x))=
(YE=(YE+K ,p)) = (YE+K ,p)=(YE+K ,x). As the size of risk goes
to zero, E& 0,

W&K ,p=K
,
x = (Kp=Kx)(­p=­x)

(Ix+­x)
(Ip+­p)

:

If, for example, we were to take ­x =­p = 10,000g, then
using the current NCCI values Ip = 700g=3, Kp = 2,570g, Ix =
1,700g, and Kx = 203,825g, the minimum W value would be
.014; this compares to a current minimum W of .07.

4.9. Risk Heterogeneity and Shifting Risk Parameters, Dice
Example

In this section, the phenomenon of shifting risk parameters
will be added to the model in Section 4.1.

61The NCCI has introduced a minimum B of 2,500g, which as seen here corresponds to
­ ( 10,000g.
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Joe initially selects N identical red dice and N possibly dif-
ferent green dice.

Prior to each trial, Rose may alter the type of all the red dice.
Prior to each trial, Gwen may alter the type of one or more of
the green dice; Gwen acts independently on each green die. Then
Joe rolls all the dice and the result is taken as: (1% h) (the sum
of the N red dice)+h (the sum of the N green dice.)

Assume that Rose’s replacement of red dice follows the tran-
sition matrix R:

R=
:96 :04 0
:02 :95 :03
0 :06 :94

Thus, if the red dice are 6-sided, there is a 2% chance Rose
will change them to 4-sided, a 3% chance Rose will change them
to 8-sided, and a 95% chance Rose will leave them alone.

Similarly, assume that Gwen’s replacement of individual
green dice follows the transition matrix G:

G=
:60 :40 0
:20 :50 :30
0 :60 :40

Gwen is ten times as likely to switch dice as is Rose.62 Thus,
the parameters of the green dice shift more swiftly than those of
the red dice.63 The dominant eigenvalue64 (other than unity) of
the transpose of R is ½= :954, with a half-life of 15 trials. The
dominant eigenvalue65 (other than unity) of the transpose of G
is ° = :537 with a half-life of 1.1 trials. The transition matrices
G and R have been chosen such that they each have the same
stationary distribution:66 .25, .50, and .25.

62We have chosen this simple relation for illustrative purposes. Gwen could switch dice
at any rate relative to Rose.
63One could just as easily model the reverse situation.
64The three eigenvalues of R are 1, .954 and .896.
65The three eigenvalues of G are 1, .537 and %:037.
66One could model a somewhat more complicated situation where the green and red dice
had different stationary distributions.



504 CREDIBILITY WITH SHIFTING RISK PARAMETERS

For now take the simplest case in which Joe rolls a single die
of each color, N = 1. (The next section will deal with the more
general case of N + 1.)
As shown in Mahler [1], the covariance of trials Xi and Xj for

either a single red or green die is given by Equation 3.12:

Cov[Xi,Xj] =
"
k>1

³k¸
$i%j$
k + ±ij´

2

where ´2 is the Expected Value of the Process Variance, ±ij =
0 for i != j and ±ij = 1 for i= j, ¸k are the eigenvalues of the
transition matrix and the ³k are a function of the transition matrix
and the means of the different dice.67

For transition matrix R:

k ¸k ³k

1 1 12.25
2 .954 .4676
3 .896 .0324

For transition matrix G:

k ¸k ³k

1 1 12.25
2 :537 .4676
3 %:037 .0324

Note that since we have chosen the same basic structure
for the shifting of the green and red dice the ³ values are the
same. Also note that

.
k>1 ³k = :5 = Variance of the Hypothetical

Means in the absence of shifting risk parameters. The eigenvalues
are different, reflecting the different rates of shifting parameters.

In this case the expected value of the process variance = ´2 =
3:08. Thus, for the red dice the covariance between trials of data

67The dice in this case are the different states of the Markov chain. See Mahler [1].
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is:

Cov[Yi,Yj] = (:4676)(:954
$i%j$)+ (:0324)(:896$i%j$) +3:08±ij :

(4.26)

For the green dice the covariance between trials of data is:

Cov[Wi,Wj] = (:4676)(:537
$i%j$)+ (:0324)((%:037)$i%j$)+ 3:08±ij :

(4.27)
Equation 4.27 can be approximated as:

Cov[Wi,Wj]( (:5)(:537)$i%j$+3:08±ij : (4.28)

Similarly, Equation 4.26 can be approximated as:68

Cov[Yi,Yj]( (:5)(:954)$i%j$+3:08±ij : (4.29)

Equations 4.28 and 4.29 are each of the form given by Equa-
tion 3.14:

Cov[Xi,Xj]( ¿2¸$i%j$+ ´2 ±ij: (4.30)

In both cases the Variance of the Hypothetical Means69 = ¿2 =
:5 while the Expected Value of the Process Variance = ´2 = 3:08.

Let Yi = result of a red die, Wi = result of a green die, and
Xi = (1%h)Yi+ hWi = result of a trial (for one die of each kind).
Then

Cov[Xi,Xj] = Cov[(1%h)Yi+hWi, (1%h)Yj +hWj]
= (1%h)2Cov[Yi,Yj]+ (1%h)hCov[Yi,Wj]
+ (1%h)hCov[Wi,Yj] +h2Cov[Wi,Wj]:

68Depending on the particular example, putting the covariance in terms of the principal
eigenvalue other than unity will represent more or less of an approximation. For example,
for the green dice, the approximate covariances from Equation 4.28 for separations of
1, 2, and 3 trials are .2685, .1442, and .0774. These compare to the exact covariances
from Equation 4.27 of .2499, .1349 and .0724. On the other hand, the approximation of
Equation 4.26 by Equation 4.29 is an example where the approximate covariances are
close to the exact covariances.
69In the absence of shifting risk parameters.
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However, the green and red die are independent of each other,
so that

Cov[Yi,Wj] = Cov[Wi,Yj] = 0:

Thus, Cov[Xi,Xj] = (1%h)2 Cov[Yi,Yj]+h2Cov[Wi,Wj].
Cov[Xi,Xj]( (1%h)2(:5)(:954$i%j$)+h2(:5)(:537$i%j$)

+3:08(1%h)2 ±ij +3:08h2 ±ij: (4.31)

In general Equation 4.31 can be written as:

Cov[Xi,Xj]( (1%h)2¿21 ½$i%j$+ h2¿22 °$i%j$

+(1%h)2´21 ±ij+h2´22 ±ij (4.32)

where we have allowed for possibly different values of the vari-
ance of the hypothetical means70 ¿21 and ¿

2
2 , as well as possibly

different values of the expected value of the process variance ´21
and ´22, for the “red” and “green” risk processes.

4.10. Behavior by Size of Risk with Risk Heterogeneity and
Shifting Risk Parameters

According to Section 4.1, the green and red dice contribute
differently to the Variance of the Hypothetical Means and to the
covariances as the number of dice N increases. For the sum of
N identical red dice, the VHM is :5N2 =N2¿21 . For the sum of
N possibly different green dice, the VHM is :5N =N¿22 . In both
case the EPV=N´2 = 3:08N.

Thus, for N dice, Equation 4.32 becomes:

Cov[Xi,Xj] = (1%h)2N2¿21½$i%j$+h2N¿22 °$i%j$

+(1%h)2N´21 ±ij +h2N´22 ±ij : (4.33)

70In the absence of shifting risk parameters.
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For insurance applications to frequency, pure premiums, etc.,
it will be useful to rewrite Equation 4.33 as:71

Cov[Xi,Xj] = r
2"½$i%j$+(I=E)°$i%j$+(K=E)±ij#,

1+ ½,° + 0 I,K + 0: (4.34)

Equation 4.34 for the covariances in the presence of shifting
risk parameters and risk heterogeneity combines the features of
Equation 3.16 with shifting risk parameters and Equation 4.3
with risk heterogeneity.

Equation 4.33 displays the typical behavior in the presence
of risk heterogeneity (h > 0); there is a piece of the variance of
hypothetical means that increases as N2 and a piece that increases
only as N, the size of risk. Therefore, the relative importance of
the two dominant eigenvalues ½ and ° varies by size of risk N.
For N large, ½ is relatively more important than for N small.
Thus for large size risks the log-correlations decline at a rate of
approximately ½. For medium size risks, the decline rate will be
between ½ and °. For very small risks, the decline rate should
be approximately °. This same behavior also holds for Equation
4.34.

For the dice example, ½= :954 and ° = :537, thus larger risks
should have their log-correlations decline approximately with
a slope of ln :954,72 while smaller risks would see their log-
correlations decline more quickly. For h= :8, Figure 5 shows
the behavior for various sizes of risk. The correlations are both
smaller for fewer numbers of dice and decline more quickly as
the separation of years increases.

For this example, plugging into Equation 4.33, the values h=
:8, ¿21 = ¿

2
2 = :5, ´

2
1 = ´

2
2 = 3:08, we obtain:

Cov[Xi,Xj] = :02N
2:954$i%j$+ :32N:537$i%j$+2:0944N±ij:

71Where as before E is the size of risk, I quantifies risk heterogeneity and K is the
Bühlmann credibility parameter. ½ and ° quantify the rate(s) of shifting of risk parameters.
72The correlation declines approximately as :954$i%j$, thus, its log declines approximately
as $i% j$(ln :954).
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FIGURE 5

Thus, Var[X] = Cov[X,X] = :02N2 +2:4144N.

Thus, for this example the correlations between years are
given by:

Corr[Xi,Xj] =
:02N2:954$i%j$+ :32N:537$i%j$

:02N2 +2:414N
, i != j:

(4.35)

Figure 6 shows the ratio of Corr[Xi,Xi+2] to Corr[Xi,Xi
+1].73 As the number of dice increases this ratio gets closer to
½= :954. In this example, larger risks have less quickly shifting
risk parameters over time.74

73Figure 6 shows the approximation given by Equation 4.35. The more exact results
that would be obtained starting with Equations 4.26 and 4.27 including terms for all the
eigenvalues, would display the same behavior.
74If the transition matrices for Gwen and Rose had been reversed, then the larger risks
would have had more quickly shifting risk parameters than smaller risks.
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FIGURE 6

For general insurance applications, Equation 4.35 would be-
come for the covariances written as in Equation 4.34:

Corr[Xi,Xj] =
E½$i%j$+ I°$i%j$

E+ I+K
, i != j: (4.36)

In Equation 4.36, as E&', Corr[Xi,Xj]& ½$i%j$, while as
E& 0, Corr[Xi,Xj]& °$i%j$I=(I+K). As will be discussed sub-
sequently, examining the behavior of the correlations between
years of data as the separation between years and the size of risk
vary will allow one to estimate the parameters of the covariance
structure which are needed to calculate credibilities.

5. SHIFTING RISK PARAMETERS, RISK HETEROGENEITY, AND
PARAMETER UNCERTAINTY

In this section, the effects of shifting risk parameters, risk
heterogeneity and parameter uncertainty will be combined. In
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Section 5.1, the three phenomena will be combined for the dice
example. The model will be put into a form useful for insurance
applications in Section 5.2. Section 5.3 will incorporate the pre-
viously discussed refinement to the covariance structure for very
small risks. Section 5.4 will discuss all three phenomena in the
context of Philbrick’s target shooting example.

5.1. All Three Phenomena, Dice Example

Combining the examples in Sections 3.6, 4.4, and 4.9 we can
incorporate shifting risk parameters, risk heterogeneity, and pa-
rameter uncertainty.

Joe initially selects N identical red dice and N possibly dif-
ferent green dice. Prior to each trial, Rose may alter the type of
all the red dice. Prior to each trial, Gwen may alter the type of
one or more of the green dice; Gwen acts independently on each
green die.

For each trial Joe rolls all the dice and Mary flips a coin. The
result of a trial is:

(1%h)(Sum of N Red Dice)+h(Sum of N Green Dice)

+N(Result of Coin Flip)

where the coin flip is counted as %1
2 for tails and

1
2 for heads.

The presence of the coin flip does not alter the hypothetical
means. However, as in Section 4.4, the Expected Value of the
Process Variance is (3:08)(1%h)2N +(3:08)h2N + :25N2. Com-
bining this with the Variance of the Hypothetical Means from
Section 4.10, the covariance between the results of trials i and
j is:

Cov[Xi,Xj] = (1%h)2N2(:5):954$i%j$+h2N(:5):537$i%j$

+(1%h)2N(3:08)±ij +h2N(3:08)±ij +(:25)N2 ±ij :
(5.1)
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Equation 5.1 can be written more generally as:

Cov[Xi,Xj] = (1%h)2N2¿21½$i%j$+h2N¿22 °$i%j$

+(1% h)2N´21 ±ij + h2N´22 ±ij + u2N2 ±ij :
(5.2)

In insurance we normally are interested in quantities such as
claim frequency75 or pure premium,76 which have the volume of
data in the denominator. This introduces a factor of 1=volume2

into the variances and covariances.

In the dice example, this would be the equivalent of the result
of a trial being the previously defined “result of a trial” divided
by N:

1
N

!
(1%h)(Sum of N Red Dice)+h(Sum of N Green Dice)

+N(Result of Coin Flip)

/
:

In that case, Equation (5.2) is modified to:

Cov[Xi,Xj] = (1%h)2¿21½$i%j$+h2¿22°$i%j$=N
+(1%h)2´21±ij + h2´22±ij + u2±ij : (5.3)

There are those portions of the covariance that are indepen-
dent of size of risk and those portions such as the process vari-
ance which decline with size of risk, when dealing with claim
frequencies, pure premiums, etc.

5.2. General Form of Covariances, All Three Phenomena

Equation 5.3 contains four different types of terms. There
are those that decrease as the inverse of the size of risk N and
those that do not depend on N. There are those involving ±ij
that are related to the process variance and are not present in
the covariance between different years. On the other hand, there

75Frequency = claims/exposures.
76Pure Premiums = losses/exposures.
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are those involving ¸$i%j$ that are related to the variance of the
hypothetical means.

In specific examples, the key elements will be the speed with
which parameters shift and thus the half-lives of ½ and °, and
the relative weights of each of the four types of terms. With this
in mind it will be worthwhile to rewrite Equation 5.3. Let r2 =
(1%h)2¿21 , g2 = h2¿22 , e2 = (1% h)2´21 +h2´22, and rather than N
use E as some appropriate measure of size of risk.77

Then Equation 5.3 becomes:

Cov[Xi,Xj] = r
2½$i%j$+ g2°$i%j$=E+ ±ij(e

2=E+u2)

Var[X] = Cov[X,X] = r2 + g2=E+ e2=E+ u2:
(5.4)

As before letting I = g2=r2, J = u2=r2 and K = e2=r2, then

Cov[Xi,Xj] = r
2"½$i%j$+ °$i%j$(I=E)+ (J +K=E)±ij#: (5.5)

Thus, the correlations are:

Corr[Xi,Xj] =
E½$i%j$+ I°$i%j$

E(1+ J) +K + I
: (5.6)

For large risks the term with ½$i%j$ will dominate, while for
small risks the term with °$i%j$ will dominate. For large risks
the log-correlations will decline as ½, while for small risks the
log-correlations will decline as °. For risks of medium size the
decline will be between ½ and °.

Thus, this model will be particularly useful when and if there
are different decline rates in correlations by size of risk.78 ½
can be estimated from the slopes for large risks of the log-
correlations versus separations. ° can be estimated from the
slopes for small risks of the log-correlations. The size of I can be

77For example, E could be expected losses in workers compensation experience rating.
78Where the rate of decline in the correlations is not dependent on size of risk, one can
set ½= °.
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estimated by what constitutes a “medium-size risk,” where the
decline rate of the log covariances are about halfway between ½
and °. At that size E ( I.
As we take larger and larger risks, Equation 5.6 for the cor-

relations approaches

lim
E&'

Corr[Xi,Xj] =
½$i%j$

1+ J
:

Thus, we can estimate J , quantifying the impact of parameter
uncertainty, by examining for large risks the correlations between
years. For example, if we fit an exponential regression to such
correlations versus the separations, then the intercept can be used
to estimate J . For large risks:

lnCorr[Xi,Xj](% ln(1+ J)+ $i% j$ ln½:
For any size:

lnCorr[Xi,Xj] = ln(E½
$i%j$+ I°$i%j$)% ln(E(1+ J)+K + I):

Assuming a fixed set of parameters I, J , K, ½ and °, then for
a fixed size of risk E, the second term is constant, while the first
term depends on the separation between years $i% j$. We expect
the decline rate to be some rate between ½ and °, depending on
the relative sizes of E and I. Very approximately:79

ln(E½$i%j$+ I°$i%j$)( $i% j$ ln
,
E½+ I°
E+ I

-
+ln(E+ I)

Thus,

lnCorr[Xi,Xj]( $i% j$ ln
,
E½+ I°
E+ I

-
+ ln

,
E+ I

E(1+ J)+K + I

-
:

Thus, if we fit an exponential least squares regression to the
correlations by separations + 1, we would expect to have a slope
between ½ and ° and an “intercept” of (E+ I)=(E(1+ J)+K + I).

79For E = 0, ln(I°$i%j$) = $i% j$ ln°+ ln I. For I = 0, ln(E½$i%j$) = $i% j$ ln½+lnE. For
$i% j$= 1, the approximation is exact. The approximation is poor when $i% j$ is large, ½
and ° differ substantially, and E is approximately the same as I.
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This intercept80 is equal to the credibility for a single year of
data in the absence of shifting risk parameters, as in Equation
4.15.

We can therefore approximate some of the necessary param-
eters from the behavior of the observed correlations as the size
of risk and number of years of separation vary.

For each of various sizes of risk we can fit exponential least
squares regressions to the correlations for years separated by
one year or more. The intercept for each size category is an
estimate of the credibility of one year of data in the absence of
shifting risk parameters over time. These credibilities by size of
risk can be used to estimate the parameters I, J and K. The slope
(exponential rate of decline) of the correlations varies between
° and ½ as the size of risk increases. At an intermediate size of
about I, the slope will be about halfway between ° and ½.

In the situation where the years Xi and Xj have different ex-
pected volumes of data Ei and Ej , Equation 5.5 can be general-
ized to:

Cov[Xi,Xj] = r
2
0
½$i%j$+ °$i%j$I=

+
EiEj +

1
J +K=

+
EiEj

2
±ij

3
(5.7)

In the covariance, those terms that were divided by E in Equa-
tion 5.5 are now in Equation 5.7 divided by the geometric aver-
age of the sizes of risk,

+
EiEj . If Ei = Ej = E, then

+
EiEj = E,

so that Equation 5.7 would reduce to Equation 5.5. The use of
the square root function in the generalization was motivated by
the

4
VAR[X1]VAR[X2] that appears in the denominator of the

correlation of X1 and X2.

Equations 5.5 or 5.7 can be used to calculate all of the co-
variances necessary to solve Equations 2.4 for the credibilities.

An example of how to calculate the credibilities in general will
be given in Section 6. However, prior to that it is worthwhile to

80For convenience in this paper, (E+ I)=(E(I+J)+K +J), rather than the natural log
of that quantity, will be referred to as the intercept.
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generalize Equation 5.7 for the covariance in order to take into
account the different behavior of very small risks.

5.3. Very Small Risks, General Covariance Structure

In Sections 4.3 and 4.6 a refinement for very small sizes of
risk was introduced. In this section, this refinement will be in-
troduced into the general covariance structure.

The same logic concerning risk heterogeneity and very small
risks applies as well when both parameter uncertainty and shift-
ing risk parameters are considered. If we assume risk hetero-
geneity does not apply for E )­, then Equation 5.4 for the co-
variances is split into two separate equations, per Equations 4.22
and 4.23.

For E + ­, Equation 5.5 holds:
Cov[Xi,Xj] = r

2"½$i%j$+ °$i%j$(I=E) + ±ij((K=E) + J)#,
E +­: (5.8)

For E ) ­, the term involving I takes on its value at E = ­:

Cov[Xi,Xj] = r
2"½$i%j$+ °$i%j$(I=­)+ ±ij((K=E)+ J)#,

E )­: (5.9)

In the situation where the years Xi and Xj have different ex-
pected volumes Ei and Ej , Equations 5.8 and 5.9 can be gener-
alized to:81

Cov[Xi,Xj] = r
2
0
½$i%j$+ °$i%j$I=

+
EiEj + ±ij

1
K=
+
EiEj + J

23
,+

EiEj + ­ (5.10)

81It should be noted that in Equations 5.10 to 5.11 the expression
4
EiEj only enters

due to the presence of risk heterogeneity. This results in terms such as I=
4
EiEj . In con-

trast, where
4
EiEj divides K it is multiplied by ±ij . These terms are zero unless i = j,

so
4
EiEj could be replaced in these terms by either Ei or Ej . This simplification in no-

tation is conventional in the absence of risk heterogeneity.
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Cov[Xi,Xj] = r
2
0
½$i%j$+ °$i%j$I=­+ ±ij

1
K=
+
EiEj + J

23
,+

EiEj ) ­: (5.11)

5.4. Philbrick’s Target Shooting Example

Philbrick [5] explains credibility concepts by using a target
shooting example. There are four marksmen each shooting at his
own target. Each marksman’s shots are assumed to be distributed
around his target, with expected mean equal to his target. Once
we observe a shot or shots from a single unknown marksman,
we could use Bühlmann credibility to estimate the location of
the next shot from the same marksman.

The key features of Bühlmann credibility are explained by
Philbrick as follows by altering the initial conditions of the target
shooting example:

Feature of Target
Shooting Example

Mathematical
Quantification

Bühlmann
Credibility

Better Marksmen Smaller EPV Larger
Targets Further Apart Larger VHM Larger
More Shots Larger N Larger

These mathematical relationships also follow from Bühl-
mann’s credibility formula, Equation 1.1.

We can modify the example in Philbrick to include each of
the three phenomena discussed in this paper.

In Philbrick, it is assumed that each marksman continues to
shoot at his target.82 Within a single example in Philbrick, the
risk parameters do not shift over time. If instead there were a
small random chance that between each shot a marksman would

82It is also assumed within an example that the targets are stationary, the marksmen
remain the same and do not get better or worse, nor do the marksmen move closer to or
further from the targets.
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switch targets, then one would have shifting risk parameters over
time.83 In this case, the credibility assigned to a given shot would
be less than if each marksman always shot at the same target.
The informational content of a shot for purposes of predicting
the next shot from the same marksman has been reduced by the
presence of shifting parameters over time.

The Philbrick example can also be altered in order to incor-
porate risk heterogeneity. Assume we have teams of marksmen.
Assume each marksman on a team shoots at his own target. As-
sume that while members of a team each shoot at a possibly
different target, the members of a team are more likely to shoot
at the same target than are marksmen who are not members of
the same team. For example, the six members of Team 1 might
shoot at targets A, A, A, B, C, and D respectively. For the pur-
pose of predicting the next shot, the informational content of a
given number of shots from Team 1 is less than if all the mem-
bers of the team always had the same target. Risk heterogeneity
has reduced the credibility assigned to a given number of shots.

Assume, for example, as the teams got bigger each additional
marksman in Team 1 was assigned target A half the time and
targets B, C, and D one-sixth of the time. Then as the teams
got bigger, the credibility assigned to a set of shots, one per
team member, would not be the same as the Bühlmann case
in which each team member shot at the same target. With risk
heterogeneity the credibility would increase more slowly as the
teams increase in size; the incremental informational content of
another team member is less when they do not all shoot at the
same target.

As discussed previously, in the presence of risk heterogeneity,
the credibilities are given by Equation 4.4:

Z =
E+ I

E+ I+K
:

83This is analogous in the dice example to Beth possibly replacing dice between the rolls.
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The derivative of Z with respect to the size of risk E is
K=(E+ I+K)2. This derivative decreases as I increases; the
greater the impact of risk heterogeneity, the more slowly the
credibility increases with size of risk.

Finally, the Philbrick example can be altered to incorporate
parameter uncertainty. Again assume that there are teams of
marksmen, but each marksman shoots at the same target. As-
sume that for each round of shots, one per team member, every
team member uses the same rifle. However, between rounds the
rifle is replaced by another. Further assume the rifles look alike
but some shoot high, some shoot low and to the left, etc. Also
assume the marksmen on a team do not communicate with each
other, nor adjust their aim based on their teammate’s shots, so
that all team members are equally affected by the peculiarities
of the given rifle. The errors introduced by the switching rifles
reduce the informational content of the shots; in the presence
of parameter uncertainty less credibility is assigned to the data,
holding all else equal.

In addition, adding more team members can never eliminate
the effect of an individual, randomly chosen rifle. In the pres-
ence of parameter uncertainty the credibility of a single year of
data does not approach unity as the risk size increases; rather
in Equation 3.7 the credibility goes to 1=(1+ J) as the risk size
approaches infinity.

However, by observing many rounds of shots, assuming the
errors of the rifles average to zero, one can eliminate their im-
pact. In the presence of parameter uncertainty (and no shifting
risk parameters over time), the credibility of a given size of risk
goes to unity as the number of years goes to infinity; the cred-
ibilities in Equation 3.10 go to unity as the number of years
increases.

Clearly, we could modify the Philbrick target shooting exam-
ple to incorporate two or all three of the phenomena discussed
in this paper.
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6. ILLUSTRATIVE EXAMPLES OF CALCULATING CREDIBILITIES

This section will present illustrative examples of calculating
credibilities based on the general covariance structure presented
in Section 5. Section 6.1 deals with large risks, while Section
6.2 includes the refinement to the covariance structure for very
small risks. Section 6.3 shows how differing volumes of data by
year would affect the credibilities. Section 6.4 shows an example
in which no weight is given to the overall mean.

6.1. An Example of Calculating Credibilities, Large Risks

As an example, take the following illustrative values in Equa-
tions 5.5 or 5.7 for the covariances in the presence of all three
phenomena:84

½= :9 (rate of shifting parameters related to
risk homogeneity),

° = :7 (rate of shifting parameters related to
risk heterogeneity),

e2 = 9,000 (expected value of process variance without
parameter uncertainty),

u2 = 2 (variance related to parameter uncertainty),

r2 = 3 (portion of variance of hypothetical means related
to risk homogeneity),

g2 = 4,000 (portion of variance of hypothetical means
related to risk heterogeneity),

I = g2=r2 = 1,333,

J = u2=r2 = :6667, and

K = e2=r2 = 3,000:

84These values were chosen solely to present an example. Note that if one multiplies e2,
u2, r2 and g2 all by the same constant, then all the covariances are multiplied by that
same constant, but the credibilities are unchanged.
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Assuming each year of data has equal volume E, Equation 5.5
becomes:

Cov[Xi,Xj] = (3):9
$i%j$+(4,000=E):7$i%j$+ ±ij(9,000=E+2):

(6.1)
Thus, the variance is:

Var[Xi] = Cov[Xi,Xi] = (13,000=E) +5:

The covariance between years of data separated by two years is:

Cov[X1,X3] = (1,960=E)+2:43:

For 4 years of data each of volume E, the variance-covariance
matrix is:
(13,000=E) +5 (2,800=E)+ 2:7 (1,960=E)+ 2:43 (1,372=E)+ 2:187
(2,800=E)+ 2:7 (13,000=E)+ 5 (2,800=E)+ 2:7 (1,960=E)+ 2:43
(1,960=E)+ 2:43 (2,800=E)+ 2:7 (13,000=E) +5 (2,800=E)+ 2:7
(1,372=E)+ 2:187 (1,960=E)+ 2:43 (2,800=E)+ 2:7 (13,000=E) +5:

For example, if E = 1000 then the variance-covariance matrix is:

18 5:5 4:39 3:559
5:5 18 5:5 4:39
4:39 5:5 18 5:5
3:559 4:39 5:5 18:

Assume we are using three years of data to estimate the fourth
year directly following them. Then Equations 2.4 for the credi-
bilities to assign to each of the three years of data are:

18Z1 +5:5Z2 +4:39Z3 = 3:559,

5:5Z1 +18Z2 +5:5Z3 = 4:39, and

4:39Z1 +5:5Z2 +18Z3 = 5:5:

(6.2)

Equations 6.2 are three linear equations in three unknowns,
with solution:

Z1 = 9:62%,

Z2 = 14:15%, and

Z3 = 23:88%,



CREDIBILITY WITH SHIFTING RISK PARAMETERS 521

where Z1 is the credibility assigned to the oldest year of data
and Z3 is the credibility assigned to the most recent year of data.
Note that Z1 +Z2 +Z3 = 47:65%< 100%. The remaining weight
of 52.35% is given to the grand mean.85

It should be noted that Equations 2.4 for the credibilities86

were derived so as to minimize the expected squared error of
the estimate. As derived in Mahler [1]87 the expected squared
difference between the estimate and observation as a function of
the variance-covariance matrix and the credibilities is:

V(Z) =
Y"
i=1

Y"
j=1

ZiZjCij % 2
Y"
i=1

Ci,Y+¢Zi+CY+¢,Y+¢: (6.3)

In this particular case for E = 1,000, we get for various se-
lected values of the credibilities the following expected squared
errors:

Z1 Z2 Z3 V(Z)

0 0 0 18
1/3 1/3 1/3 18.454
1/2 0 0 18.941
0 1/2 0 18.110
0 0 1/2 17.000

9.62% 14.15% 23.88% 15.722

Thus, the use of (the optimal least squares) credibilities of
9.62%, 14.15%, 23.88% does indeed seem to have reduced the
expected squared errors.88

Figure 7 shows how the sum of the credibilities for three years
of data varies with size of risk. In addition to the case where all

85The situation in which no weight is given to the grand mean is discussed below.
86Which are Equations 6.2 for this specific example with E = 1,000.
87See Appendix C in Mahler [1]. The derivation parallels that in Appendix B of the
current paper.
88In this case, the expected squared error is about 15:722. 18 = 87% of what one would
obtain by ignoring the observations (assigning the observations zero credibility).
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FIGURE 7

three phenomena are present, cases are shown in which only two
of the phenomena are present.

For no parameter uncertainty, J is set equal to zero rather
than .6667. For large risks the credibility is higher than in the
presence of parameter uncertainty. Nevertheless, the maximum
credibility is less than 100%, due to the impact of shifting risk
parameters over time.

For no shifting risk parameters, ½= ° = 1 rather than ½= :9
and ° = :7. Credibilities are higher. The credibilities are given by
Equation 4.14.

For no risk heterogeneity, I is set equal to zero rather than
1333. With risk homogeneity the credibilities go to zero as the
risk size declines.89

89As discussed in Section 5.3, Equation 5.5 and the resulting credibilities are not appro-
priate for very small risks.
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FIGURE 8

The decline rate of the correlations is close to ½= :9 for large
risks and close to ° = :7 for small risks. Specifically, the ratio
of the correlation between years separated by two years to the
correlation between years separated by one year is:

Corr[X1,X3]=Corr[X1,X2] = (2:43E+1,960)=(2:7E+2,800):
(6.4)

Figure 8 shows how this decline rate given by Equation 6.4
varies by size of risk.

In general if the covariances are given by Equation 5.5, we
expect this decline rate to be given by:

Corr[X1,X3]=Corr[X1,X2] = (½
2E+ I°2)=(½E+ I°): (6.5)

If ½ > °, then we expect to see something like Figure 8. If
instead ½ < °, we expect the curve to decrease from ° to ½ as the
size increases.
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The intermediate size at which the decline rate is about equally
distant between ½ and ° is approximately I. This could be used to
estimate I from data. In the example, I = 1,333. In Figure 8 for
this size the decline rate is .81, roughly halfway between ½= :9
and ° = :7.

6.2. Credibilities, Small Risks

In the example in Section 6.1, let us assume there is no risk
heterogeneity for E )­ = 100. Then the covariances and credi-
bilities are different for E < 100 than they were in Section 6.1.

For E ) 100, the covariances are given by Equation 5.9:
Cov[Xi,Xj] = (3)(:9

$i%j$) + (40)(:7$i%j$)+ ±ij(9,000=E+2):

For E + 100, the covariances are given by Equation 5.8:
Cov[Xi,Xj] = (3)(:9

$i%j$)+ (4,000=E)(:7$i%j$) + ±ij(9,000=E+2):

For example, for E = 10, the variance-covariance matrix is:

945 30:7 22:03 15:907
30:7 945 30:7 22:03
22:03 30:7 945 30:7
15:907 22:03 30:7 945:

Assume we are using three years of data (each with E = 10),
in order to estimate the fourth year directly following them. Then
Equations 2.4 for the credibilities to assign to each of the three
years of data are:

945Z1 +30:7Z2 +22:03Z3 = 15:907,

30:7Z1 +945Z2 +30:7Z3 = 22:03, and

22:03Z1 +30:7Z2 +945Z3 = 30:7:

(6.6)

Equations 6.6 are three linear equations in three unknowns,
with solutions:

Z1 = 1:5%,

Z2 = 2:2%, and

Z3 = 3:1%
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where Z1 is the credibility assigned to the oldest year of data.
The remaining weight not given to any of the years of data is
given to the grand mean.

These credibilities assuming no risk heterogeneity below E =
100 are significantly smaller than those derived from Equation
5.5, which assumes risk heterogeneity for all sizes of risk. For
E = 10, using Equation 5.5 to calculate the covariances rather
than Equation 5.9 would result in credibilities of:

Z1 = 5:7%,

Z2 = 9:9%, and

Z3 = 18:6%:

Equation 5.9 produces credibilities that decline to zero as the
risk size decreases in a manner similar to the usual Bühlmann
formula, in contrast to Equation 4.14. Figure 9 contrasts this
behavior for very small sizes, assuming ­ = 100. Shown are
the sum of the credibilities for three years of data as calculated
above. For example, for E = 10, the credibilities for three years
of data with risk heterogeneity sum to 34.2%, while those with-
out risk heterogeneity (below E = ­ = 100) sum to 6.8%. As E
gets even smaller, in the presence of risk heterogeneity, the sum
of the credibilities remains about 34%, while in the absence of
risk heterogeneity it goes to zero.

Intuitively the credibility should approach zero as the size of
risk approaches zero. Without the refinement discussed in Sec-
tions 4.3, 4.6 and 5.3, the covariance structure incorporating risk
heterogeneity would produce credibilities that make no sense to
actuaries. Credibility formulas such as Equation 4.14 or covari-
ance structures such as Equation 5.5 should not be applied to
very small risks.

Also shown in Figure 9 are the results of using Equation
5.9 with the alternate values ­ = 1,000 or ­ = 10,000 rather
than ­ = 100. In this case, the credibilities using the latter value
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FIGURE 9

are significantly different than using either of the two former
values.

In this example I = 1,333. This is the parameter related to risk
heterogeneity, and it controls the behavior of the credibilities
that result from Equation 5.5 for small risks. For E < I these
credibilities start leveling off significantly. Taking ­ significantly
less than I, as for example 100 compared to 1,333, starts the steep
descent to zero of the credibilities resulting from Equation 5.9
from an otherwise very small slope. In contrast, taking ­ either
roughly equal to or greater than I, starts the descent in a much
smoother manner, as is the case for ­ = 1,000 or 10,000.

6.3. Credibilities for Years with Differing Volumes of Data

Returning to the example in Section 6.1, assume that the three
years have differing volumes of data. Assume E1 = 600, E2 =
1,600, and E3 = 800, where E1 is the most distant of the three
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years. Using the inputs from before, Equation 5.7 becomes:

Cov[Xi,Xj] = (3)(:9
$i%j$)+ (4,000)(:7$i%j$)=

+
EiEj

+ ±ij
11
9,000=

+
EiEj

2
+2

2
:

Assume that the year to be estimated will have a volume of
data E4 = 1,000, the average of the observed years.

90 Then the
variance-covariance matrix is:

26:667 5:558 5:259 3:958
5:558 13:125 5:175 3:98
5:259 5:175 21:25 5:83
3:958 3:98 5:83 18

The credibilities are given by the solution to Equations 2.4:

Z1 = 6:68%,

Z2 = 19:16%, and

Z3 = 21:12%:

Thus, as expected, years 1 and 3 with their smaller volumes
are given less credibility than in Section 6.1, while year 2 with
its larger volume of data is given more credibility than before.

It is interesting to note that in the presence of risk heterogene-
ity91 the credibilities depend on the assumed volume of data for
the year being estimated, year 4.

E4 = 100 E4 = 1,000 E4 = 10,000

Z1 13.15% 6.68% 4.64%
Z2 31.18% 19.16% 15.36%
Z3 48.44% 21.12% 12.47%

90While Var[X4] will not enter into the equations for the credibility, Cov[X1,X4] and
similar terms will. Cov[X1,X4] depends on E4, due to the presence of risk heterogeneity.
In the absence of risk heterogeneity, one need not assume a value for E4.
91Whether or not there are shifting risk parameters over time.
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When E4 is large, the covariances of the data years with the
year to be estimated are smaller, and therefore we assign less
credibility.92

As E4 gets larger, we are assuming the insured will be larger
in year 4, the year to be predicted. As discussed previously, one
implication of risk heterogeneity is that larger insureds are in
some sense more similar to average than are smaller insureds.
The less distinct insureds are from average, the less credibility
we give to the data from individual insureds and the more weight
we give to the overall average.93 Thus, if E4 is larger, we give less
credibility to this insured’s data and more weight to the overall
average.

For mechanical applications of the methodology,94 we would
probably just assume that the volume of data in the future would
be some average of that observed in the recent past for that in-
sured. In this example, we might assume as above that:

E4 = (E1 +E2 +E3)=3 = 1,000:

6.4. Credibilities, No Weight Given to the Grand Mean

So far we have assumed that the complement of credibility is
given to the grand mean. In some cases the grand mean either
does not exist or is not used. In those situations, we can have the
credibilities be constrained to add to 100%.

Assume that we are using three years of data to estimate the
fourth year directly after them, but that no weight is given to the
grand mean. Then Equations 2.4 no longer apply.

92This differs from the Bühlmann case in which the covariances between the claim
frequencies of different years are assumed to be independent of the size of risk.
93In the target shooting example in Philbrick [5], as the targets get closer together less
credibility is given to each observed shot.
94For example, if one were performing many thousands of experience ratings by com-
puter.
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As shown in Appendix B, the general equations for credibility
when no weight is applied to the grand mean are:95

Y"
i=1

Cov[Xi,Xk]Zi =Cov[Xk,XY+¢]+
¸

2
, k = 1, : : : ,Y

Y"
i=1

Zi = 1,

(6.7)

where ¸ is a Lagrange Multiplier.96

For the covariances used in the previous Section 6.1, with
E = 1,000, Equations 6.7 become:

18Z1 +5:5Z2 +4:39Z3 = 3:559+¸=2,

5:5Z1 +18Z2 +5:5Z3 = 4:39+¸=2,

4:39Z1 +5:5Z2 +18Z3 = 5:5+¸=2, and

Z1 +Z2 +Z3 = 1:

These are four linear equations in four unknowns.97 The so-
lution is:98

Z1 = 27:60%,

Z2 = 30:53%, and

Z3 = 41:86%:

We note that Z1 +Z2 +Z3 = 1 as desired. The most recent
year is given weight 41:86%> 27:60%, the weight given to the
most distant year.

95See Equation 11.7 in Mahler [20].
96The Lagrange Multiplier is introduced due to the constraint equation §Zi = 1. Note that
¸ is used to denote the Lagrange Multiplier here and was used to denote the dominant
eigenvalue in prior sections. ¸ is commonly used in both these roles, but the reader
should not be confused. There is no connection between these two separate uses of the
same Greek letter.
97Although we are really not particularly interested in the value of the Lagrange Mul-
tiplier.
98The Lagrange Multiplier ¸= 9:853.
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Usually, as the size of risk increases, the need for stability in
the estimation procedure declines, so that we give more weight to
recent years of data. However, in this case that is counteracted to
some extent by the assumption that large risks have more stable
risk parameters over time.99 Thus the estimation procedure can
afford to be less responsive.

In this example, this leads to the credibilities being relatively
insensitive to the size of risk:

Size of Risk
1 1,000 1 Million

Z1 28.23% 27.60% 24.93%
Z2 30.60% 30.53% 30.21%
Z3 41.17% 41.86% 44.86%

If we switch the rates of shifting parameters and instead takes
½= :7 and ° = :9, we get a significantly different behavior by
size of risk:

Size of Risk
1 1,000 1 Million

Z1 30.32% 27.96% 21.96%
Z2 32.34% 30.87% 25.81%
Z3 37.34% 41.17% 52.23%

As risk size increases, the weight given to the recent year
increases more substantially than before. In general, the depen-
dence of credibility on size of risk will depend significantly on
the relative magnitudes of ½ and °.

99Larger risks correspond to a decline rate in the log-correlations of ½= :90 rather than
° = :70.
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7. CLASSIFICATION RATE RELATIVITIES

In this section, the ideas developed so far will be applied to a
simplified version of the estimation of classification rate relativ-
ities.100 While the example draws from workers compensation,
it is intended to illustrate the general applicable concepts rather
than the details of workers compensation insurance.

Section 7.1 defines rate relativities. Section 7.2 describes the
classification data examined. Section 7.3 describes the covariance
structure and explains how correlations were estimated. Section
7.4 describes how regressions were fit to the correlations in order
to estimate the parameters °, ½, I and J . Section 7.5 describes
how the parameter K was estimated. Section 7.6 describes how
the parameter ­ was selected.

Section 7.7 calculates credibilities with no weight given to
the overall mean. Section 7.8 calculates credibilities with weight
given to the overall mean. Section 7.9 discusses using prior es-
timates of the class relativities.

Section 7.10 discusses the impact of maturity of data in gen-
eral. Section 7.11 gives an example of the impact of maturity on
correlations while Section 7.12 gives the corresponding credibil-
ities.

7.1. Rate Relativities

Assume that we are trying to estimate for a number of indi-
vidual classes the expected pure premiums relative to the aver-
age for that group of classes. Further, assume we will do so by
weighting together the observed relativities for that class over
several recent years.101 If Ric is the relativity for year i, for class

100For an introduction to classification ratemaking see, for example, the Risk Classifica-
tion chapter of Foundations of Casualty Actuarial Science [21].
101This is a simplification of how we might get indicated pure premiums by classification
for workers compensation insurance. In that case, the relative pure premiums by class
would be compared to those for an industry group. Also, the “serious,” “non-serious”
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c, then the estimate of the relativity for that class for year N +¢
is:
.N
i=1ZicRic, where

.N
i=1Zic = 1. This is the situation covered

by Equations 6.7.

If instead we gave the complement of credibility to the grand
mean, which in this example is a relativity of unity, then Equa-
tions 2.4 would apply instead of Equations 6.7. In either case, in
order to estimate credibilities the key step will be the estimation
of the (expected) covariances between years of data.

7.2. Classification Data

The data to be examined is 13 (consecutive) years of clas-
sification experience in one state for workers compensation in-
surance.102 For each class we will use its payroll and losses to
compute its pure premium relative to its industry group for that
year. If Lic is the loss

103 and Pic the payroll,
104 then the relative

pure premium in year i for class c is:105

Ric = (Lic=Pic)

5#"
c

Lic

5"
c

Pic

$
: (7.1)

In order to estimate the behavior of the covariances by size of
class, the data for the Manufacturing and Goods and Services in-
dustry groups will be examined.106 The Manufacturing industry

and “medical” pure premiums might be treated separately. See Kallop [22] and Feldblum
[23]. In addition, we might rely on “National” as well as state pure premiums by class.
See Harwayne [24].
102See Appendix C for details on the data set examined.
103In this illustration, the losses are paid losses plus case reserves, at latest report, for
medical plus indemnity, without any limitation by claim size.
104Payroll is in units of $100.
105Note that the relativity of an individual class within an industry group depends both on
the experience of that class, the experience of the other classes, as well as the exposures
by class within the industry group. Thus, a given class relativity may change over time
for a number of different reasons, some of which may have little to do with the individual
class.
106Currently five industry groups are most commonly used for workers compensation
ratemaking: Manufacturing, Construction, Office and Clerical, Goods and Services, and
Miscellaneous.
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group will be particularly useful since it has about 270 separate
classes of various sizes. The Goods and Services industry group,
with only about 100 separate classes, will not allow as detailed
a breakdown by size of class.107

7.3. Covariance Structure

The covariance structure will be assumed to be that given by
Equations 5.10 and 5.11. However, for estimation purposes we
will use the simpler Equations 5.8 and 5.9, which ignore the
varying volume of data by year for a class.108

For an industry group we compute the relative pure premiums
for each class for each year. Then we can compute the covari-
ances and correlations between the different years. By examining
the behavior of these covariances and correlations as the size of
class and the number of years of separation vary, we can roughly
estimate the parameters that appear in the covariance Formulas
5.8 and 5.9.

For this purpose, we will restrict our attention to one size
category of class at a time.109 There are a number of ways to
categorize the volume of data. This example uses an estimate
of the average annual expected losses for a class based on its
reported payroll.110 Other reasonable measures of volume should
produce roughly similar results.

For each such size category, we estimate the covariance
between any two years of observed relative pure premiums
Ric and Rjc for c= 1, : : : ,k where there are k classes in the size

107The Office and Clerical industry group has only around 14 classes. The Construction
industry group has about 71 classes. The Miscellaneous industry group has about 49
classes.
108As will be seen, the estimation process is sufficiently imprecise that this simplification
is appropriate.
109Nevertheless, the pure premiums are relative to the entire industry group, regardless
of size of class.
110The details of how the expected losses were estimated for each class for each year are
described in Appendix C.
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FIGURE 10

category:111

Cov[Ric,Rjc](
.k
c=1

+
PicPjcRicRjc.k

c=1

+
PicPjc

%
.k
c=1PicRic.k
c=1Pic

.k
c=1PjcRjc.k
c=1Pjc

:

(7.2)

The payrolls Pic have been used as weights, in order to take
into account the fact that for some classes the volume of data
may be radically different by year. The variances are estimated
in the same manner. Then as usual the estimated correlations are:

Corr[Ric,Rjc] = Cov[Ric,Rjc]=
+
Var[Ric]Var[Rjc]: (7.3)

For example, Figure 10 shows the observed correlations for
the Manufacturing classes with expected annual losses between

111Recall that Cov[X,Y] = E[XY]%E[X]E[Y].



CREDIBILITY WITH SHIFTING RISK PARAMETERS 535

$300,000 and $1 million. There are a total of 61 such classes.
With 13 separate years of data, we can estimate (13)(12)=2 =
78 correlations. These correlations correspond to a separation
of between one year and twelve years. We note considerable
random fluctuation. Nevertheless, as the separation grows the
correlations tend to decline.

7.4. Fitting Regressions to Correlations, Estimating °, ½, I, and J

Figure 10 shows the results of fitting a linear regression to the
logs of these correlations. The fitted curve is (approximately)
y = (:46)(:94x). The y-intercept is .46, and the decline rate or
slope is .94.

Thus, we might estimate for this size of class the decline rate is
about .94.112 In the assumed covariance model this corresponds
to some sort of weighted average of ° and ½, with the weights
depending on the size of risk E and the variances g2 and r2.

On the other hand the intercept of .46 represents an estimate
of the credibility (of a single year of data) in the absence of
shifting risk parameters. That is, using Equation 4.15,

E+ I
E(1+ J)+ I+K

( :46 for E ( $650,000:

Similar regressions were fit to the correlations for various
size categories. However, in order to improve stability, the cor-
relations for the same separations were first averaged.113 So for
example, the 12 correlations for one year of separation in Fig-
ure 10 average to .498. Then a weighted regression was fit to

112The slope of the log-correlations is about ln :94.
113The averaging of the correlations prior to the regression versus time lag is not nec-
essarily the best procedure to employ in this particular application, let alone in general.
Ideally one would identify the variables causing the wide dispersion in observed corre-
lations between individual years of data, as seen, for example, in Figure 10. However,
I was unable to do so, beyond convincing myself that some substantial portion of this
dispersion was a result of the process variance inherent to a data set of this size. While for
the illustrative example here the technique used seems sufficient, it would be preferable
to find a technique that directly makes use of all the available data. This is a potential
area for future research, which could lead to a sharper estimate of the time dependence.
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the logs of these average correlations,114 with weights equal to
the number of observed correlations of that separation. For data
shown in Figure 10, this would result in a very similar fitted
curve:115 y = (:46)(:94x).

The results for the Manufacturing industry group, for six size
categories with substantial number of classes are:

Expected Annual Losses
($000) Number of Classes “Slope” Intercept

10 to 30 22 1.109 .075
30 to 100 40 .758 .329
100 to 300 37 .979 .375
300 to 1,000 61 .944 .469
1,000 to 3,000 50 .977 .744
3,000 to 10,000 13 .887 .911

The intercepts reflect a general pattern of increasing credi-
bility with size of class, as expected. The smallest and largest
size categories have too few classes to reliably estimate correla-
tions.116 Thus one should not rely on the estimated slopes; the
estimated intercepts for these categories are less reliable than
those for the other size categories.

For the four size categories with a large number of classes,
there is some indication that the “slope” is closer to unity for
large classes than for small classes. This data provides a weak
indication that the risk parameters of larger classes shift more
slowly than those of smaller classes.

The results of fitting regressions to the correlations of two
size categories for Goods and Services classes are:

114If the average correlation was negative as occasionally happened, that separation was
not included in the regression.
115The curve is the same in this case to the number of decimal places displayed.
116Also for the smallest size category, there is a lot of random fluctuation in the pure
premiums of the classes.
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Expected Annual Losses
($000) Number of Classes “Slope” Intercept

100 to 1,000 38 .938 .605
1,000 to 10,000 38 .994 .837

The same general pattern applies, but with only two size cat-
egories we cannot infer much.

As discussed in Section 5.2, we expect the decline rate of the
correlations to be approximately (E½+ I°)=(E+ I). Note that this
actually applies only when E +­. For E )­ the decline rate of
the correlations should be approximately (­½+ I°)=(­+ I).117

In any case, the largest classes should have a decline rate near ½,
while the smaller classes have a decline rate closer to °.

From the data for these two industry groups,118 we might esti-
mate that the largest classes have a decline rate for correlations of
about .98; thus we might estimate ½( :98. The smaller classes
might have a decline rate below .90; thus we might estimate
° ( :85. Note that ½ corresponds to a half-life of 34 years, while
° corresponds to a half-life of about 4 years. There is clearly a
great deal of uncertainty in these estimates.119

The midway point at which the decline in the correlations is
between ½ and ° is even harder to estimate. As discussed in Sec-
tion 5.2, we expect this midway point to be at about I. For illus-
trative purposes estimate this as $100,000, so that I ( $100,000.
As discussed previously in Section 4.5, the maximum cred-

ibility in the absence of shifting risks parameters for one year
of data is 1=(1+ J). Thus, if J were .1, the intercepts would ap-

117For the parameters selected in this section (­½+ I°)=(­+ I) = ((50,000)(:98)+
(100,000)(:85))=(50,000+100,000) = :89.
118We ignore here the real possibility that the covariance structure might differ signif-
icantly among different industry groups, since this data is well short of being able to
distinguish if that is the case.
119Better estimates would require looking at similar data from a large number of indi-
vidual states, each of reasonable size.



538 CREDIBILITY WITH SHIFTING RISK PARAMETERS

proach 1=1:1 = :909 for large risk sizes. While it is unclear from
this limited data precisely what that maximum intercept is, it is
almost certainly greater than .85. Thus, J is probably .15 or less.
In any case, for illustrative purposes J = :10 will be used.

7.5. Estimating K

The estimates of J and I, together with the intercepts by size
of risk, can be used to estimate the value of K. In the absence of
shifting risk parameters, the credibility for a single year of data
is given by Equation 4.15:

Z =
E+ I

E(1+ J)+ I+K
, E +­:

Thus,

K =
,
1
Z
%1

-
(E+ I)% (JE): (7.4)

Given an estimate of Z from the intercept, for a size E, and
the previously estimated I = $100,000 and J = :10, we can esti-
mate K.

We get the following estimates:

Estimated
Industry Group Size120 (000) Intercept K ($000)

Manufacturing 20 .075 1,478
Manufacturing 65 .329 330
Manufacturing 200 .375 480
Manufacturing 650 .469 784
Manufacturing 2,000 .744 523
Manufacturing 6,500 .911 %5

Goods & Services 550 .605 369
Goods & Services 5,500 .837 541

Recall that for Manufacturing the smallest and largest size
categories really do not contain enough classes to adequately

120Based on the midpoint of the size category.
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quantify the intercept. In any case, for the largest size category,
the estimate of K is extremely sensitive to the selection of J . For
the smallest two size categories, Equation 5.9 rather than Equa-
tion 5.8 is likely to hold, since E )­; thus the above estimate
of K using the two smallest categories is likely to be invalid.
Averaging the middle three size categories for Manufacturing
plus the two size categories from Goods and Services, we get
K ( $500,000. This value of K will be used for illustrative pur-
poses.

7.6. Selecting ­

Finally, we must select ­, the value below which the classes
are homogeneous; i.e., there is no significant impact from risk
heterogeneity below size ­. Conceptually, this is the size at
which a class is likely to be made up of one significant sized
employer.121 On the other hand, it was seen before that choosing
­ somewhere close to I produces a smooth decline in credibil-
ities.

For illustrative purposes choose ­ = $50,000. This corre-
sponds for this data set to somewhere between 50 and 75 full-
time employees.122

In the absence of shifting risk parameters over time, Equation
4.25 gives the credibility for one year of data as:

Z =
E

(1+ J ,)E+K ,
, E )­ = $50,000

where

J , = J
,

­

I+­

-
= (:10)

,
50
150

-
= :033 and

121While situations where the data for a class comes from one significant employer are
not common, they do occur.
122Assuming reported losses (at unit statistical plan level) of about 2.5% of payrolls and
a State Average Weekly Wage of about $600, 65 full-time employees have $50,700 in
expected annual losses.
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K , = K
,

­

I+­

-
= 500,000

,
50
150

-
= $166,667:

For E = $20,000,

Z =
20

((1:033)(20)+166:667)
=

20
187:3

= 10:7%:

This compares to the estimated intercept of .075. Given the un-
certainty of the estimated parameters, the uncertainty of the es-
timated intercept, and the approximate nature of the regression
relation itself, these values of .107 and .075 are not inconsistent.
Getting a somewhat more precise estimate of ­ would require
analyzing data from many states over many years.

With all these caveats, we have estimated the essential features
of the covariances. Equation 5.10 states for

+
EiEj +­:

Cov[Xi,Xj] = r
2
0
½$i%j$+ I°$i%j$=

+
EiEj + ±ij

1
K=
+
EiEj + J

23
,+

EiEj + ­:

Similarly Equation 5.11 states that for
+
EiEj ) ­:

Cov[Xi,Xj] = r
2
0
½$i%j$+ I°$i%j$=­+ ±ij

1
K=
+
EiEj + J

23
,+

EiEj ) ­:

In both cases there is a factor of r2 that multiplies the covari-
ances that does not affect the credibilities.

7.7. Illustrative Credibilities, No Weight to Overall Mean

We can use Equations 5.10 and 5.11 together with the values
of the parameters estimated in the previous section to estimate the
covariances. These in turn can be used to estimate the credibilities
using Equations 6.7 (for the case where no weight is being given
to the mean).
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The following illustrative values will be used to calculate cred-
ibilities:
½= :98 (rate of shifting parameters related to

class homogeneity),

° = :85 (rate of shifting parameters related to
class heterogeneity),

I = $100,000 (related to class heterogeneity),

J = :10 (related to parameter uncertainty),

K = $500,000 (Bühlmann credibility parameter, related to
process variance), and

­ = $50,000 (size limit for class homogeneity):

For example, for years 1, 2, 3 and 4 being used to predict year
8, with each year of data having $1 million in expected losses,
Equations 6.7 become:

1:7Z1 +1:065Z2 +1:0327Z3 +1:0026Z4 = :9002+¸=2,

1:065Z1 +1:7Z2 +1:065Z3 +1:0327Z4 = :9236+¸=2,

1:0327Z1 +1:065Z2 +1:7Z3 +1:065Z4 = :9483+¸=2,

1:0026Z1 +1:0327Z2 +1:065Z3 +1:7Z4 = :9746+¸=2,

and Z1 +Z2 +Z3 +Z4 = 1,

with solution:123

Z1 = 21:08%,

Z2 = 21:98%,

Z3 = 25:34%, and

Z4 = 31:60%:

Note that since no weight is given to the overall mean, the
credibilities have been constrained to add up to 100%.

123The Lagrange Multiplier is .5416.
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FIGURE 11

The credibilities assigned to ten individual years are shown
in Figure 11 for various size classes, for years 1,2, : : : ,10 being
used to predict year 14. Note here it has been assumed that the
credibilities are constrained to add to unity. Thus, the default
weight is 10% to each of the ten years. However, as the classes
get bigger and bigger we can make the estimation process more
responsive and give more weight to the more recent data.124 For
$10 million dollars in expected annual losses the most recent year
gets about 38% of the weight. For small classes, we must use a

124The most distant year gets a slight amount of extra weight, due to the “edge effect.”
Year 1 contains valuable information about Year 0 due to the fact that they are correlated.
Therefore, by giving a little more weight to Year 1, one gets some of the same benefit as
if Year 0 were in the database. While, for example, Year 3 contains valuable information
about Year 2 and Year 4, Years 2 and 4 are already in the database. In general, with
shifting risk parameters over time, the most distant year(s) should receive somewhat
more weight, due to this edge effect, than they would otherwise receive. In Figure 11 for
$10 million in Expected Annual Losses, as one goes to more distant years, at the edge
the graph of credibilities bends slightly upwards rather than continuing to decline.
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more stable method and give every available year of data sig-
nificant weight. However, for small classes the parameters shift
more quickly and thus there is a counter-balancing tendency to
weight these older years less than more recent years. Neverthe-
less, for $10,000 in annual expected losses the weights are all
about 10%.

7.8. Illustrative Credibilities, Weight to Overall Mean

We can use Equations 5.10 and 5.11 together with the values
of the parameters listed in Section 7.7 to estimate the covari-
ances. These in turn can be used to estimate the credibilities
using Equations 2.4, for the case where the complement of cred-
ibility is being given to the overall mean.

Assuming years 1,2, : : : ,10 are being used to predict year 14,
the credibilities assigned to the given years are shown in Figure
12. Larger sizes give more weight to recent years as well as more
total credibility. Figure 13 shows the sums of the credibilities
assigned to different classes. For ten years of data, the larger
size classes are assigned up to 90% credibility.125 The credibility
goes to zero as the size of class goes to zero.126 Also shown are
the results for three years and one year of data.

The class (expected) pure premiums within an industry group
can easily vary by a factor of ten from lowest to highest. Thus, the
average industry group pure premium, or equivalently a relativity
of unity, is not a very good predictor for most classes. Therefore,
the credibilities assigned to the classification data are relatively
large. Assigning the complement of credibility to the average
pure premium for the industry group, as illustrated here, is not
generally done in practice.

125Without shifting risk parameters, the maximum credibility would be Y=(Y+ J) =
10=10:1 = 99%. With 10 years of data and J = :1, the effects of parameter uncertainty
are not very significant.
126Since we’ve assumed no risk heterogeneity below size ­.
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FIGURE 12

An alternative would be to work with loss ratios to premiums
at current rates, as is done in Meyers [25]. Then the complement
of credibility is given to the loss ratio for the industry group;127

i.e., each class rate is changed by the industry group average
rate change. This follows the general practice and is equivalent
to giving the complement of credibility to the prior estimated
relativity for each class.

7.9. Using Prior Estimates of Relativities

Assume that we have been estimating classification relativities
for a long time. Then we might weight together the estimated
relativity for each class based on the most recent data and the

127Meyers does not appear to divide the classes into industry groups. However, the tech-
nique presented could be applied equally well to industry groups. We would have to take
a little more care in estimating the Bühlmann credibility parameters.
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FIGURE 13

prior estimate of the relativity for that class. The issue is how
much weight to apply to each of these estimates.

While there are other ways to think of this problem, we could
fit it into the current framework by assuming some very long
series of data, for example 50 years.128 Then as in Section 7.7,
we can compute the credibility to be assigned to each of these
50 years of data (with no weight to the overall mean). If three
years of recent data are being used, then we can assign as the
weight to the prior estimate the sum of the credibilities for the
47 less recent years.

For example, using the values from Section 7.7, for $1 million
in expected annual losses, for years 1,2, : : : ,50 being used to

128In the case of a workers compensation rating bureau, classification relativities have
been estimated for about 80 years.
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FIGURE 14

predict year 54, years 48, 49, and 50 have credibilities of: 11.8%,
16.3% and 22.8%. The prior estimate would be assigned a weight
of 100%% (11:8%+16:3%+22:8%) = 49:1%.

Figure 14 shows the weight assigned to the most recent three
years of data as the expected annual losses vary. The recent data
for large classes gets less than 100% credibility; both the prior
estimate and that from the recent data are assumed to be good
estimators for large classes. The recent data for small classes
gets considerable credibility; the prior estimate as well as that
from the recent data are assumed to be poor estimators for small
classes.

Note that the credibility curve in Figure 14 has a discontin-
uous derivative at the point ­ = 50,000. This will be typical as
we switch from Equations 5.10 for the covariances to Equations
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5.11, as we go from a size where risks are generally heteroge-
neous to one where risks are generally homogeneous.129

7.10. General Effect of Differences in the Maturity of the Data

Conceptually the goal has been to estimate the expected future
class relativity at ultimate report. Assume, as in Figure 11, we
were predicting year 14 using data from years 1 to 10. Then we
expect that year 1 at 10th report would be a better predictor of
year 14 at ultimate than would year 1 at 5th report. Year 1 at
5th report is in turn a better predictor than year 1 at 1st report.
Generally, the more mature the data from a single given year
the better predictor of the future ultimate losses we expect it to
be.130

Thus, actuaries will usually rely upon the latest available re-
port for each year of data. In the case of the workers compensa-
tion classification example, we would have years 1 to 6 at fifth
report,131 year 7 at fourth report, year 8 at third report, year 9 at
second report, and year 10 at first report.

In the example in Section 7.7, there is no weight to the overall
mean; the credibilities assigned to the data sum to 100%. Thus
in that situation, the credibilities reflect how good an estimator
each year is relative to the others. If each of the ten years of data
were at the same report, their relative value as estimators would
be unaffected by maturity.

However, year 10 is only at first report while years 1 through
6 are at fifth report. Therefore, the tenth year of data is a poorer
estimator relative to the other years than if it were available at
fifth report. Thus, we should give year 10 somewhat less cred-

129In the model this switch is abrupt, leading to the discontinuous derivative of the
credibility. While we could refine the model to make this derivative continuous, this
would seem to be unlikely to have any practical significance.
130Thus, there is a dilemma. We prefer more recent years of data in order to minimize
the impact of shifting risk parameters, but we also prefer more mature data. Section 9
discusses this from the point of view of an overall rate indication.
131Usually workers compensation classification data is only collected up to fifth report.
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TABLE 4

CORRELATIONS BETWEEN REPORTS OF CLASSIFICATION
RELATIVITIES

Various Size Classes, Based on Annual Expected Losses ($000)

10 to 30 (19 classes) 30 to 100 (28 classes)

2nd 3rd 4th 5th 2nd 3rd 4th 5th

1st .783 .757 .914 .834 .850 .754 .656 .624
2nd .978 .849 .805 .860 .745 .730
3rd .835 .783 .839 .809
4th .949 .898

100 to 300 (39 classes) 300 to 1,000 (52 classes)

2nd 3rd 4th 5th 2nd 3rd 4th 5th

1st .863 .814 .822 .800 .879 .830 .809 .799
2nd .935 .945 .917 .968 .945 .927
3rd .957 .929 .980 .964
4th .975 .975

1,000 to 3,000 (49 classes) 3,000 to 10,000 (22 classes)

2nd 3rd 4th 5th 2nd 3rd 4th 5th

1st .955 .924 .902 .884 .970 .964 .947 .939
2nd .962 .946 .932 .980 .971 .965
3rd .977 .965 .988 .977
4th .986 .992

For each of five composite policy years, 84/85, 85/86, 86/87, 87/88 and 88/89, class relativities were
calculated for the Manufacturing industry group. Then for each year, for classes in a given size
category, correlations were calculated between the relativities at two different reports. The correlation
matrices displayed here are an average of the five separate correlation matrices, one from each year.

ibility than was calculated in Section 7.7, while other years are
assigned somewhat more credibility.

7.11. Correlations Between Differing Maturities

This effect of the differing maturities of data will be estimated
by examining the correlations between class relative pure premi-
ums from the same year of data but at different maturities. These
correlations are calculated using Equation 7.2, where a difference
in maturity is substituted for a difference in year. Table 4 dis-
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plays correlation matrices for various size categories of classes
from the Manufacturing industry group.132 So, for example, for
classes with expected annual losses between $300,000 and $1
million, the correlation between class relativities calculated from
the same year of data at second report and fourth report is .945.
In contrast, that between first and fifth report is .799. As ex-
pected, since more development occurs between first and fifth
reports than between second and fourth report, the classification
relativities are less highly correlated.133

In general, it is expected that the more loss development be-
tween two reports, the smaller the correlation of the relativities.
The observed loss development factors (LDFs) were:134

1st to 2nd 1:249
2nd to 3rd 1:123
3rd to 4th 1:059
4th to 5th 1:040

Also, we expect that the relativities for smaller classes will be
more affected by the random fluctuations caused by loss devel-
opment. Therefore, the smaller the size category, the smaller the
correlation of the relativities for different reports.

The simplest type of model would be one in which the cor-
relation was some linear function of the class size and the loss
development factor between reports. Since I was unable to find
a useful model of that type, instead I first took the log of both
the loss development factor and the correlation. Then I examined
linear models involving the ln (correlation), ln (LDF), and size
of class.

132Each correlation matrix is the average of five correlation matrices calculated for com-
posite policy years 84/85, 85/86, 86/87, 87/88 and 88/89. A composite policy year in-
cludes July 1 to June 30.
133First and fifth report are further apart so that their correlation has more opportunity
to decline from unity.
134For the Manufacturing industry group, for composite policy years 84/85, 85/86, 86/87,
87/88 and 88/89. All data was included independent of the size of class. Recall that the
losses are paid plus case reserves.
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One model of the relation of the correlations to the develop-
ment that will have the desired properties is:135

ln(Correlation) =% ln(LDF)=(Linear Function of Size)
% ln(LDF)= ln(Correlation)

= Linear Function of Size: (7.5)

This model has the desired property that the correlation is 1
when the LDF is 1.136 If the right hand side of Equation 7.5
is positive, then the correlation decreases as the amount of de-
velopment increases. If the right hand side of the Equation 7.5
increases with size of class, then as desired the correlations will
be closer to unity for larger classes.

For the data in Table 4, we can compute the ratio of the
% ln(LDF)= ln(correlation). For example, for the second to fourth
report the LDF is (1:123)(1:059) = 1:189. For the size category
$300,000 to $1 million in expected annual losses, the corre-
lation between 2nd and 4th report is .945. Thus, % ln(LDF)=
ln(correlation) = (% ln(1:189)= ln(:945)) = 3:06.
Averaging over each correlation matrix we obtain by size of

risk:137

Size
($ million) % ln(LDF)= ln(correlation)

.02 1.76

.065 .76

.2 1.88

.65 2.38
2.0 3.35
6.5 6.20

135For a given size of risk this model assumes the correlations decline as per a constant to
the power of the “effective time” between reports. The “effective time” between reports
is taken as the logarithm of the loss development factors.
136In lines of insurance where salvage and subrogation are significant, the loss develop-
ment factor can be less than unity. Equation 7.5 would not apply.
137Expected Annual Losses for the midpoint of the size category.
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A least squares linear regression would give

1:57+ :73 (Size=1 million):

Let,
c=% ln(LDF)= ln(correlation):

Then,

correlation =
,

1
LDF

-1=c
:

If we take for illustrative purposes:

c = 1:5+ :75 (Size=1 million),

then substituting into Equation 7.5 gives

correlation = 1=LDF1=(1:5+:75 (Size/1 million)): (7.6)

For example, for the size category $300,000 to $1 million
if we take a size of $650,000 equivalent to the midpoint, then
Equation 7.6 gives an estimated correlation of 1=LDF:5. For ex-
ample, for the 2nd to 4th report the LDF is 1.189. Thus, for this
size category the model correlation is about .91. (The observed
correlation is .945.)

Table 5 displays the model correlations between reports for
classes of various sizes. While the particular model represented
by Equation 7.6 should be taken as solely for illustrative pur-
poses, the general pattern of correlations in Table 5 is what we
would expect. For a given report interval, the larger the class
the higher the correlation. For a given size of class, the more
development in a report interval, the lower the correlation. This
pattern of correlations can be incorporated into the calculation
of credibilities.

7.12. Credibilities Taking Into Account Differing Maturities

Returning to the example in Section 7.7, we can incorporate
the impact of the differences in maturity. Given years 1 through 6
at fifth report, year 7 at fourth report, year 8 at third report, year
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TABLE 5

CLASSIFICATION RATE RELATIVITIES
MODEL CORRELATIONS BETWEEN REPORTS

Expected Annual Losses ($000)

Reports 20 65 200 650 2,000 6,500

1 vs. 2 .864 .866 .874 .894 .929 .966
1 vs. 3 .800 .804 .815 .843 .893 .948
1 vs. 4 .770 .775 .787 .819 .876 .940
1 vs. 5 .750 .755 .768 .803 .865 .934
2 vs. 3 .926 .928 .932 .943 .962 .982
2 vs. 4 .892 .894 .900 .916 .944 .973
2 vs. 5 .869 .872 .879 .899 .932 .967
3 vs. 4 .963 .964 .966 .972 .981 .991
3 vs. 5 .938 .940 .943 .953 .968 .985
4 vs. 5 .974 .975 .977 .980 .987 .994

9 at second report and year 10 at first report, we try to predict
year 14 at fifth report.

For a class with expected annual losses of $1 million, Equa-
tion 7.6 estimates the correlation between classification relativi-
ties at different reports as 1=LDF:444. For 2nd to 4th report, the
estimated correlation is (1:189)%:444 = :926. Prior to taking into
account the differences in maturity, the model covariance be-
tween year 7 and year 9 was 1.033.138 It will be estimated that
the covariance between year 7 at 4th report and year 9 at sec-
ond report will be lower by a factor of the correlation139 .926;
(:926)(1:033) = :957.

The other model covariances involving at least one year of
data at prior to 5th report are similarly adjusted.140 (The vari-

138For r2 = 1, $1 million in expected annual losses, and the parameters in Section 7.7.
139This is an approximation based on an assumption that the impact of maturity is largely
independent of the other factors previously considered.
140For purposes of adjustment it was assumed Year 14, the year to be predicted, was at
5th report. If one assumed instead for example 20th report, all the covariances involving
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ances along the diagonal of the variance-covariance matrix are
unaffected.) The least squares credibilities differ from those ob-
tained in Section 7.7:141

CREDIBILITY FOR CLASS WITH $1 MILLION IN EXPECTED
ANNUAL LOSSES

Taking into Account
Year, Report Section 7.7 Differences in Maturity

1@5th 5.8% 6.7%
2@5th 5.2 6.2
3@5th 5.1 6.4
4@5th 5.4 7.1
5@5th 6.2 8.6
6@5th 7.7 10.8
7@4th 9.8 11.5
8@3rd 13.0 12.7
9@2nd 17.6 13.9
10@1st 24.2 16.0

As expected, more mature years of data are given more cred-
ibility than previously while less mature years receive less. For
example, the data from year 10 at first report gets 16.0% cred-
ibility compared to the 24.2% credibility calculated in Section
7.7.

Figure 15 displays the credibilities for other size classes. The
credibilities shown in Figure 15 that take into account differ-
ences in maturity can be compared to those in Figure 11, which
ignore these differences. While the precise impact depends on the
particular amount of loss development and the particular model
used to estimate the correlations, the general pattern displayed
here should occur in most situations.

The weights which would otherwise be given to immature
years of data should decrease significantly for larger size classes.

Year 14 would be lower by the same factor but the resulting credibilities would all be
the same, since they’ve been constrained to sum to 100%.
141As shown in Figure 11.
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FIGURE 15

For smaller classes the weights assigned to recent years are al-
ready close to the default weight, in this case 10%, so taking
into account their immaturity only produces a small decrease in
the weight they would otherwise receive. In all cases, the more
mature years of data receive more weight than when we ignored
maturity. In this example, the largest increase in weight occurs
for year 6, which is the most recent year which is available at
“ultimate.”142

So while taking into account shifting risk parameters over
time tends to give more weight to recent years, taking into
account the difference in maturity tends to counterbalance that
tendency somewhat.143 This will be true for overall ratemak-

142In this example, fifth report is the ultimate report actually received of Unit Statistical
Plan data, even though there is loss development beyond fifth report.
143An example is given in Section 9 in which the most recent year of data is so immature
it is given very little weight.
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ing and experience rating as well as for classification ratemak-
ing.

8. USE OF DATA FROM OTHER STATES

In estimating the classification relativities in a given state one
may supplement the data from that state with data from other
states, as in Harwayne [24].

8.1. Use of Data from One Other State

As a simple example, assume we are estimating Massachusetts
relativities and will use New York experience in addition to that
from Massachusetts. The key assumption is that the underlying
expected class relativities in New York are similar to those in
Massachusetts. Thus, observed relativities in New York are use-
ful for predicting future relativities in Massachusetts. However,
all other things being equal, a given volume of New York data is
assumed to be less useful in predicting Massachusetts relativities
than would be similar data from Massachusetts.144 Thus, we ex-
pect that in this case the credibilities assigned to a given volume
of data will be less for New York data than for Massachusetts
data.

There are three steps to calculating the credibilities to as-
sign to the years of data from Massachusetts and New York.
First, we must model the covariance structures. Second, we
must estimate the parameters in the covariance structures. Third,
we must use these covariances together with the appropriate
set of linear equations, in this case Equations 8.1, in order to
solve for the credibilities. In this case, the first two steps will
build on the results on classification relativities obtained in Sec-
tion 7.

144Similarly, New York data would be more useful for predicting New York relativities
than would data from Massachusetts.
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8.2. Covariance Structure, Use of Data From One Other State

There are three types of variance-covariance matrices. The
first type involves covariances between data from Massachusetts:
Sij = covariances within Massachusetts. The illustrative values
from Section 7.7 will be used for these covariances. The sec-
ond type involves covariances between data from New York:
Tij = covariances within New York. For a given volume of data,
assume a similar covariance structure within New York to that
estimated for Massachusetts; the illustrative values from Section
7.7 will therefore be used for the covariances within New York,
Tij.

The third type of covariance is that involving data from Mas-
sachusetts versus data from New York: Uij = covariances be-
tween Massachusetts and New York. It is expected that for a
given volume of data, the correlation of relativities between states
is less than the correlation of relativities within states. This is
what is observed.

8.3. Estimating Parameters, Between State Covariances

Classification data for Massachusetts, New York and several
other large states was examined as discussed in Appendix F. Cor-
relations of classification relativities between states were calcu-
lated for classes in various size categories for both the Manufac-
turing and the Goods and Services industry groups.

Based on the analysis discussed in Appendix F, with three ex-
ceptions the same parameters will be used for the interstate and
intrastate covariances. The K parameter, related to the expected
value of the process variance, will be zero for the interstate co-
variances. The J parameter, related to parameter uncertainty, will
be selected for the interstate covariances as half of the intrastate
J parameter.145

145The credibilities are relatively insensitive to this choice.
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The r2 parameter, setting the scale for the covariances, will
be taken for the interstate covariances as 70% of its value for
the intrastate covariances.146 This will result in correlations of
relativities between states that are lower than those within a state,
all else being equal.

For the covariances the following inputs are used:147

Intrastate Interstate

r2 1 .7
½ .98 .98
° .85 .85
I 100,000 100,000
J .10 .05
K 500,000 0
­ 50,000 50,000

8.4. Equations for Credibilities, One Other State

Assume we are trying to estimate class relativities in Mas-
sachusetts, without any weight to the overall mean. Let Zi be the
weight applied to the Massachusetts data and letWi be the weight
applied to the New York data. Then §Zi+§Wi = 1, since there
is no weight given to the overall mean. As shown in Appendix
E, if we use Y years of data from each state, in order to predict
year Y+¢, we obtain 2Y+1 equations in 2Y+1 unknowns:148

146The relative size of the interstate and intrastate covariances affects the calculation of
credibilities. However, there is still an arbitrary choice of overall scale which does not
affect the credibilities.
147The r2 values contain an arbitrary scale factor. Since it is only their relationship that
affects the credibilities, the actual r2 values have not been estimated. Unlike Section 7.12,
no adjustment is made for differing maturities here. Such an adjustment in the case of
more than one state would parallel that for a single state as shown in Sections 7.11 and
7.12.
148There are YZ’s, YW’s, plus the Lagrange Multiplier ¸. The equations would be some-
what different if the years for which we have Massachusetts data and New York data are
not the same. Appendix E gives an example.
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(8.1)

where the covariance matrices are:

Sij = covariances within Massachusetts,
149

Tij = covariances within New York,
150

Uij = covariances between Massachusetts and New York:
151

8.5. Illustrative Credibilities, One Other State

For example, assume we are estimating year 54 class relativi-
ties in Massachusetts using data from years 1 to 50, with $1 mil-
lion of expected annual losses in Massachusetts and $5 million
of expected annual losses in New York. Then using Equations
8.1 the most recent three years of Massachusetts data would be
given credibilities of 9.7%, 13.3% and 18.6%, while the three
most recent years of New York data would be given credibilities
of 2.5%, 7.0% and 15.3%. We could give the prior estimate the
remaining weight of 33.6%.

8.6. Using Data From Several Other States

This example where the data from one outside state is used
can be extended to one where data is used from several other
states. Assume for simplicity that “countrywide data” is from

149More generally within the state for which we are trying to estimate class relativities.
150More generally within the supplementary data from outside the state of interest.
151More generally between the data from the state of interest and the data from outside
the state of interest.
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ten states, other than the state for which we are estimating class
relativities.

Let C be the covariance matrix within states, whileD is the co-
variance matrix between states.152 Assume for simplicity that for
a given volume of data, C is the same in each state and D is the
same for each pair of states. Assume that the “countrywide data”
is the average of data from ten states, each with a volume of data
Ẽ=10. Let the covariance matrix between two non-Massachusetts
states be D, and the covariance within a non-Massachusetts state
be C,. Then the covariance between the countrywide data is the
sum of 100 terms, 90 of which are between states, D,, and 10
of which are within states, C,.153 The covariance between the
countrywide data is therefore (90D,+10C,)=100 = :9D,+ :1C,.
In general, if we had data from n other states each of the same
size, the covariance between the countrywide data would be
((n%1)D,+C,)=n.
We have assumed D, <C,, so that :9D,+ :1C, <C,. Due to

the lack of homogeneity of the countrywide data, its covariance
is less than that for an equivalent volume of data all from a single
state.

The covariance of the countrywide data154 with Massachusetts
is just the average of ten similar terms all involving the covari-
ance between the states.155 Thus, the covariance between Mas-
sachusetts and the countrywide data is D.

In summary, for C and D calculated for the appropriate vol-
umes of data for the state(s) involved:

Sij = covariances within Massachusetts = C,

152Both C and D are a function of the volume of data in the state(s).
153Cov[ 110 "Y1 +Y2 + - - -+Y10#, 110 "Y1 +Y2 + - - -+Y10#] = 1

100 "Cov[Y1,Y1]+Cov[Y1,Y2]+
Cov[Y1,Y3]+ - - -Cov[Y10,Y10]#.
154The state of interest, in this case Massachusetts, is assumed to be excluded from the
countrywide data.
155Cov[X, (Y1 +Y2 + - - -+Y10)=10] = 1

10 "Cov[X,Y1]+Cov[X,Y2]+ - - -+Cov[X,Y10]#.
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Tij = covariances within Countrywide
156 = :1C,+ :9D,,

Uij = covariances between Massachusetts and Countrywide

=D:

8.7. Illustrative Credibilities, Data From Several Other States

These covariances can then be used in Equations 8.1, in or-
der to solve for the credibilities. For example, assume we are
estimating year 54 class relativities in Massachusetts using data
from years 1 to 50, with $1 million of expected annual losses in
Massachusetts and $1 million of expected annual losses in each
of ten other states. Then using Equations 8.1, the most recent
three years of Massachusetts data would be given credibilities of
8.5%, 11.0% and 14.9%. The most recent three years of country-
wide data would be given credibilities of 1.8%, 9.8% and 28.5%.
The remaining weight of 25.5% could be given the prior estimate
of the class relativity.157

Figure 16 shows for a fixed amount of countrywide data, how
the credibilities vary as the volume of data in Massachusetts
changes. Since in Figure 16 there is assumed to be $100,000
in expected annual losses in each of ten states other than Mas-
sachusetts, there is sufficient countrywide data to get a reasonable
estimate of the class relativity. When there is very little Mas-
sachusetts data, for example $3,000 in expected annual losses,
then the most recent three years of Massachusetts data are given
virtually no weight,158 while the most recent three years of coun-

156This is for the case where “countrywide” data consists of 10 equal sized states. In
general, the covariance of countrywide data will be some mixture of C and D covariance
matrices.
157It should be noted that for this case, many older years of countrywide data are given
negative weight. As a practical matter these weights could be set equal to zero and the
weights given to more recent years of countrywide data could be reduced accordingly.
This would increase the weight given to the prior estimate.
158This is in contrast to Figure 13 where, in the absence of the use of countrywide data,
the Massachusetts data was given small but significant weight.
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FIGURE 16

trywide data are given a weight of about 75%.159 As the volume
of Massachusetts data increases, while the volume of country-
wide data remains the same, the weight assigned to the most
recent three years of Massachusetts data increases up to about
75%, while that assigned to the countrywide data declines to
zero.

Figure 17 displays the credibilities assigned to the most re-
cent three years of data, for a fixed amount of Massachusetts
data while the volume of countrywide data varies. As the vol-
ume of countrywide data increases, the credibility assigned to
the most recent three years of countrywide data increases non-
monotonically to about 75%. The credibility assigned to the lat-
est three years of Massachusetts data (with $100,000 in expected

159The remaining weight is given to the prior estimate.
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FIGURE 17

annual losses) varies between 27% and 15% as the volume of
countrywide data varies.

Figure 18 displays the credibilities if Massachusetts and each
of ten other states all have the same expected annual losses for a
given class. As the size of class increases, the sum of the cred-
ibilities given to the most recent three years of Massachusetts
data increases to about 65%. As the size of class increases, the
sum of the credibilities given to the most recent three years of
countrywide data increases and then decreases, as for very large
classes the Massachusetts data is given more weight.

This behavior means that no simple formula for the amount
of credibility given to the countrywide data will be appropriate.
We must know how much data is available within the state of
interest, before we know how much credibility to assign to the
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FIGURE 18

countrywide data.160 If a simple formula such as the “square root
rule” or the “Bühlmann credibility formula” were to be applied
based solely on the volume of countrywide data, it would have
to be supplemented by some other restriction on the credibility
assigned to countrywide data. One commonly used rule of thumb
is to restrict the credibility assigned to the countrywide data to
be no more than:

(12)(1% credibility assigned to the state data):
Figure 19 displays the sensitivity of the credibilities to the

selected ratio of the interstate correlations to the intrastate cor-
relations. For values of this ratio close to the selected value of
70%, the credibilities are relatively insensitive. Note that if the

160The reverse is also true, but the credibility of the Massachusetts data is less sensitive
to the amount of countrywide data, as seen in Figure 16.
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FIGURE 19

intrastate and interstate correlations were equal, then each out-
side state would get the same 7.7% credibility161 as would Mas-
sachusetts.

9. A RATEMAKING EXAMPLE

This section will illustrate how the ideas in this paper might
be applied to the calculation of an overall rate indication.162 The
issue explored here is howmuch weight should be given to differ-
ent years of data. This example will illustrate how adjustments
to the data for trend, development, etc. will affect the optimal
weights.

Assume that for a given line of insurance the six most recent
years of data are being combined in order to calculate a rate

161For a sum of 77% for ten outside states.
162This is an expansion of an example in Mahler [20].
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indication. Specifically, assume we have loss ratios163 from pol-
icy years164 1991, 1992, 1993, 1994, 1995 and 1996, all as of
12/31/96, which will be used to get a rate indication for policy
year 1998.

9.1. Estimation Errors Due to Adjustments to Data

It is assumed that appropriate adjustments have been made to
each year’s data for development, trend, law changes, changes in
deductibles, etc.165 The necessity of these adjustments introduces
estimation error into the process. For example, if we had policy
year 1995 at ultimate rather than at first report, we could make
a more precise estimate of policy year 1998 at ultimate.

The important consideration for this illustrative example is
the pattern of errors for the different types of adjustments for
the different years. For purposes of simplicity only two types
of adjustments will be assumed. Development will be assumed
to have larger estimation errors for recent years. In particular
the “incomplete” policy year 1996 as of 12/31/96 will have an
extremely large amount of development to ultimate. Trend166

will be assumed to have larger estimation errors for more distant
years.

For example, assume the reported Policy Year 1993 losses at
12/31/96 were $90 million. Further, assume that the point esti-
mate167 of Policy Year 1993 losses at ultimate is $96 million.
This corresponds to a point estimate of the age to ultimate loss
development factor of approximately 1.067. However, there is
an error associated with this point estimate.

163The general ideas explored in this example would apply equally well to pure
premiums.
164The general ideas explored in this example would apply equally well to calendar years
or accident years of data.
165We assume that each of the adjusted loss ratios is intended to be an unbiased estimate
of the Policy Year 1998 loss ratio.
166For illustrative purposes this can be thought of as trend, law amendment and other
adjustments.
167Using data evaluated as of 12/31/96.
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For example, an interval estimate of these ultimate losses
might be $92 million to $100 million. This would correspond
to an interval estimate of the age to ultimate loss development
factor of approximately 1:067/ :044.
A 95% confidence interval corresponds to about plus or minus

two standard deviations. Therefore, this interval estimate of the
loss development factor could result from a standard deviation
of .022 or a variance of :0222 ( :0005. Any estimate is subject
to error and in general one can estimate the variance of any
estimator.168

Generally, estimation errors are quantified via variance-
covariance matrices.169 The covariances are introduced in order
to capture the fact that the estimation errors for the years are
usually positively correlated. If the development estimated for
1995 is too high, then it is likely that the development estimated
for 1994 is too high as well. Similarly, if the trend applied to
1993 is too high, that applied to 1992 is likely to be too high as
well.

Let D be the variance-covariance matrix quantifying the esti-
mation errors related to development. An illustrative example of
such a matrix is:

D=

67777777778

0 0 0 0 0 0
0 0 0 0 0 0
0 0 50 45 70 180
0 0 45 100 125 300
0 0 70 125 350 600
0 0 180 300 600 5,000

9:::::::::;
010%5

168See, for example, Klugman, Panjer and Willmot [8].
169The diagonal elements are the variances quantifying the estimation errors. In this case,
the element in the first row and second column is the covariance between the 1991 and
1992 errors. Readers may be familiar with the use of the inverse of the information
matrix as a variance-covariance matrix when estimating parameters of loss distributions
via the method of maximum likelihood. See, for example, Klugman, Panjer and Willmot
[8].
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The rows and columns correspond to the six years of data.
For example, the variance of the estimated age to ultimate loss
development factor of Policy Year 1993 is 50010%5.170 The co-
variance between the estimated age to ultimate loss development
factors for Policy Years 1993 and 1994 is 45010%5.
The particular values are chosen for illustrative purposes.171

While the values would vary considerably depending on the par-
ticular application, the general pattern is expected to apply. The
estimation errors for recent years are large,172 and there is a pos-
itive correlation between the estimation errors for the different
years.

Similarly, let T be the variance-covariance matrix quantifying
the estimation errors related to trend. An illustrate example of
such a matrix is:

T=

67777777778

350 292 240 192 150 110

292 300 247 198 155 114

240 247 250 201 157 115

192 198 201 200 156 115

150 155 157 156 150 110

110 114 115 115 110 100

9:::::::::;
010%5

For example, the variance of the estimated trend factor from
Policy Year 1994 to 1998 is 200010%5.173 The covariance be-

170Thus, the standard deviation is
4
500 10%5 = :022. If the point estimate of this loss

development factor were, for example, 1.067, then using two standard deviations would
result in an interval estimate of 1:067/ :044.
171In particular, for longer tailed lines of insurance there would still be considerable
development left for Policy Year 1991. In actual applications the actuary may have a
good idea of how accurate an estimate is likely to be and thus could judgementally select
a variance-covariance matrix.
172The error in developing the incomplete Policy Year 1996 is potentially extremely
large.
173Thus, the standard deviation is

*
:002 = :045. If the point estimate of this trend factor

were, for example, 1.148, then using two standard deviations would result in an interval
estimate of 1:148/ :090.
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tween the estimated trend factors to 1998 from 1994 and 1995
is 156010%5.
Again the particular values are chosen for illustrative pur-

poses. The pattern was chosen such that the estimation error
from trend is larger for more distant years and such that there is
a large positive correlation174 between the estimation errors for
different years.175

9.2. Covariance Structure for Years of Data

Next we need to assume a variance-covariance structure for
the year’s loss ratios in the absence of any estimation error. Let
this matrix be C. Then following the development in Mahler [1]
of shifting risk parameters, assume that C has the form:176

Cij = ±ije
2=
+
EiEj + r

2½$i%j$, where ±ij =

!
0 i != j
1 i= j

:

(9.1)

It is not necessary to know the source of e2, r2 and ½ in
order to proceed. However, it may be helpful to think of ½ as
the dominant eigenvalue (other than unity) of the transpose of
a transition matrix of a Markov chain, r2 as the variance of the
hypothetical means, and e2=

+
EiEj as the expected value of the

process variance.

In any case, ½ determines the rate of decline in the covariances
as the separation between years increases.177 So ½= :90 would

174For example, the correlation between the estimated trend factors to 1998 from 1994

and 1995 is 156=
4
(200)(150) = :90.

175A similar pattern would be expected for on-level factors to adjust for law amendments.
176This is the covariance structure in the presence of shifting risk parameters, equivalent
to Equation 3.16. If appropriate we could instead use one of the more complicated
covariance structures, for example Equations 5.10 and 5.11.
177For data from an individual insurer, one of the reasons that the covariances between
years declines as the separation increases may be nonrenewals of insureds. The higher
the lapse rate the faster the expected rate of decline in these covariances. As discussed in
Busche [26], the higher the lapse rate, the lower the weight given to older years of data.
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represent a more rapid decline than would ½= :99; the former
would correspond to more rapidly shifting parameters over time
than the latter.

The relative magnitudes of r2 and e2 will control how much
weight is given to distant versus recent years. The larger e2, the
more random noise there is in the data from any one year; when
e2 is large we must give each of the available years significant
weight. The smaller e2, the less random noise there is in the
data and larger weight can be given to more recent years and
insignificant weight to older years. When e2 is small, we can use
a more responsive method. When e2 is large we have to use a
more stable method.

If everything else is equal, the larger the volume178 of data
in a year, the smaller we expect the process variance of the loss
ratios to be. We assume the process variance is inversely pro-
portional to the volume of data.179 Thus, how responsive our
estimation method should be depends on the volume of data
available per year. If more data is available per year, then the
estimation method can be more responsive.

9.3. Credibilities

Assume we are estimating the year Y+¢ by weighting to-
gether years 1,2, : : : ,Y. Then as shown in Appendix B, the least
squares weights Zi, i= 1,2, : : : ,Y, with

.N
i=1Zi = 1, are the solu-

tion to the Y+1 Equations 6.7:
Y"
i=1

ZiVik =Vk,Y+¢+¸=2, k = 1,2, : : : ,Y and

Y"
i=1

Zi = 1:

(9.2)

178The measurement of the volume of data would depend on the particular application.
For example, it could be house-years, man-weeks, car-years, inflation adjusted sales, etc.
See Bouska [27].
179For this example, it has been assumed e2 is the same for each year.
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where V is the variance-covariance matrix and ¸ is the Lagrange
Multiplier.180

9.4. No Estimation Error

If we do not include any estimation error, then in our example
V =C, Y = 6 and ¢= 2. Thus, the Equations 9.2 become:

6"
i=1

ZiCik =Ck,8 +¸=2, k = 1,2, : : : ,6 and

6"
i=1

Zi = 1:

(9.3)

Given values for Ei, e
2, r2, and ½ we can use Equation 9.1 to

calculate the matrix C and then solve these linear Equations 9.3
for the weights Zi.

For example, with Ei = 1 for i= 1 to 8, e
2 = :005, r2 = :007

and ½= :90, we would get:

Z1 = 9:5%,

Z2 = 8:7%,

Z3 = 10:1%,

Z4 = 14:0%,

Z5 = 21:8%, and

Z6 = 35:9%:

Thus, as expected in the presence of shifting risk parameters,
the more recent years 1996 and 1995 get more weight, while the
earlier years 1991 and 1992 get less weight. Note that there is
an “edge effect.” The credibility assigned to 1991 is somewhat

180¸ is an auxiliary variable, whose value will not be of particular interest.
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FIGURE 20

larger than it would otherwise be, since it is assumed to contain
more unique information compared to 1992; the information con-
tent of 1992 is captured to some extent by the years 1991 and
1993 bracketing it on either side. The same “edge effect” applies
to 1996, raising its credibility weight somewhat.

Figure 20 displays what happens as we vary ½. As ½ ap-
proaches unity, parameters are shifting less rapidly, and there-
fore approximately equal weight is given to different years.181

As ½ approaches zero, parameters are shifting more rapidly, and
therefore less weight is given to the older years.

If we were to increase the expected value of the process vari-
ance, by taking E = 1

2, keeping e
2 = 0:005, r2 = :007 and ½= :90,

181Recall that for this illustrative example the volume of data for each year is assumed
to be the same.
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FIGURE 21

then the weights are:

Z1 = 11:7%,

Z2 = 11:4%,

Z3 = 12:6%,

Z4 = 15:5%,

Z5 = 20:5%, and

Z6 = 28:4%:

Compared to E = 1, with E = 1
2 (a smaller volume of data)

there is less weight given to more recent years and more weight
given to more distant years. Figure 21 displays what happens as
we vary E. As E (the volume of data) gets smaller, the weights
become more equal. As E gets larger, more weight is given to
recent years.
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9.5. Taking Into Account Estimation Error

We can now introduce the impact of estimation error. First
take the sum of the variance-covariance matrix discussed above
for Ei = 1 for i= 1 to 8, e

2 = :005, r2 = :007 and ½= :90, and D,
the assumed variance-covariance matrix for the estimation errors
associated with development.182

Vij = (:005)±ij +(:007):90
$i%j$+Dij , for i,j ) 6,

Vij = (:005)±ij +(:007):90
$i%j$, for i or j > 6:

For i or j > 6, the year is one whose losses we are trying to
estimate. Since we are trying to estimate ultimate losses there is
no additional development to be applied to those years. Thus,
there is no D term, or alternately Dij = 0 for i or j > 6.

Solving the Equations 9.2 for the weights we get:

Z1 = 18:4%,

Z2 = 18:7%,

Z3 = 16:5%,

Z4 = 21:0%,

Z5 = 23:1%, and

Z6 = 2:3%:

Taking into account the estimation errors due to development
has decreased the weight given to recent years. In particular the
weight given to incomplete policy year 1996 has declined very
significantly. This is in line with the general practice of giving
reduced or no weight to the incomplete policy year.

182We have assumed for simplicity that the estimation errors due to development are
independent of the variance of the ultimate values for the years, so that the two variance-
covariance matrices add. Also, we have for simplicity not had D depend on the volume
of data E, even though in actual applications it is likely to be dependent.
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Similarly we can include the impact of the estimation error
due to trend using the previously selected variance-covariance
matrix T

Vij = (:005)±ij +(:007):90
$i%j$+Tij , for i,j ) 6,

Vij = (:005)±ij +(:007):90
$i%j$, for i or j > 6:

Solving the Equations 9.2 for the weights one gets:

Z1 = 7:8%,

Z2 = 6:7%,

Z3 = 8:5%,

Z4 = 12:1%,

Z5 = 23:3%, and

Z6 = 41:6%:

Taking into account the estimation errors due to trend has
decreased the weight given to older years.

Finally, we can include the impact of both forms of estimation
error by using the matrix D+T in place of either D or T. (This
assumes the estimation errors due to development and trend are
independent.) The resulting weights are:

Z1 = 16:0%,

Z2 = 16:8%,

Z3 = 15:8%,

Z4 = 20:4%,

Z5 = 27:6%, and

Z6 = 3:4%:

Figure 22 compares the weights with and without the estima-
tion errors.



CREDIBILITY WITH SHIFTING RISK PARAMETERS 575

FIGURE 22

9.6. General Effects of Estimation Error

The inputs used in the illustrative example can be varied. We
can use more or less than six years of data. The gap between the
latest year of data and the year to be estimated can differ. The
volume of data and therefore the expected value of the process
variance can vary by year. The relative size of the variance of
the hypothetical means and the expected value of the process
variance can differ. The rate at which parameters shift can be
faster or slower. The pattern of estimation errors and their relative
importance can differ.183

As any of these inputs vary, so do the calculated weights.
Nevertheless, approximate values of the inputs can be used to
estimate a pattern of weights that would be reasonable to use for
a particular application.

183Also, in some cases the estimation errors would depend on the volume of data.
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The general conclusions from analyzing this model all make
sense. When we have a smaller volume of data per year we
choose a more stable method.184 Years with less data get less
weight. When there is a lot of potential error from estimating
loss development for a year, we give that year relatively less
weight; this tends to affect more recent years. When there is a
lot of potential error from estimating trend or on-level factors
for a year, we give that year relatively less weight; this tends
to affect more distant years. As there are more rapidly shifting
parameters over time we choose a more responsive method.

Recall that in this illustrative example the weights always add
to 100%. Thus the weight given to a particular year is a reflection
of its value relative to the other years. Giving two years equal
weight implies that they have the same value for purposes of
estimation, but tells us nothing about what that value is in any
absolute sense.

10. EXPERIENCE RATING

In this section, the previous results will be applied to a single
split experience rating plan. While the values for the covariance
structure used in this section were selected based on analyzing
some workers compensation data from one state, they should be
viewed as for illustrative purposes.

Section 10.1 describes the structure of a single-split experi-
ence rating plan. Section 10.2 describes the covariance structure.
Section 10.3 displays the set of linear equations to be solved in
order to get the credibilities. The parameters of the covariance
structure are estimated and selected in Sections 10.4 to 10.8.
Section 10.9 displays the credibilities that correspond to this co-
variance structure and parameters. Section 10.10 discusses the

184This customary practice is illustrated in Stern [28, p. 77]. The larger the premium
volume, the more weight given to the latest year of data and the less weight given to the
prior year of data. The smaller the premium volume, the more equal the weights given
to the two years of data.
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impact on the credibilities of taking into account the maturity of
experience rating data.

10.1. Structure of the Experience Rating Plan

Assume we have split the losses into primary and excess por-
tions, with the first $5,000 of losses primary.185 Assume only
the first $175,000 of any claim enters into experience rating.186

Assume we have Y years of data being used to predict year
Y+¢.187 We wish to determine credibilities to apply to the pri-
mary and excess data for each year.

Define the following quantities:

EPi =Expected Primary Losses for Year i,

EXi =Expected Excess Losses for Year i,

Ei = EPi+EXi = Expected Losses for Year i,

APi =Actual Primary Losses for Year i,

AXi =Actual Excess Losses for Year i,

Di = EPi=Ei =D-ratio for Year i,

Pi = APi=Ei,

Xi = AXi=Ei,

¼i = Pi%Di = (APi%EPi)=Ei
= Primary “Deviation Ratio” for Year i,

»i = Xi% (1%Di) = (AXi%EXi)=Ei
=Excess “Deviation Ratio” for Year i, and

M =Experience Modification:

185This is a single split experience rating plan. The $5,000 split point is currently used
for workers compensation. The general results illustrated here would be similar with a
different split point.
186The $175,000 limit is currently used in Massachusetts workers compensation. Other
states use different limits.
187Typically Y = 3 and ¢= 2. Years 1, 2 and 3 are predicting Year 5.
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Then the experience modification will be of the form:

M = 1+
Y"
i=1

¼iZPi+
Y"
i=1

»iZXi: (10.1)

The primary deviation ratio for year i, ¼i, is given weight ZPi.
The excess deviation ratio for year i, »i, is given weight ZXi.
The complement of credibility is given to unity, i.e., the average
modification and the expected ratio of actual losses to expected
losses.

If we were to introduce ballast and weighting values, as in
the current experience rating plan,188 then one could rewrite the
credibilities as:

ZPi = Ei=(Ei+Bi),

ZXi =WiZPi =WiEi=(Ei+Bi):
(10.2)

Note that there would be separate ballast and weighting values
for each year in the treatment here. In the current experience
rating plan there is a single B and W for a given insured.189

Then using the definitions of the deviation ratios:

¼i = (APi%EPi)=Ei and »i = (AXi%EXi)=Ei,
we can rewrite Equation 10.1 as:

M = 1+
Y"
i=1

APi%EPi+WiAXi%WiEXi
Ei+Bi

: (10.3)

By giving each year its own weight, Equations 10.1 or 10.3
differ somewhat from the usual Equation 10.4.190 If all the years
of data were added together and assigned one combined primary
credibility and one combined excess credibility, then Equation

188See Mahler [12] or Gillam and Snader [19].
189If an insured is interstate rated, the W and B values are a weighted average of those
that would apply to that size risk if it were intrastate rated in each of the states involved.
190See for example Gillam and Snader [19] or Mahler [12].
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10.1 would reduce to an equivalent of the usual equation for the
experience modification for the Workers Compensation single
split plan:

M = 1+Zp(Ap=E%Ep=E)+Zx(Ax=E%Ex=E)

= 1+
Ap%Ep+WAx%WEx

E+B
=
Ap+WAx+(1%W)Ex+B

E+B
(10.4)

10.2. Variances and Covariances

The credibilities that appear in Equations 10.1 or 10.2 will be
derived from the variance-covariance structure.191

There are three types of variances and covariances: those in-
volving just primary deviation ratios, those involving just excess
deviation ratios, and those involving both primary and excess
deviation ratios. Each covariance will involve ratios from two
(possibly different) years.

Define the relevant covariances as:

Sij =Cov[¼i,¼j] = Sji,

Tij =Cov[»i,»j] = Tji, and

Uij =Cov[¼i,»j]:

(10.5)

Each of these three variance-covariance structures S, T and U
would need to be modeled and/or estimated in a manner similar
to that performed in previous sections of this paper. The covari-
ances would differ by the amount of data and would be affected
by risk heterogeneity, parameter uncertainty, and shifting risk
parameters over time.

191The “best” credibilities will be taken as those that minimize the expected squared
error. See Appendix D.
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When the two years involved are the same, we obtain the
total192 variance or covariance:

S1,1 = total variance of the primary deviation ratio,

T1,1 = total variance of the excess deviation ratio, and

U1,1 = total covariance of the primary and excess
deviation ratios:

When the two years involved differ, we obtain in the absence
of shifting risk parameters over time, the variance or covariance
of the hypothetical means:

S1,2 = variance of the hypothetical mean primary
deviation ratios,

T1,2 = variance of the hypothetical mean excess
deviation ratios, and

U1,2 = covariance of the hypothetical mean primary
and excess deviation ratios:

In the presence of shifting risk parameters over time, it will
be assumed that S, T and U each have a structure similar to that
in Equations 5.10 and 5.11:

Cov[Xi,Xj] = r
2
0
½$i%j$+ I°$i%j$=

+
EiEj + ±ij

1
K=
+
EiEj + J

23
,+

EiEj +­;

Cov[Xi,Xj] = r
2
0
½$i%j$+ I°$i%j$=­+ ±ij

1
K=
+
EiEj + J

23
,+

EiEj ) ­:
The parameters r2, I, J , K, ½, ° and ­ in general may vary

between the covariance structures for S, T and U. Thus, we will
write each parameter with a subscript, p for primary, x for excess,

192“Total” means including both the variance (or covariance) of the hypothetical means
and the expected value of the process variance (or covariance). See Mahler [11].
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and m for mixed, resulting in the following equations:

Sij = r
2
p

0
½$i%j$p + Ip°

$i%j$
p =

+
EiEj + ±ij

1
Kp=

+
EiEj + Jp

23
,+

EiEj + ­p; (10.6)

Sij = r
2
p

0
½$i%j$p + Ip°

$i%j$
p =­p+ ±ij

1
Kp=

+
EiEj + Jp

23
,+

EiEj ) ­p; (10.7)

Tij = r
2
x

0
½$i%j$x + Ix°

$i%j$
x =

+
EiEj + ±ij

1
Kx=

+
EiEj + Jx

23
,+

EiEj +­x; (10.8)

Tij = r
2
x

0
½$i%j$x + Ix°

$i%j$
x =­x+ ±ij

1
Kx=

+
EiEj + Jx

23
,+

EiEj )­x; (10.9)

Uij = r
2
m

0
½$i%j$m + Im°

$i%j$
m =

+
EiEj + ±ij

1
Km=

+
EiEj + Jm

23
,+

EiEj ) ­m; and (10.10)

Uij = r
2
m

0
½$i%j$m + Im°

$i%j$
m =­m+ ±ij

1
Km=

+
EiEj + Jm

23
,+

EiEj )­m: (10.11)

The covariance structure given by Equations 10.6 to 10.11 in-
cludes a total of 21 parameters. In theory, these parameters can be
estimated using techniques similar to those used in the previous
sections of this paper. As a practical matter, some of the parame-
ters such as ­, ½ and ° can be taken equal or approximately equal
for S, T and U. So, for example, we could assume ­p = ­x =­m;
in other words, we could assume that the transition from risk
homogeneity to risk heterogeneity occurs at (approximately) the
same size193 for all three covariance structures.

193As applied here to experience rating, I have followed the current practice of using the
total expected losses rather than the primary or excess losses to define the size of risk.
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10.3. Equations for Credibilities

Set aside for now the difficult task of estimating the variance-
covariance matrices: S, T and U. As shown in Appendix D, we
can derive 2 Y linear equations for the 2 Y credibilities:

Y"
i=1

(ZPiSik +ZXiUki) = Sk,Y+¢+Uk,Y+¢, k = 1,2, : : :Y, and

(10.12)
Y"
i=1

(ZPiUik+ZXiTki) =UY+¢,k +Tk,Y+¢, k = 1,2, : : :Y:

(10.13)

If the excess losses are set equal to zero; i.e., we have a no-
split plan, then Equation 10.12 reduces to Equation 2.4. In the
absence of shifting risk parameters over time, as shown in Ap-
pendix D, Equations 10.12 and 10.13 reduce to those derived in
Mahler [11].194

10.4. Estimating the Parameters of the Covariance Structure

Prior sections have discussed how we might estimate some of
the needed parameters. Also, the National Council on Compen-
sation Insurance has estimated quantities which are similar to the
I, J and K parameters here.195 These NCCI estimates can aid in
choosing the relative sizes of the I, J and K parameters.

The available data was insufficient to allow independent es-
timates of ½p, ½x and ½m, so it is assumed that ½p ( ½x ( ½m.

Thus, for a given insured, the size of risk to which we compare ­p, ­x or ­m is the
same. In this case, I think it unlikely that ­p, ­x and ­m would differ. Nevertheless, for
generality, I have labeled ­ with subscripts even though in the example ­p = ­x = ­m.
194See Equations 5.3 and 5.4 in Mahler [11] for Zp and Zx for a split experience rating
plan.
195See Gillam [13] and Mahler [12]. Note that the credibilities in the NCCI Revised
Experience Rating Plan were derived without explicit recognition of the impact of what
has been called herein Uij , the covariance of the primary and excess losses.
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Similarly, assume °p = °x = °m and ­p = ­x =­m. So we have
assumed that the rate of shifting parameters over time as it im-
pacts S, T and U is similar and that risk homogeneity applies for
risks of size less than ­.

The primary losses are less subject to random fluctuations
than the excess losses. Therefore, whenever possible the results
of analyzing the primary deviation ratios will be relied upon.

The data analyzed was that used for intrastate experience rat-
ing in one state over a five year period.196 The analysis was
limited to risks that were experience rated over this whole pe-
riod of time.197 For each such risk, for each “rating year” the
data consists of three separate years of actual primary losses, ac-
tual excess losses, expected primary losses, and expected excess
losses, that were used to calculate the experience modification.
The variance-covariance structure of this data was analyzed by
size of risk.

For example, for risks with expected annual losses between
$10,000 and $20,000 the correlations between primary deviation
ratios, (Ap%Ep)=(Ep+Ex), were computed for different separa-
tions and different reports.198 For example, this primary corre-
lation was .331 between the “rating year” 1991 data at first re-
port199 and the “rating year” 1992 data at first report. Table 6
displays the correlations.

There are 12 correlations corresponding to a separation of
1 year, 9 for 2 years, 6 for 3 years, and 3 for 4 years. Based

196For experience modifications applied to policies written during 1991, 1992, 1993,
1994 and 1995 in Massachusetts workers compensation.
197Employers who went out of business, left the state, became self-insured or became
too small to be experience rated would therefore be excluded.
198This differs somewhat from Mahler [12] where correlations between Ap=(Ep+Ex)
were examined. The two sets of correlations are very similar.
199Generally data from a 1989 policy at first report, a 1988 policy at second report, and
a 1987 policy at third report would be used to calculate the experience modification to
apply to the 1991 policy. The data from the 1989 policy at first report is what is being
referred to here.
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TABLE 6

CORRELATIONS OF RATIOS OF ACTUAL PRIMARY LOSSES TO
TOTAL EXPECTED LOSSES

Expected Annual Losses1 Between $10,000 and $20,000
Massachusetts Workers Compensation Experience Rating

Rating Years2 Report Separation Correlation

91 92 1 1 .331
91 92 2 1 .230
91 92 3 1 .270
92 93 1 1 .328
92 93 2 1 .326
92 93 3 1 .241
93 94 1 1 .080
93 94 2 1 .300
93 94 3 1 .330
94 95 1 1 .036
94 95 2 1 .073
94 95 3 1 .315
91 93 1 2 .282
91 93 2 2 .255
91 93 3 2 .258
92 94 1 2 .062
92 94 2 2 .268
92 94 3 2 .263
93 95 1 2 .049
93 95 2 2 .029
93 95 3 2 .277
91 94 1 3 .059
91 94 2 3 .211
91 94 3 3 .208
92 95 1 3 .054
92 95 2 3 .029
92 95 3 3 .213
91 95 1 4 .053
91 95 2 4 .030
91 95 3 4 .228

1If E1 and E2 are the expected losses (primary plus excess) for the given report which are used for
experience rating the two rating years, then

4
E1E2 is between $10,000 and $20,000. There were an

average of 3,060 such risks.
291 refers to experience modifications applied to policies written in 1991.
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FIGURE 23

on Mahler [1], it is expected that the logs of these correlations
will decline linearly as the separation increases. A least squares
regression was fit to these correlations, and the result was c=
(:282):709s, where c is the correlation and s is the separation.
The value of .282 will be referred to as the “intercept” while the
value of .709 will be referred to as the “slope” of this regression.
This regression is illustrated in Figure 23.

Similar regressions were fit to the correlations for other size
categories.200 A similar analysis was performed for the corre-
lations of excess deviation ratios and the correlations between
primary and excess deviation ratios. The resulting slopes and
intercepts are displayed in Table 7.

200A few estimated correlations were not positive and were excluded from the regressions.
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TABLE 7

RESULTS OF EXPONENTIAL REGRESSIONS FIT TO
CORRELATIONS OF RATIOS

Massachusetts Workers Compensation Experience Rating

Primary Excess MixedExpected Average
Annual Number of

Losses ($000) Risks Intercept Slope Intercept Slope Intercept Slope

3 to 5 3,952 .224 .727 .034 .820 .089 .775
5 to 10 4,798 .169 .836 .086 .792 .102 .841
10 to 20 3,060 .282 .709 .098 .741 .126 .737
20 to 50 2,197 .380 .992 .146 .842 .167 .950
50 to 100 770 .579 .869 .260 .809 .272 .855
100 to 200 356 .717 .865 .442 .723 .408 .790
200 to 500 186 .661 .877 .471 .812 .355 .825
500 to 1,000 45 .869 .658 .693 .687 .397 .781

1,000 to 2,000 14 .882 .973 .776 .850 .583 .828

10.5. Estimating Ip, Jp, Kp, Ix, Jx and Kx

As discussed previously, the intercepts of the primary correla-
tions are an estimate of the credibility to be assigned to a single
year of data in the absence of shifting risk parameters.201 Thus
we expect a curve of the form:

Z = (E+ Ip)="(1+ Jp)E+ Ip+Kp#, for E +­p:

As shown in Figure 24, the values Ip = 18,000, Jp = :10, and
Kp = 80,000 do a reasonable job of approximating the estimated
intercepts for the primary deviation ratios.202

Similarly, as seen in Figure 25, values of Ix = 20,000, Jx =
:15, and Kx = 315,000 do a reasonable job of approximating the
estimated intercepts for the excess deviation ratios.

201The correlation between primary and excess losses is also ignored.
202More data on extremely large risks would improve the estimate of Jp.
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FIGURE 24

The intercepts of the regressions fit to the mixed correlations
have a somewhat different interpretation. Using Equations 10.6,
10.8 and 10.10, for a primary deviation ratio ¼i and excess devi-
ation ratio »j for different years i != j, we have for

+
EiEj + ­m,

Ei +­p and Ej +­x:

Corr[¼i,»j] = Cov[¼i,»j]=
+
Var(¼i)Var(»j) =Uij=

+
SiiTjj , and

Corr[¼i,»j] =
r2m

0
½
$i%j$
m + Im°

$i%j$
m =

+
EiEj

3
rprx

+
(1+ Jp+(Ip+Kp)=Ei)(1+ Jx+(Ix+Kx)=Ej)

:

(10.14)

Note that the mixed correlation between different years does
not involve Jm and Km. Thus the regression fit to the mixed inter-
cepts cannot be used to estimate these parameters. The intercept
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FIGURE 25

of that regression should be:203

r2m

0
1+ Im=

+
EiEj

3
rprx

+
(1+ Jp+(Ip+Kp)=Ei)(1+ Jx+(Ix+Kx)=Ej)

:

(10.15)

These intercepts by size of risk will be used subsequently to
check the reasonableness of selected parameter values.

10.6. Estimating ° and ½

The slopes of the regressions fit to the correlations are dis-
played in Table 7. There is considerable random fluctuation, but
generally the slopes are somewhere in the 75% to 90% range.
As discussed previously, the slope for smaller sizes should be

203The result of substituting unity for ½m and °m in Equation 10.14.
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approximately equal to °, while that for larger sizes should
be approximately equal to ½. There is some tendency for the
primary ratios for the slopes to be closer to unity for large
sizes. For illustrative purposes, °p = :80 and ½p = :85 will be se-
lected.

There is less evidence of a dependence on size of risk for
the excess ratios; °x = ½x = :80 will be selected. The rates of
shifting for the mixed correlations are similar to those for the
primary and excess correlations; °m = :80 and ½m = :83 will be
selected.

10.7. Estimating r2, Im, Jm and Km

Besides analyzing correlations between data from different
years, we need to analyze the variance of data from a single
year. The variance is Sii for primary deviation ratios:

Sii = r
2
p(1+ Jp+(Ip+Kp)=Ei), Ei +­: (10.16)

Similarly, for the excess deviation ratios the variance is

Tii = r
2
x (1+ Jx+(Ix+Kx)=Ei), Ei +­: (10.17)

For a given year, the covariance between the primary and
excess deviation ratios is Uii:

Uii = r
2
m(1+ Jm+(Im+Km)=Ei), Ei + ­: (10.18)

The estimated variances and covariances for various sizes of
risk are shown in Table 8.204 Using the estimated primary vari-
ances and the previously selected values Ip, Jp and Kp we can
estimate r2p . Similarly, we can estimate r

2
x . The covariances can

be used to estimate r2m, Im, Jm and Km.

Table 9 shows the estimates of r2p and r
2
x that result from the

estimated variances for the different sizes of risk and Equations

204In each case, the value shown is an average of 15 values from 5 years and 3 reports.
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TABLE 8

VARIANCES AND COVARIANCES FOR A SINGLE YEAR
Massachusetts Workers Compensation Experience Rating

Expected Average
Annual Number Primary Excess Mixed

Losses ($000) of Risks Variance Variance Covariance1

3 to 5 6,228 .271 15.444 1.221
5 to 10 6,619 .181 9.754 .791
10 to 20 4,081 .101 5.526 .442
20 to 30 1,569 .077 3.344 .301
30 to 50 1,318 .064 2.459 .222
50 to 100 1,034 .047 1.816 .177
100 to 200 506 .034 1.045 .112
200 to 500 262 .022 .637 .069
500 to 1,000 67 .019 .405 .055

1,000 to 2,000 23 .016 .213 .034

In each case the estimate shown is the average of 15 estimates from each of 5 years at 3 reports.
1Covariance of primary and excess deviation ratios for the same year.

TABLE 9

ESTIMATES OF r2 FROM OBSERVED VARIANCES

Expected
Annual Primary Excess

Losses ($000) Variance r2p Variance r2x

4 .271 .011 15.444 .182
7.5 .181 .013 9.754 .213
15 .101 .013 5.526 .235
25 .077 .015 3.344 .230
40 .064 .018 2.459 .258
75 .047 .020 1.816 .323
150 .034 .019 1.045 .309
350 .022 .016 .637 .302
750 .019 .015 .405 .254

1,500 .016 .014 .213 .155

r2 = Variance=(1+ J + (I+K)=E)
I
p
= 18,000, J

p
= :10, K

p
= 80,000

I
x
= 20,000, J

x
= :15, K

x
= 315,000
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FIGURE 26

10.16 and 10.17. The values of r2p are all in the range of .015. The
similarity of the estimates of r2p that result from the different size
categories tends to confirm the reasonableness of the previously
selected values of Ip, Jp and Kp.

205

Similarly, Table 9 displays estimates for r2x from the differ-
ent size categories using Equation 10.17. The values of r2x vary
considerably. A value r2x ( :26 will be selected.
As seen in Figure 26, using Equation 10.18, the set of pa-

rameters: Im = 20,000, Jm = :13, Km = 140,000, and r
2
m = :040,

provides a reasonable fit to the estimated covariances by size of

205If the initially selected Ip, Jp and Kp did not seem to perform well here, then we could
modify them somewhat so they performed better here. Then we would go back and
check the performance in fitting the intercepts of the regressions fit to the correlations.
We could iterate in this manner until we arrived at the best set of parameters.
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FIGURE 27

risk.206 Bear in mind that the largest size category has a limited
number of risks and so the resulting estimate of the covariance
is not very accurate.

Using the selected set of parameters, we can compare the
theoretical values from Equation 10.15 to the observed intercepts
from the regressions fit to the mixed correlations. As seen in
Figure 27, the fit is not unreasonable. Thus, the selected values
of Ip, Jp, Kp, Ix, Jx, Kx, Im, r

2
p , r

2
x , and r

2
m seem consistent with

the observed mixed intercepts.

10.8. Selecting ­

The final parameters to be selected are ­p, ­x and ­m. Based
on the reasonable fits obtained so far, ­ should be near the

206The value of Jm was selected to be between the selected Jp and Jx. More data on
extremely large risks would improve the estimates of all the J parameters.
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FIGURE 28

smaller sizes of risk examined or below the eligibility level
for experience rating in Massachusetts.207 Due to limited in-
formation, one value will be selected for all three parameters,
­p =­x =­m.

Figure 28 displays least squares credibilities estimated from
the 3 years of data used to experience rate policies. The credi-
bilities are those that produced the smallest squared error when
the first 2 years of data were used to predict the third.208 These
are compared to the model credibilities that result from the esti-
mated parameters and the use of Equations 10.12 and 10.13.209

207If ­ were in the middle of the range of sizes examined, the observed covariance
structure should have been affected.
208For each size category there are five estimates, one for each “rating year.”
209The primary and excess credibilities were averaged: Z =DZp +(1%D)Zx, with D =
:22.
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The model credibilities are in the range indicated by the
data.210

The credibilities for smaller size risks are shown for two val-
ues of ­, ­ = $5,000 and ­ = $15,000. Based on Figure 28,
­ = $15,000 does a better job than ­ = $5,000. However, a bet-
ter estimate of ­ would result from a more detailed analysis
of data from risks barely eligible for or too small to be expe-
rience rated in Massachusetts.211 While it is beyond the scope
of this paper, a preliminary review of merit rating data for Mas-
sachusetts workers compensation indicates that ­ ( $5,000 or
perhaps even a little less. In any case, for illustrative purposes
the selected values will be ­p =­x = ­m = $5,000.

212

10.9. Estimated Credibilities

The selected parameter values are:

Ip = $18,000 Jp = :10 Kp = $80,000 r2p = :015

Ix = $20,000 Jx = :15 Kx = $315,000 r2x = :26

Im = $20,000 Jm = :13 Km = $140,000 r2m = :040
°p = :80 ½p = :85 ­p = $5,000

°x = :80 ½x = :80 ­x = $5,000

°m = :80 ½m = :83 ­m = $5,000:

Using the above parameter values and Equations 10.12 and
10.13, credibilities were calculated for 3 years of data being used

210Since the parameters were estimated by a different analysis of this exact same data,
this serves as a consistency check rather than an independent test of the results.
211For example, for a risk with $1,000 in expected annual losses, with ­ = $5,000
Z = 6:7%, while with ­ = $15,000 Z = 3:3%. Thus an examination of the credibilities
indicated by the data for smaller risks should help to determine the appropriate ­.
212This would correspond to a minimum ballast value of Kp­p=(Ip+­p) = ($80,000)
(5=(18+5))( $17:3 thousand. Interestingly, for g = 7 as in Massachusetts, the NCCI
minimum ballast value would be (7) (2,500) = $17,500. The corresponding minimum
weighting value would be (Kp=Kx)(­p=­x)(Ix+­x)=(Ip +­p) = (80=300)(1)(25=23) =
:29. The NCCI minimum W is .07.
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TABLE 10

EXPERIENCE RATING CREDIBILITIES1

Using Parameters Listed in Section 10.9

Primary2 Excess3 Combined4Expected
Annual Losses

($000) Z1 Z2 Z3 Z
p

Z1 Z2 Z3 Z
x

Z

.1 :9% 1.1% 1.3% 3.3% .02% .02% .03% .1% .8%

.5 4:0 5.0 6.2 15.2 .09 .11 .14 .3 3.6
1 7:2 9.1 11.7 28.1 .2 .2 .3 .7 6.8
2 12:1 15.6 20.8 48.4 .5 .6 .7 1.7 12.0
3 15:3 20.3 28.1 63.7 .7 .9 1.1 2.7 16.2
4 17:5 23.8 34.1 75.4 1.0 1.3 1.5 3.8 19.6
5 19:0 26.4 39.2 84.5 1.3 1.7 2.0 5.0 22.5

7.5 19:9 27.8 41.6 89.3 1.5 1.8 2.2 5.4 23.9
10 20:6 29.0 43.9 93.5 1.6 2.0 2.4 5.9 25.2
25 22:7 33.5 54.5 110.6 2.3 2.9 3.6 8.8 31.2
50 22:0 35.8 65.4 123.3 3.4 4.4 5.5 13.3 37.5
100 17:3 34.7 77.3 129.3 5.0 6.6 8.7 20.3 44.3
250 6:9 27.0 90.6 124.4 6.8 10.0 15.3 32.1 52.4
500 :8 19.6 95.5 115.9 7.0 11.8 21.5 40.3 56.9

1,000 % 1:3 14.5 94.8 108.1 6.1 12.4 27.9 46.4 59.9
2,500 % :2 12.6 89.1 101.5 4.3 11.6 35.1 51.0 62.1
5,000 1:0 13.1 84.6 98.8 3.3 10.8 38.8 52.9 63.0
10,000 1:9 14.0 81.4 97.3 2.7 10.1 41.1 53.8 63.4

' 2:9 15.5 77.4 95.7 2.0 9.1 43.7 54.8 63.8

1Using data from years 1, 2 and 3 to predict year 5.
2Z

p
is the sum of the primary credibilities for the three years.

3Z
x
is the sum of the excess credibilities for the three years.

4Z = DZ
p
+ (1%D)Z

x
, for D = :22:

to predict the fifth year.213 Table 10 displays the primary and
excess credibilities assigned to each of the three years of data as
well as the sum. Note that the primary credibilities can sum to
greater than 100%. As pointed out in Mahler [11] and Mahler
[12], this is not unusual when we take into account the covari-
ance of the primary and excess losses.214 In such circumstances

213For example, 1994, 1995 and 1996 data is being used to experience rate a policy
written during 1998.
214Note that the numerator of ¼i involves the primary losses while the denominator is
the sum of the primary and excess expected losses. If instead the denominator had been
just primary expected losses, then the ratio would be larger and the weight assigned to
it would be smaller by a factor of the D-ratio. Then the primary weights would sum to
less than 100%.
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FIGURE 29

we could constrain the primary credibilities to be equal to unity,
as shown in Mahler [11] and Mahler [12]. In any case, the com-
bined credibility is between 0 and 1. It should also be noted that
the uncertainty in the estimated J and ­ parameters produces
uncertainty in the credibilities for large and small risks respec-
tively.

As the size of risk increases, the weight assigned to the most
recent year increases relative to that for the most distant year.
For very large risks, we can rely almost solely on the latest
year of data. For very small risks, it would be reasonable to
rely on more than three years of data, since the older years
would have credibilities close to that for the more recent years
of data.

Figure 29 compares the primary and excess credibilities from
Table 10 to those currently used in Massachusetts workers com-
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FIGURE 30

pensation experience rating.215 Figure 30 does the same compar-
ison for the weighted average of the primary and excess credi-
bilities. As in Mahler [12], the indicated primary and combined
credibilities are generally higher than those from the NCCI plan.

At least part of this difference is due to the fact that Mas-
sachusetts average claim costs are higher than the national av-
erage. Using the same $5,000 split point between primary and
excess in every state results in lower than average D-ratios in
Massachusetts. Thus, the primary losses in Massachusetts are
“very primary,” while the excess losses are only “mildly excess.”
Thus, both the Massachusetts primary losses and excess losses
contain more useful information and less random noise than in

215The NCCI Revised Experience Rating program, with g = 7. Here we have ignored the
All Risk Rating Program (ARAP) which is currently applied on top of experience rating
in Massachusetts and in combination produces more responsiveness to the insured’s
losses.
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the average state. This would not be the case if the split point
depended on the state specific parameter g.

On the other hand, due to the consideration here of the covari-
ance between the primary and excess losses, the primary credi-
bilities are higher and the excess credibilities are lower than they
would otherwise be. The primary losses contain valuable infor-
mation for predicting both the future primary and excess losses.

On balance, the excess credibilities for the current model are
fairly close to those from the NCCI plan, while the primary cred-
ibilities are much greater. As stated before, the results would be
expected to differ somewhat in low severity states.

In any case, the combined model credibilities are more similar
to what would be obtained in other states.216 The combined cred-
ibilities are between 0 and 1. In this case, they increase smoothly
from zero to a maximum of about 63% for the largest risks.217

Due to shifting risk parameters and parameter uncertainty, the
maximum credibility is less than 100%.

The model combined credibilities are generally larger than
those from the current NCCI plan. For example, for $100,000
in expected annual losses, the model has a combined credibility
of 44.3%, while the current plan has 32.2%. While there are
significant differences,218 the overall magnitude and pattern of
credibilities is very similar.

Note that model credibilities are also shown for risk sizes
below the current eligibility level for experience rating.219 Recall

216The D-ratio is lower in Massachusetts than in the average state, so the primary credi-
bilities receive less weight. This would result in lower combined credibilities, except that
the primary credibilities are larger than average in Massachusetts.
217Due to the limited data for very large risks, the model parameters were chosen to
some extent so that the maximum credibility would be close to that from the NCCI plan.
In an average state the NCCI plan has a maximum credibility of about 67%, as shown
in Mahler [12].
218For most insureds a 13% difference in credibilities would have a less than 3% effect
on their experience modifications.
219The NCCI formulas for credibility are not intended to be applied to very small risks.
As discussed in Mahler [12], minimum B values, etc., are used to deal with this problem.
The NCCI credibilities graphed here are prior to any such refinements.
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FIGURE 31

that these credibilities for very small risks depend very signifi-
cantly on the estimated ­ parameter. An analysis of data from
these very small risks would refine this estimate.

Figure 31 shows the ballast values corresponding to the model
primary credibilities shown in Table 10. Since B = E((1=Zp)%1),
when Zp >> 100%, it follows that B < 0. While it is currently
the case that B is positive, there is no mathematical reason why
B cannot be negative.220 Small risks have B ( 3,000. B declines
and becomes negative before increasing to very large positive
values. Figure 32 shows W (weighting) values corresponding to
the model credibilities shown in Table 10. Other than a discon-
tinuity in the derivative of W that occurs at ­ = 5,000, the W
values increase smoothly with size of risk.

220B = 0 would correspond to Zp = 100%.
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FIGURE 32

Currently each of three years used for experience rating is
treated similarly. Instead each year could receive different cred-
ibilities. Figure 33 displays the model primary credibilities as-
signed to each of five years of data for various sizes of risks.
Note that the weights assigned to an individual year of primary
losses can be negative.221 Figure 34 similarly displays the ex-
cess credibilities. The same pattern is observed in each figure,
although for a given size of risk the weights given to different
years are more similar to each other in the excess case than in
the primary case.

It should be noted that for simplicity, equal expected losses
have been assumed for each year. Equations 10.6 to 10.11 and
Equations 10.12 and 10.13 apply equally well when the expected

221Also, the weights assigned to individual years of primary losses can in theory be
greater than 100%.
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FIGURE 33

losses differ by year. In that case, years with more expected
losses get more credibility than they would otherwise receive.
The pattern due to varying volumes of data by year would be
superimposed on that shown in Figures 33 and 34.

10.10. Taking Into Account Differences in the Maturity of the
Experience Rating Data

Generally the data used for experience rating is at different
reports. For workers compensation, generally three years of Unit
Statistical Plan data is used for experience rating. For example,
1995 at first report, 1994 at second report, and 1993 at third
report, might be used to experience rate a 1997 policy. The fact
that the data are not at ultimate can affect the credibilities in
two ways. First, as in Section 7.10, since the 1995 data is at
an earlier report than the 1993 data, the 1995 data is a poorer
estimator of 1997 ultimate losses compared to the 1993 data,
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FIGURE 34

than if both 1993 and 1995 were at the same maturity.222 Thus,
the lack of maturity of the 1995 data reduces its value relative
to the 1993 data and thus the credibility assigned to the 1995
data. In addition, all of the years of data are not at ultimate.
Thus, they are all somewhat worse estimators than if they were
available at ultimate. Thus, they all receive somewhat less cred-
ibility.223

As in Section 7.10, it will be assumed that the effect of loss
development is to reduce the covariances between data at differ-
ent reports. This refinement to the covariance structure will have
the expected impact on the credibilities.

222Since 1995 is more recent than 1993, it is a better estimator of 1997, all other things
being equal.
223Recall that unlike in Section 7.10, here the complement of credibility is given to the
grand mean.
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The first step is to estimate the correlations between the same
experience rating data but at different reports. As before, various
size categories will be used. Also, we can look at correlations
between Primary Deviation Ratios, between Excess Deviation
Ratios and between Primary and Excess Deviation Ratios.

For example, for risks with expected annual losses between
$10,000 and $20,000, for the data at first report during Rating
Year 91 and second report during Rating Year 92, the correlation
of Primary Deviation Ratios is .937. Similar correlations can be
calculated for Rating Year 92 vs. Rating Year 93, Rating Year 93
vs. Rating Year 94, and Rating Year 94 vs. Rating Year 95.224

These four correlations have been averaged and are displayed in
Table 11 as .942.

Table 11 displays similar correlations for other size categories
as well as correlations for 2nd report vs. 3rd report and 1st report
vs. 3rd report data.

The correlations between Primary Deviation Ratios and the
correlations between Excess Deviation Ratios for different re-
ports can be used directly, since for the same reports the correla-
tion is one. However, for the mixed correlation between Primary
Deviation Ratios and Excess Deviation Ratios, one would have
to compare the correlation for different reports to the correla-
tion for the same report, appropriately adjusted. Unfortunately
this is not a practical solution,225 therefore, the observed mixed
correlations will not be used.

The primary and excess correlations in Table 11 do not display
an obvious dependence on size of risk over the size categories
examined.226

224These correlations are .952, .929, .949, illustrating the random fluctuation in the in-
dividual estimates for a given size category based on data from a single state.
225The actual correlations for a single report include a term involving the process vari-
ance. Unlike what was done in Section 7.11, we should not just totally remove this piece
for comparison purposes since the different reports are not independent realizations of
the same risk process, nor are the primary and excess losses independent.
226It is expected that the correlations will get closer to unity for very large risks, based
on the analysis of classification data in Section 7.11.
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TABLE 11

EXPERIENCE RATING, CORRELATIONS BETWEEN SAME DATA
AT DIFFERENT REPORTS

Primary Deviation Ratios

1st to 2nd 2nd to 3rd 1st to 3rd
Expected
Annual

Losses ($000) Corr. # Risks Corr. # Risks Corr. # Risks

3 to 5 .929 3404 .956 4052 .923 3447
5 to 10 .948 4212 .966 5247 .924 4229
10 to 20 .942 2742 .962 3458 .914 2764
20 to 30 .960 1078 .975 1359 .942 1073
30 to 50 .964 909 .972 1144 .941 900
50 to 100 .954 700 .975 900 .942 696
100 to 200 .955 330 .974 437 .940 332
200 to 500 .897 172 .958 222 .913 175
500 to 1,000 .890 46 .987 60 .877 52

1,000 to 2,000 .986 16 .987 19 .974 14

Excess Deviation Ratios

3 to 5 .833 3404 .893 4052 .758 3447
5 to 10 .836 4212 .910 5247 .785 4229
10 to 20 .861 2742 .897 3458 .769 2764
20 to 30 .852 1078 .930 1359 .804 1073
30 to 50 .877 909 .912 1144 .803 900
50 to 100 .858 700 .925 900 .798 696
100 to 200 .864 330 .919 437 .809 332
200 to 500 .779 172 .932 222 .720 175
500 to 1,000 .831 46 .930 60 .762 52

1,000 to 2,000 .924 16 .918 19 .857 14

Mixed Deviation Ratios

3 to 5 .561 3404 .574 4052 .552 3447
5 to 10 .564 4212 .584 5247 .554 4229
10 to 20 .546 2742 .569 3458 .546 2764
20 to 30 .585 1078 .610 1359 .605 1073
30 to 50 .529 909 .538 1144 .515 900
50 to 100 .585 700 .596 900 .576 696
100 to 200 .574 330 .607 437 .580 332
200 to 500 .530 172 .606 222 .540 175
500 to 1,000 .588 46 .648 60 .504 52

1,000 to 2,000 .551 16 .557 19 .504 14
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Excluding the smallest and largest size intervals (with the least
data), the average correlations between the different reports are:

1–2 2–3 1–3

Primary .939 .971 .924
Excess .845 .919 .781

For illustrative purposes the following adjustments for loss
development up to third report will be made to the primary, ex-
cess, and mixed covariances:227

1–2 2–3 1–3

Primary Adjustment Factor .94 .97 .92
Excess Adjustment Factor .84 .92 .78
Mixed Adjustment Factor .89 .94 .85

Using the parameters in Section 10.9, prior to any adjust-
ment for differences in maturity, for $100,000 in expected annual
losses we obtain the credibilities for Years 1, 2 and 3 predicting
Year 5 shown both in Table 10 and in the first row below.

Primary Excess Combined

Year 1 Year 2 Year 3 Total Year 1 Year 2 Year 3 Total

No Adjustment
for Maturity228 17.3% 34.7% 77.3% 129.3% 5.0% 6.6% 8.7% 20.3% 44.3%
Adjusting for
Development to
Third Report 25.3% 36.5% 67.9% 129.8% 5.7% 6.3% 5.8% 17.8% 42.4%
Adjusting for
Development
Both to Third
Report and
Beyond Third
Report 27.4% 39.0% 69.7% 136.1% 4.1% 4.5% 3.7% 12.3% 39.5%

227These adjustment factors will only be applied to risks with expected annual losses
between about $5,000 and $1 million. Risks outside that range would have adjustment
factors that have not been estimated.
228See Table 10.
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FIGURE 35

If we multiply all of the primary covariances between a year
at first report and second report by an adjustment factor of .94,
between second and third by .97, and between first and third
by .92, with similar adjustments applied to the excess and mixed
covariances, then the calculated credibilities are revised as shown
in the second row above. The primary losses for Year 3 data
at first report received less weight than when the maturity of
the data was ignored. The primary losses for Year 1 at third
report receive more weight. The overall credibility goes down
somewhat.

Figure 35 displays the impact on primary credibilities for vari-
ous sizes of risk, for each year separately. Figure 36 displays the
impact on combined primary and excess credibilities for each
year separately. Taking into account development up to third re-
port alters the credibilities assigned to individual years; more
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FIGURE 36

mature years get more weight while less mature years get less
weight. Figure 37 shows the effect on the combined credibilities
summed for the three years. The overall credibility is reduced
by about 2% due to the consideration of development to third
report.

The covariances are also affected by loss development be-
yond third report. The vast majority of such development affects
excess losses rather than primary losses.229 For illustrative pur-
poses it will be assumed that development beyond third report
reduces all the excess covariances between the data years and the
year to be predicted (at ultimate) by .84, the adjustment factor

229In Massachusetts workers compensation, most claims of size less than $5,000 are
closed by third report. Most claims open at third report have incurred amounts at third
report that exceed $5,000 and also settle for more than $5,000.
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for development from the first to the third report. The mixed
covariances will be adjusted by a factor of .92, while the primary
covariances are not adjusted at all.

The resulting credibilities were shown in the third row above
for a risk with $100,000 in expected annual losses. Taking into
account loss development beyond third report in this manner re-
duced the relative value of the excess losses as a predictor. There-
fore, the credibilities assigned to the excess losses decreased,
while those assigned to the primary losses increased.

Figures 35 to 37 compare the credibilities including the im-
pacts of loss development to ultimate to those excluding any
consideration of maturity as well as those including the impacts
of loss development to third report. As expected, the inclusion
of all loss development generally lowers the credibilities.230

10.11. Conclusions-Experience Rating

While similar analyses of experience rating have been made
in the past,231 the present analysis incorporates shifting risk pa-
rameters, risk heterogeneity and parameter uncertainty in a com-
prehensive and integrated manner. While the example was for
a single split experience rating plan for workers compensation,
a similar analysis should be valuable for any experience rating
type situation where the volume of data varies significantly be-
tween entities. For example, general liability experience rating
or the assignment of towns to territories232 would fall into this
category.

On the other hand, situations such as private passenger auto-
mobile Safe Driver Insurance Plans or Bonus–Malus plans would
allow a somewhat simpler analysis, since the size of the insured

230Recall that the adjustment factors were illustrative and not based on any specific
experience rating data beyond third report.
231See, for example, Mahler [11] and Finger [29].
232See Conger [30].



CREDIBILITY WITH SHIFTING RISK PARAMETERS 609

FIGURE 37

is not significant.233 The phenomenon of risk heterogeneity is not
important in that case. Thus, the situation is the special case ex-
amined in Section 3.6, where parameter uncertainty and shifting
risk parameters are important. In that case, we expect a covari-
ance structure of the form:234

Cov[Xi,Xj] = r
2½$i%j$+ ±ijd

2: (10.19)

The size of risk E has been suppressed as not important in this
case, and therefore the variance due to parameter uncertainty
and that due to the expected value of the process variance can be
combined into one term d2. Equation 10.19 has the same form

233In medical malpractice, as discussed in Finger [29], the simpler situation is that of
experience rating individual doctors, while the more general situation would involve
experience rating groups of doctors.
234Compare to Equation 3.19.
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as Equation 7.1 in Mahler [1]. Thus, the form of analysis in
Mahler [1] should suffice in the case of frequency based private
passenger automobile experience rating and similar situations.

11. MISCELLANEOUS

In this section the methods of Mahler [1] will be applied to
the estimation of the market risk premium, the baseball models
from Mahler [1] and Mahler [20] will be revisited, and the results
in Boor [31] will be related to those herein.

11.1. Market Risk Premium

The market risk premium, an important economic concept
used in the Capital Asset Pricing Model, is the excess return on
stocks expected beyond the risk-free rate. A common estimate
of the market risk premium is the difference between the return
on large company stocks and the return on three-month U.S.
Treasury Bills.235 Table 12 shows this series from 1926 through
1995.

This series is very volatile. Ibbotson [32] recommends using
a long-term (unweighted) average based on a belief that the ex-
pected real returns have been reasonably consistent over time.
Using the currently available data from 1926 to 1995, the un-
weighted average is 8.76%.

While the risk parameters underlying this process are rela-
tively stable, they are unlikely to have absolutely no shifting
over time. The methods developed in Mahler [1] can be used to
estimate the sensitivity of the estimated market risk premium to
assumptions about the stability of the risk process.

Let Xi be the observed difference between the return on large
company stocks and U.S. Treasury Bills for year i. Then one
estimate of the market risk premium is to take all Y years of data

235See Chapter 8 of Ibbotson [32]. The market risk premium is referred to as the equity
risk premium.
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TABLE 12

PART 1

TOTAL RETURN

Large
Company U.S. Treasury

Year Stocks Bills Difference

1926 11.62 3.27 8.35
1927 37.49 3.12 34.37
1928 43.61 3.56 40.05
1929 %8:42 4.75 %13:17
1930 %24:90 2.41 %27:31
1931 %43:34 1.07 %44:41
1932 %8:19 0.96 %9:15
1933 53.99 0.30 53.69
1934 %1:44 0.16 %1:60
1935 47.67 0.17 47.50
1936 33.92 0.18 33.74
1937 %35:03 0.31 %35:34
1938 31.12 %0:02 31.14
1939 %0:41 0.02 %0:43
1940 %9:78 0.00 %9:78
1941 %11:59 0.06 %11:65
1942 20.34 0.27 20.07
1943 25.90 0.35 25.55
1944 19.75 0.33 19.42
1945 36.44 0.33 36.11
1946 %8:07 0.35 %8:42
1947 5.71 0.50 5.21
1948 5.50 0.81 4.69
1949 18.79 1.10 17.69
1950 31.71 1.20 30.51
1951 24.02 1.49 22.53
1952 18.37 1.66 16.71
1953 %0:99 1.82 %2:81
1954 52.62 0.86 51.76
1955 31.56 1.57 29.99
1956 6.56 2.46 4.10
1957 %10:78 3.14 %13:92
1958 43.36 1.54 41.82
1959 11.96 2.95 9.01
1960 0.47 2.66 %2:19
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TABLE 12

PART 2

TOTAL RETURN

Large
Company U.S. Treasury

Year Stocks Bills Difference

1961 26.89 2.13 24.76
1962 %8:73 2.73 %11:46
1963 22.80 3.12 19.68
1964 16.48 3.54 12.94
1965 12.45 3.93 8.52
1966 %10:06 4.76 %14:82
1967 23.98 4.21 19.77
1968 11.06 5.21 5.85
1969 %8:50 6.58 %15:08
1970 4.01 6.52 %2:51
1971 14.31 4.39 9.92
1972 18.98 3.84 15.14
1973 %14:66 6.93 %21:59
1974 %26:47 8.00 %34:47
1975 37.20 5.80 31.40
1976 23.84 5.08 18.76
1977 %7:18 5.12 %12:30
1978 6.56 7.18 %0:62
1979 18.44 10.38 8.06
1980 32.42 11.24 21.18
1981 %4:91 14.71 %19:62
1982 21.41 10.54 10.87
1983 22.51 8.80 13.71
1984 6.27 9.85 %3:58
1985 32.16 7.72 24.44
1986 18.47 6.16 12.31
1987 5.23 5.47 %0:24
1988 16.81 6.35 10.46
1989 31.49 8.37 23.12
1990 %3:17 7.81 %10:98
1991 30.55 5.60 24.95
1992 7.67 3.51 4.16
1993 9.99 2.90 7.09
1994 1.31 3.90 %2:59
1995 37.43 5.60 31.83
Average 12.52% 3.77% 8.76%

Source: Ibbotson [23], Table 2–5.
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and average:

Estimate =
Y"
i=1

1
Y
Xi:

More generally, we can weight together the Xi using weights
Zi such that

.
Zi = 1:

Estimate =
Y"
i=1

ZiXi:

The unweighted average is just a special case, with Zi = 1=Y
for all years.

When parameters shift over time we would expect to have a
covariance structure as per Equation 2.1:

Cov[Xi,Xj] = e
2±ij + r

2½$i%j$, where ±ij =

!
0 i != j
1 i= j

:

Equations 6.7 for the weights Zi that minimize the expected
squared error of the estimate of year Y+1 are:

Y"
i=1

ZiCov[Xi,Xk] = Cov[Xi,XY+1]+¸=2, k = 1,2, : : :Y,

where ¸ is the Lagrange multiplier. We can solve these Y linear
equations plus the constraint equation for the desired weights Zi.
Given an assumed covariance structure, we can obtain weights
and in turn use them to estimate the market risk premium.

The variance of X is very large, about .0427.236 The corre-
lations are small.237 Due to the large random fluctuations there
is insufficient data to estimate the parameters of the covariance
structure. However, we do have:

Cov[X,X] = Var[X] = e2 + r2 ( :0427,

236The standard deviation is .207 compared to the mean of .0876.
237They are not statistically different from zero.
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FIGURE 38

Corr[Xi,Xi+1] = Cov[Xi,Xi+1]=
+
Var[Xi]Var[Xi+1]

= r2½=(e2 + r2)

( r2=(e2 + r2):

Since the correlations between successive years are close to
zero, r2 is much smaller than e2. For example, if r2 = :0005 and
e2 = :0422 then Corr[X1,X2]( 1:2%. The effect of varying r2
between .0005 and .0020 has been tested.

Ibbotson [32] believes that the parameters are not shifting
rapidly. The parameter ½ measures the rate of shifting. For slow
shifting, ½ is near 1. The effect of varying ½ between 1 and .90
has been tested. Figure 38 shows examples of the credibilities
for various values of ½ and r2.
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TABLE 13

SENSITIVITY OF ESTIMATED MARKET RISK PREMIUM

Estimated
Market Risk

r2(:0001) ½ Premium

5 1 8.76%1

5 .975 8.61
5 .95 8.68
5 .90 8.82

10 1 8.761

10 .975 8.52
10 .95 8.67
10 .90 8.91

20 1 8.761

20 .975 8.47
20 .95 8.75
20 .90 9.13

Based on seventy years of data from 1926–1995, (see Table 12).
Assuming total variance of .0427.
1Result of straight average.

As shown in Table 13, the estimated market risk premium is
relatively insensitive to the choice of the parameters of the co-
variance structure. Any reasonable set of inputs gives an answer
in the same range. Bear in mind that just adding the 1995 data
point changed the estimate of the market risk premium based on
an unweighted average from 8.4% to 8.8%.

In conclusion, taking the straight unweighted average of the
available data remains a reasonable method of estimating the
market risk premium. While technical refinements could be in-
cluded to take into account shifting risk parameters, they would
not substantially improve or alter the estimate.

11.2. Baseball Example, Revisited

In Mahler [1], the data for the won-loss records of baseball
teams was approximated by a model involving a single Markov
chain with half-life of about 312 years. When expressed in terms
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FIGURE 39

of games lost, the covariances between years of data Xi and Xj
are:

Cov[Xi,Xj]( (170)(:818$i%j$)+ (37)±ij :
We could instead use a model involving two Markov chains

with different half-lives. This would allow us to approximate the
apparent longer term slower shifting as well as the shorter term
rapid shifting. While the volume of data is not sufficient to allow
us to fit a unique “two-chain” model, as seen in Figure 39 the
following does a reasonable job:

Cov[Xi,Xj] = (127:5)(:75
$i%j$) + (42:5)(:965$i%j$)+ 37±ij :

The more swiftly shifting Markov chain has a dominant eigen-
value of .75 and a half-life238 of about 212 years. The more slowly

238(ln2). (ln :75) = 2:4.



CREDIBILITY WITH SHIFTING RISK PARAMETERS 617

shifting Markov chain has a dominant eigenvalue of .965 and a
half-life239 of about 1912 years. The two Markov chains are given
75% weight and 25% weight, respectively.

This is an example of how two or more Markov chains of
different half-lives could be used to attempt to model the different
sources of shifting parameters over time.240 Note that this data
set does not lend itself to an examination of credibilities versus
size of risk, since the seasons do not vary sufficiently in the
number of games.

11.3. Boor, “Credibility Based on Accuracy”

As shown in Appendix B, linear Equations 6.7 for the cred-
ibilities with no weight to the mean are closely related to those
in Boor. One difference is that Boor assumes only two estima-
tors,241 while Equations 6.7 assume two or more estimators.

A more fundamental difference is that Equations 6.7 assume
that each of the estimators is unbiased. In Boor [31] no such
assumption is made, so the results in Boor [31] apply in more
general situations than Equations 6.7. Since the estimators in
Boor [31] are possibly biased, the formulas for credibility in-
volve terms such as E[X1X3], rather than Cov[X1,X3] such as in
Equations 6.7.

12. SUMMARY AND CONCLUSIONS

In Sections 2 to 5, a general form of the covariances in the
presence of shifting risk parameters, parameter uncertainty, and
risk heterogeneity was developed. While a simple example using
dice242 was used to develop this covariance structure as shown

239(ln2). (ln :965) = 19:5.
240Perhaps the chain with the shorter half-life relates to the baseball players while the
chain with the longer half-life relates to shifts in management.
241The ideas in Boor [31] can be extended to more than two estimators. Boor presents
the most common situation where two estimators are being combined.
242See Table 1.
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in Equations 5.5, the model in Equations 5.10 and 5.11 is in a
form appropriate for insurance applications.

Equation 3.10 in Section 3.4 shows that in the presence of
parameter uncertainty there is a fundamentally different depen-
dence of the credibility on the number of years of data and the
size of risk in a single year. Section 3.7 discusses the fundamen-
tally different dependence of the credibility on the number of
years of data in the presence of shifting risk parameters versus
parameter uncertainty. We can ameliorate the impact of param-
eter uncertainty by averaging over many years; in contrast, con-
sidering more than one year captures the effects of shifting risk
parameters.

Section 5.2 includes a brief discussion of how we might esti-
mate the parameters of the general covariance structure. Sections
7.3 to 7.6 and 7.11 illustrate how this might be done for clas-
sification data. Sections 10.4 to 10.8 and 10.10 illustrate how
this might be done for experience rating data. While there are
difficulties in estimating the required parameters, in general the
results of applying credibility are relatively insensitive to the es-
timated parameters.243

Matrix equations are presented for calculating the (least
squares) credibilities from the covariance structure. While Equa-
tions 2.4, 6.7, 8.1, 10.12 and 10.13 are similar, they each apply
in a somewhat different situation. Each such set of linear equa-
tions depends on the covariance structure and can be solved for
the credibilities using matrix methods.

Section 4.5 presents the credibilities in the important special
case of stable (or very slowly shifting) risk parameters. Sections
4.3, 4.6, 4.7 and 5.3 explore the different behavior of credibilities
expected for the smallest risks. As discussed in Section 4.8, the
general covariance structure predicts the need for a minimum

243See Mahler [33].
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ballast value in the revised Workers Compensation Experience
Rating Plan.244

Sections 6.1 to 6.4, 7.7, 7.8, 7.12, 8.5, 8.7, 9.3 to 9.5, 10.9
and 10.10 contain illustrative calculations of credibilities. The
general behaviors noted there should carry over to other similar
situations.

Section 7 applies the ideas developed in this paper to an illus-
trative example of classification ratemaking for workers compen-
sation. The parameters of the covariance structure were estimated
in Sections 7.3 to 7.6. The behavior of the credibilities245 when
using data from one state was displayed by year246 and by size
of class in Sections 7.7 to 7.9.

Sections 7.10 to 7.12 illustrated the potential impact of the
different maturity of the years of data on their credibilities. As
expected, the most recent years of data at early reports get some-
what less weight than if we ignored the effects of different ma-
turities.

Section 8 discusses how to incorporate data from outside
the state. While the covariance structure has an extra layer of
complication, it is still tractable. There are twice as many lin-
ear equations in twice as many unknowns, but they can still be
easily solved for the credibilities. This general type of treatment
should be useful whenever there is supplementary information
analogous to the countrywide data.

Section 9 applies the ideas of this paper to an illustrative cal-
culation of an overall rate indication. The effects on the weights

244The minimum ballast value was used based on practical considerations for almost a
decade prior to the developments in this paper. It is pleasant to find an overall theoretical
framework into which it fits.
245It is assumed in Section 7.9 that the complement of credibility is being given to the
prior estimate of the class relativity. Section 7.7 assumed the weights assigned to the data
sum to 100%, while Section 7.8 assumed the complement of credibility is given to the
grand mean.
246The assignment of a separate weight to each year of data is an important refinement
compared to the assignment of a single weight to the combined data for all years.
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to be assigned to individual years of estimation errors, loss devel-
opment and trend factors are discussed. Additional work would
be required to adopt the general ideas presented to any partic-
ular situation. The general conclusions are far from surprising.
When we have a smaller volume of data, we choose a more sta-
ble method; when we have a larger volume of data, we choose a
more responsive method. Data subject to more estimation error
is given less weight, all other things being equal.

Section 10 applies the ideas developed in this paper to workers
compensation experience rating. This analysis should be useful
for any commercial line in which the volume of data varies sig-
nificantly from insured to insured. Sections 10.4 to 10.8 illustrate
how we would estimate the parameters of the covariance struc-
ture in the case of a single split experience rating plan. Due to the
effects of shifting parameters over time, the complicated behav-
ior by size of risk, and the correlations of the primary and excess
losses, the estimation of parameters is difficult and of necessity
requires some judgment. Section 10.9 shows a sample calcula-
tion of the credibilities. The credibilities are displayed by year
and by size of risk. Section 10.10 illustrates how to incorporate
the impact of the different maturities of the data.

Section 11 contains miscellaneous results. The methodology
is applied to an economic index, generalized to two Markov
chains, and related to that in Boor [31].

In each of the various examples presented, there are three
steps. First, we must specify the covariance structure.247 Sec-
ond, we must estimate the parameters of the covariance structure.
Third, we must solve the appropriate set of linear equations for
the credibilities.248

We live in a dynamic rather than stable environment. There-
fore, the ideas presented in this paper on the covariance struc-
ture and resulting credibilities should have application in many

247See for example Table 2.
248See Table 3.
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areas of actuarial work where risk parameters shift significantly
over time. The methods presented can help answer fundamental
questions about how many years of data to use in a particular sit-
uation and whether certain years of data should get significantly
more weight than others. One needs to estimate how stable is the
particular real world situation; how swiftly are risk parameters
shifting over time?
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APPENDIX A

MARKOV CHAINS247

Assume that each year248 an individual is in a “state.” Each
state could correspond to a different average claim frequency.
Assume that there are a finite number of different states.

Assume with each new year that an individual in State i has
a chance Pij of going to State j. This chance is independent of
which individual we have picked, what its past history was, or
what year it is. The transition probability from State i to State j,
Pij , is only dependent on the two States, i and j.

Arrange these transition probabilities, Pij, into a matrix P. This
transition matrix P, together with the definition of the states,
defines a (finite dimensional) Markov chain.

A vector containing the probability of finding an individual
in each of the possible states is called a “distribution.” If the dis-
tribution in Year 1 is ¯, then the expected distribution in Year 2
is ¯P, where ¯P is the matrix product of the (row vector) distri-
bution ¯ and the transition matrix P. The expected distribution
in Year 3 is (¯P)P = ¯(PP) = ¯P2. The expected distribution in
Year 1+ g is ¯Pg.

Let PT be the matrix transpose of P. Let ¤ be the diagonal
matrix with entries equal to the eigenvalues of PT. Let VT be the
matrix each of whose columns are the eigenvectors of PT. (V
has as its rows the eigenvectors of PT.) Then (VT)%1PTVT = ¤.
Taking the transpose of both sides of this equation and noting
that ¤T = ¤, since ¤ is symmetric: VPV%1 = ¤. So the matrix V
can be used to diagonalize the transition matrix P:

V%1¤2V =V%1(VPV%1)2V =V%1VPV%1VPV%1V = P2:

247See Feller [34], Resnick [35], and Appendix A in Mahler [1].
248Although in this paper the time interval is a year, in general, it can be anything else.
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In general, Pg =V%1(VPV%1)gV =V%1¤gV. So powers of P
can be computed by taking powers of the diagonal matrix ¤ and
using the eigenvector matrix V to transform back. The elements
of the diagonal matrix ¤g are ¸gi . ¸1 = 1 (the order of eigenval-
ues is arbitrary) and $¸i$< 1 for i > 1 (ignoring the very unusual
situation where ¸= 1 is a multiple root of the characteristic equa-
tion).249

249If for any i, $¸i$> 1, then there would be no limiting distribution, instead it would blow
up. However, a finite dimensional Markov chain such that each state can be reached from
every other state and such that no states are periodic has a unique stationary distribution,
which is the limit as time goes to infinity. If for all i, $¸i$< 1, then again there would
be no non-zero limit, instead it would go to zero. Thus, we have all $¸i$ ) 1 and at least
one $¸i$= 1.
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APPENDIX B

MATRIX EQUATIONS FOR LEAST SQUARES CREDIBILITY WITH
NO WEIGHT TO GRAND MEAN250

In this appendix, Equations 6.7 in the main text are derived by
minimizing the squared error. The result is one constraint equa-
tion plus Y linear equations for the credibilities to be assigned
to each of Y years of data. Thus the credibilities can be solved
for in terms of the covariance structure. Also, the related result
in Boor [31] is derived.

Let

Cij =Cov[Xi,Xj] = E[XiXj]%E[Xi]E[Xj]
= Covariance of Year Xi and Year Xj ,

Cii =Variance of Year Xi, and

¹i =E[Xi] = Expected value for Year Xi:

Let Zi be the credibility assigned to Year Xi. We wish to pre-
dict Year XY+¢ using Y years of data X1,X2, : : : ,XY. Assume.Y
i=1Zi = 1.

Then the estimate is:

F =
Y"
i=1

ZiXi and

F %XY+¢ =
#

Y"
i=1

ZiXi

$
%XY+¢ =

Y"
i=1

Zi(Xi%XY+¢)

since
.Y
i=1Zi = 1.

250The derivation is along the same lines as those in Mahler [20] and Mahler [1].
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Therefore,

(F%XY+¢)2 =
#

Y"
i=1

Zi(Xi%XY+¢)
$68 Y"

j=1

Zj(Xj %XY+¢)
9;

=
Y"
i=1

Y"
j=1

ZiZj(Xi%XY+¢)(Xj %XY+¢):

Then the expected value of the squared difference between
the estimate F and XY+¢ is, as a function of the credibilities Z,

V(Z) = E[(F%XY+¢)2]

=
Y"
i=1

Y"
j=1

ZiZjE[(Xi%XY+¢)(Xj %XY+¢)]:

Now

E[(Xi%XY+¢)(Xj %XY+¢)] = E[XiXj]%E[XiXY+¢]
%E[XjXY+¢]+E[X2Y+¢]

E[XiXj] = Cov[Xi,Xj]+E[Xi]E[Xj]

=Cij +¹i¹j:

Thus,

E[(Xi%XY+¢)(Xj %XY+¢)]
=Cij %Ci,Y+¢%Cj,Y+¢+CY+¢,Y+¢
+¹i¹j %¹i¹Y+¢%¹j¹Y+¢+¹2Y+¢:

V(Z) =
Y"
i=1

Y"
j=1

ZiZj

0"Cij %Ci,Y+¢%Cj,Y+¢+CY+¢,Y+¢+¹i¹j
%¹i¹Y+¢%¹j¹Y+¢+¹2Y+¢#
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V(Z) =
Y"
i=1

Y"
j=1

ZiZj(Cij +¹i¹j)

%
#

Y"
i=1

(Ci,Y+¢+¹i¹Y+¢)Zi

$68 Y"
j=1

Zj

9;
%
68 Y"
j=1

(Cj,Y+¢+¹j¹Y+¢)Zj

9;# Y"
i=1

Zi

$

+(CY+¢,Y+¢+¹
2
Y+¢)

#
Y"
i=1

Zi

$68 Y"
j=1

Zj

9; :
The last three terms all simplify since

Y"
i=1

Zi = 1:

Therefore,

V(Z) =
Y"
i=1

Y"
j=1

ZiZj(Cij +¹i¹j)%2
Y"
i=1

(Ci,Y+¢+¹i¹Y+¢)Zi

+CY+¢,Y+¢+¹
2
Y+¢:

We can minimize V(Z) given the constraint
.Y
i=1Zi% 1 = 0

by using Lagrange multipliers. We set equal to zero the partial
derivative with respect to Zk of V(Z)%¸(

.Y
i=1Zi%1):

2
Y"
i=1

Zi(Cik +¹i¹k)%2(Ck,Y+¢+¹k¹Y+¢)%¸= 0:

Therefore,

Y"
i=1

Zi(Cik +¹i¹k) =Ck,Y+¢+¹k¹Y+¢+¸=2 k = 1,2, : : : ,Y:
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Also
Y"
i=1

Zi = 1:

Thus we obtain Y+1 linear equations in Y+1 unknowns (the
credibility assigned to each of Y years and the Lagrange multi-
plier ¸).

If we assume each of the years Xi is an unbiased estimator of
XY+¢, then E[Xi] = E[XY+¢], or ¹i = ¹Y+¢. The above equations
reduce to:

Y"
i=1

ZiCik +¹
2
Y+¢

Y"
i=1

Zi =Ck,Y+¢+¹
2
Y+¢+¸=2:

Since
.Y
i=1Zi = 1, this becomes Equations 6.7 in the main text:
Y"
i=1

ZiCik =Ck,Y+¢+¸=2, k = 1,2, : : : ,Y

Equation 6.7 as well as Equations 2.4, 8.1 and 10.12 to 10.13,
as shown in Table 2, are all variations on the so-called “normal
equations” for credibilities. See, for example, De Vlyder [36] for
an extensive discussion of the relation of the covariance structure
to the credibilities.

Boor, “Credibility Based on Accuracy”

The result in Boor [31] can be obtained as a special case of
the above development as follows, making no assumption con-
cerning whether E[Xi] equals E[XY+¢]. Assume we have two
estimators X1 and X2 that we are using to estimate X3. Then we
get 2 linear equations plus the constraint equation:251

Z1(C11 +¹1¹1)+Z2(C12 +¹1¹2) =C13 +¹1¹3 +¸=2,

Z1(C12 +¹1¹2)+Z2(C22 +¹2¹2) =C23 +¹2¹3 +¸=2, and

Z1 +Z2 = 1:

251Note that C21 = C12.
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Subtracting the first two equations eliminates the Lagrange
multiplier ¸:

Z1(C11%C12 +¹21%¹1¹2) +Z2(C12%C22 +¹1¹2%¹22)
= C13%C23 +¹1¹3%¹2¹3:

Substituting Z2 = 1%Z1 and solving for Z1:

Z1 =
C13%C12%C23 +C22 +¹1¹3%¹1¹2%¹2¹3 +¹22

C11%2C12 +C22 +¹21%2¹1¹2 +¹22
:

As in Boor [31], define the following quantities:

¿21 = E[(X1%X3)2] = E[X21 ]%2E[X1X3]+E[X23 ]
=C11 +¹

2
1 +C33 +¹

2
3% 2C13%2¹1¹3,

¿22 = E[(X2%X3)2] = E[X22 ]%2E[X2X3]+E[X23 ]
=C22 +¹

2
2 +C33 +¹

2
3% 2C23%2¹2¹3, and

±212 = E[(X1%X2)2] = E[X21 ]%2E[X1X2]+E[X22 ]
=C11 +¹

2
1 +C22 +¹

2
2% 2C12%2¹1¹2:

Then we can verify that the numerator of Z1 above is:

1
2(¿

2
2 % ¿21 + ±212):

The denominator of Z1 above is ±
2
12. Therefore:

Z1 =
¿22 % ¿21 + ±212

2±212
, and

Z2 = 1%Z1 =
¿21 % ¿22 + ±212

2±212
,

which is the result obtained in Boor [31].252 We note that the
key distinction is that Boor makes no assumption as to whether

252See page 169 of PCAS 1992.
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the estimators are unbiased.253 Thus his formulas involve terms
like E[X1X3] rather than the covariances such as in Equation 6.7
in the main text.

253Also, Boor only displays the result for combining two estimators. The development
in this appendix works for any number of estimators; we get Y+1 linear equations in
Y+1 unknowns.



CREDIBILITY WITH SHIFTING RISK PARAMETERS 633

APPENDIX C

CLASSIFICATION DATA

Unit Statistical Plan data for Massachusetts workers compen-
sation insurance was examined.254 A total of 13 composite pol-
icy years255 of data were available at various reports.256 For each
year the latest available report was used: 80/81 to 88/89 @ 5th;
89/90 @ 4th; 90/91 @ 3rd; 91/92 @ 2nd; 92/93 @ 1st report.

For each classification, payrolls and losses were available. The
losses were paid losses plus case reserves. Losses were broken
down by injury kind and between medical and indemnity, but
these splits were not used in the current analysis.

For example, for Class 2003, Bakeries, the experience in com-
posite policy year 92/93 at first report was $68,928,691 in payroll
and $1,477,837 in losses. This corresponds to a pure premium
(per $100 of payroll) of 2.1440.

Class 2003 is one of 270 classes in the Manufacturing indus-
try group. For composite policy year 92/93 at first report there
was $3,896,021,286 in payroll and $67,944,193 in losses for the
Manufacturing industry group. This corresponds to a pure pre-
mium of 1.7439. Thus the relative pure premium for Class 2003
for 92/93 @ 1st is 2:1440=1:7439 = 1:2294.

Performing similar calculations, we obtain the following rel-
ative pure premiums for two example classes:257

254Experience on all insureds in the state was included, except for large deductible poli-
cies. (Large deductibles were only available during the most recent three composite policy
years.)
255A composite policy year runs from July to June. For example, composite policy year
92/93 includes experience from policies with policy effective dates from July 1, 1992 to
June 30, 1993.
256First report is evaluated 18 months after policy inception. Subsequent reports are made
at 12 month intervals, up to and including fifth report.
257The similar calculations were done for each class in the Manufacturing industry group.
Similar but totally separate calculations were then done for the Goods & Services industry
group.
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Relative Pure Premium

Composite
Policy
Year Class 2003 Class 3145258

92/93 @ 1st 1.2294 .7931
91/92 @ 2nd 1.2279 .3741
90/91 @ 3rd 1.5828 .5016
89/90 @ 4th 1.3713 .8561
88/89 @ 5th 1.2380 1.4134
87/88 @ 5th 1.7127 .5199
86/87 @ 5th 1.3507 1.0739
85/86 @ 5th 2.0721 1.1651
84/85 @ 5th 1.4784 .7649
83/84 @ 5th 1.6312 .9236
82/83 @ 5th 1.3711 1.6704
81/82 @ 5th 1.0365 1.5151
80/81 @ 5th 1.7196 .9415

The relative pure premiums show considerable fluctuation be-
cause these are medium-sized classes and the losses used are
unlimited.259

In order to divide the classes into size categories, expected
losses were calculated. Expected losses for a class for a compos-
ite policy year were obtained by multiplying the reported payrolls
by three factors. The first factor was the ratio of the State Av-
erage Weekly Wage for Composite Policy Year 1992/1993260 to
that for the particular composite policy year. The second factor
was the observed pure premium for the industry group for the
particular composite policy year and report. The third and final
factor was the ratio of the current rate261 for the class to the
average rate for the industry group.

258Class 3145 is Screw Manufacturing.
259For classification ratemaking individual claims are usually limited. Currently in Mas-
sachusetts workers compensation each claim is capped at $200,000 for classification
ratemaking. (These excess losses are loaded back via factors which vary by hazard group
and injury kind.)
260The most recent year of data used.
261Rates effective 5/1/96 were used.
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For example, for Class 2003 for Composite Policy Year
91/92 @ 2nd report the payroll was $88,136,418. The State
Average Weekly Wage during 92/93 was $580.73, while dur-
ing 91/92 it was $560.28. Thus the first adjustment factor is
$580:73.$560:28 = 1:036. The observed pure premium for the
Manufacturing industry group for 91/92 @ 2nd report is 2.361.
The current manual rate for Class 2003 is $5.77, while the av-
erage manual rate for Manufacturing is $4.008. Thus the third
adjustment factor is $5:77=$4:008 = 1:43962.

Thus the expected losses for Class 2003 for 91/92 @ 2nd are

($88,135,418.100)(1:036)(2:361)(1:43962) = $3,103,552:
A similar calculation of expected losses was made for each of
the 13 years. Then the average expected annual losses were cal-
culated for each class.262 It is these average expected annual
losses that were used to divide the classes into size categories
for purposes of analysis.

262The average only included years in which the class had reported payrolls. Some classes
were discontinued or newly erected during these 13 years.
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APPENDIX D

SPLIT EXPERIENCE RATING PLAN MATRIX EQUATIONS FOR
LEAST SQUARES CREDIBILITY

In this appendix, Equations 10.12 and 10.13 in the main text
will be derived for the optimal primary and excess credibilities
for a split experience rating plan.

Assume we have two well-defined portions of the total losses,
which can be thought of as primary and excess.263 Assume we
have Y years of data being used to predict year Y+¢.264 We wish
to determine credibilities to apply to the primary and excess data
for each year.

Define the following quantities:

EPi =Expected Primary Losses for Year i,

EXi =Expected Excess Losses for Year i,

Ei = EPi+EXi =Expected Losses for Year i,

APi =Actual Primary Losses for Year i,

AXi =Actual Excess Losses for Year i,

Di = EPi=Ei =D-ratio for Year i,

Pi = APi=Ei,

Xi = AXi=Ei,

¼i = Pi%Di = (APi%EPi)=Ei
= Primary “Deviation Ratio” for Year i, and

»i = Xi% (1%Di) = (AXi%EXi)=Ei
=Excess “Deviation Ratio” for Year i:

263For workers compensation insurance, currently the first $5,000 of each claim is pri-
mary, while the remainder up to a claim limit is excess. The claim limit for experience
rating varies by state.
264Typically Y = 3 and ¢= 2 currently. Years 1, 2 and 3 are predicting Year 5.
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The quantity of interest in experience rating is how the in-
sured’s future losses will compare to the expected losses for the
average insured in that class or mixture of classes. That estimate,
the experience modification, can be written as:265

F = 1+
Y"
i=1

¼iZPi+
Y"
i=1

»iZXi:

This differs somewhat from the usual notation in, for example,
Gillam and Snader [19] or Mahler [4], since each individual year
of data will be assigned a separate credibility of each type, rather
than adding the years of data together and having one overall ZP
and ZX .

If we use the data from years 1 to Y in order to predict PY+¢+
XY+¢, the ratio of actual to expected losses for year Y+¢, then
the error is:

F% (PY+¢+XY+¢) = F% (¼Y+¢+ »Y+¢+1)

=
Y"
i=1

(¼i%¼Y+¢)ZPi+
Y"
i=0

(»i% »Y+¢)ZXi

%¼Y+¢
#
1%

Y"
i=1

ZPi

$
% »Y+¢

#
1%

Y"
i=1

ZXi

$
:

Define ¼0 = »0 = 0 and ZP0 = 1%
.Y
i=1ZPi and ZX0 = 1%.Y

i=1ZXi. Then the error is:

Y"
i=0

(¼i%¼Y+¢)ZPi+
Y"
i=0

(»i% »Y+¢)ZXi:

265Equation 10.1 in the main text.
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The squared error is:
Y"
i=0

Y"
j=0

(¼i%¼Y+¢)(¼j %¼Y+¢)ZPiZPj

+2
Y"
i=0

Y"
j=0

(¼i%¼Y+¢)(»j % »Y+¢)ZPiZXj

+
Y"
i=0

Y"
j=0

(»i% »Y+¢)(»j % »Y+¢)ZXiZXj:

Thus, the expected value of the squared error is:
Y"
i=0

Y"
j=0

ZPiZPjE[(¼i%¼Y+¢)(¼j %¼Y+¢)]

+2
Y"
i=0

Y"
j=0

ZPiZXjE[(¼i%¼Y+¢)(»j % »Y+¢)]

+
Y"
i=0

Y"
j=0

ZXiZXjE[(»i% »Y+¢)(»j % »Y+¢)]:

Define the following quantities in terms of covariances:

Sij =Cov[¼i,¼j] = Sji,

Tij =Cov[»i,»j] = Tji, and

Uij =Cov[¼i,»j]:

Note that since E[¼i] = 0 = E[»j], Sij =E[¼i¼j], Tij = E[»i»j],
and Uij = E[¼i»j]. We can rewrite the expression for the expected
value of the squared error in terms of Sij , Tij and Uij .

For example, the “cross term” can be written as:

E[(¼i%¼Y+¢)(»j % »Y+¢)]
= E[¼i»j]%E[¼i»Y+¢]%E[¼Y+¢»j]+E[¼Y+¢»Y+¢]
=Uij %Ui,Y+¢%UY+¢,j +UY+¢,Y+¢:
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Similarly,

E[(¼i%¼Y+¢)(¼j %¼Y+¢)] = Sij % Si,Y+¢% SY+¢,j + SY+¢,Y+¢
E[(»i% »Y+¢)(»j % »Y+¢)] = Tij %Ti,Y+¢%TY+¢,j +TY+¢,Y+¢:

Note that:

E[(¼0%¼Y+¢)(»j % »Y+¢)] =%E[¼Y+¢(»j % »Y+¢)]
=%UY+¢,j +UY+¢,Y+¢,

but U0j =Cov[¼0,»j] = Cov[0,»j] = 0. Thus,

E[(¼0%¼Y+¢)(»j % »Y+¢)]

=U0,j %U0,Y+¢%UY+¢,j +UY+¢,Y+¢:

Thus, the same notation works for index values of zero. There-
fore, the expected value of the squared error is the following
quadratic function of the primary and excess credibilities:

Y"
i=0

Y"
j=0

ZPiZPj(Sij % Si,Y+¢% SY+¢,j + SY+¢,Y+¢)

+2
Y"
i=0

Y"
j=0

ZPiZXj(Uij %Ui,Y+¢%UY+¢,j +UY+¢,Y+¢)

+
Y"
i=0

Y"
j=0

ZXiZXj(Tij %Ti,Y+¢%TY+¢,j +TY+¢,Y+¢):

Some simplification is possible using the facts that:

Y"
i=0

ZPi = 1 =
Y"
i=0

ZXi:
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Thus, the expected value of the squared error is:

Y"
i=0

Y"
j=0

ZPiZPjSij %2
Y"
i=0

ZPiSi,Y+¢+ SY+¢,Y+¢

+2
Y"
i=0

Y"
j=0

ZPiZXjUij %2
Y"
i=0

ZPiUi,Y+¢

%2
Y"
i=0

ZXiUY+¢,i+2UY+¢,Y+¢

+
Y"
i=0

Y"
j=0

ZXiZXjTij %2
Y"
i=0

ZXiTi,Y+¢+TY+¢,Y+¢:

In order to minimize the expected value of the squared error
we set each of the 2Y partial derivatives with respect to one of
the credibilities equal to zero. We get 2Y linear equations in 2Y
unknowns.

Taking the partial derivative of the expected squared error
with respect to ZPk and setting it equal to zero yields:

266

Y"
i=0

ZPi(Sik% Sk,Y+¢)+
Y"
i=0

ZXi(Uki%Uk,Y+¢) = 0:

Taking the partial derivative of the expected squared error
with respect to ZXk and setting it equal to zero yields:

Y"
i=0

ZPi(Uik %UY+¢,k)+
Y"
i=0

ZXi(Tki%Tk,Y+¢) = 0:

Again some simplification is possible using the facts that:

Y"
i=0

ZPi = 1 =
Y"
i=0

ZXi:

266Dividing each term by a factor of two.
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The linear equations become:

Y"
i=0

(ZPiSik+ZXiUki) = Sk,Y+¢+Uk,Y+¢, and

Y"
i=0

(ZPiUik +ZXiTki) =UY+¢,k+Tk,Y+¢:

Since S0k =U0k = T0k = 0 = Sk0 =Uk0 = Tk0, the summation on
the left hand side can start at i= 1 rather than 0. The resulting
2Y linear equations are Equations 10.12 and 10.13 in the main
text.

An important special case occurs in the absence of shifting
parameters over time. Further assume we either use one year of
data or combine several years of data together.

Then Equations 10.12 and 10.13 become:

ZPS11 +ZXU11 = S1,1+¢+U1,1+¢, and

ZPU11 +ZXT11 =U1+¢,1 +T1,1+¢:

The solutions are:

ZP =
(S1,1+¢+U1,1+¢)T11% (U1+¢,1 +T1,1+¢)U11

S11T11%U211
, and

ZX =
(T1,1+¢+U1+¢,1)S11% (U1,1+¢+ S1,1+¢)U11

S11T11%U211
:

This matches the result in Mahler [11],267 with:

S11 = Total variance of the primary losses,

T11 = Total variance of the excess losses,

267See Equations 5.3 and 5.4 in Mahler [11].
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S1,1+¢ =Variance of the hypothetical means of the
primary losses,

T1,1+¢ =Variance of the hypothetical means of the
excess losses,

U11 = Total covariance of the primary and excess losses, and

U1,1+¢ =U1+¢,1 = Covariance of the hypothetical means of
the primary and excess losses:

In the notation in Mahler [11]:

a= Total variance of the primary losses,

b = Total variance of the excess losses,

c=Variance of the hypothetical means of the primary losses,

d =Variance of the hypothetical means of the excess losses,

r = Total covariance of the primary and excess losses, and

s=Covariance of hypothetical means of the primary and
excess losses:

And in the absence of shifting risk parameters over time the
optimum ZP and ZX are:

ZP =
(c+ s)b% (d+ s)r

ab% r2 , and

ZX =
(d+ s)a% (c+ s)r

ab% r2 :
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APPENDIX E

USE OF COUNTRYWIDE CLASSIFICATION DATA, MATRIX
EQUATIONS FOR LEAST SQUARES CREDIBILITY

This appendix will discuss Equations 8.1 in the main text for
the optimal least squares credibility when combining classifica-
tion data from more than one state.

Assume we have a series of observations of Xi, for example,
the class relativities in Massachusetts for each of several years,
i= 1 to Y. Assume we also have a related series of observations
of Ai, for example, the relativities for the same class calculated
from data from some other states.268 Finally, assume we wish to
predict XY+¢, the class relativity in Massachusetts in year Y+¢
in the example in the main text, using a weighted average of the
Xi and Ai.

More specifically the predictor F =
.Y
i=1ZiXi+

.Y
i=1WiAi and.Y

i=1Zi+
.Y
i=1Wi = 1.

Note that here the weights sum to 100%; there is no weight
being given to the grand mean. Note that since we are predicting
XY+¢, X and A will not enter into the matrix equations in a
symmetric fashion.269

Let the covariances be:

Sij =Cov[Xi,Xj] = Sji,

Tij =Cov[Ai,Aj] = Tji, and

Uij =Cov[Xi,Aj]:

268It is not necessary that Ai be available for exactly the same years as Xi, i= 1 to Y,
but the presentation is easier to follow if we assume that this is the case. (Years with no
available data can be treated by giving them a weight of zero.)
269In contrast, the primary and excess losses did enter into the equations in Appendix D
in a mathematically symmetric manner.
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As in Appendices B and D, assume each Xi or Ai is an un-
biased estimator of the quantity of interest, XY+¢. Then the ex-
pected value of the squared error is:

V(Z,W) = E[(F %XY+¢)2]

= E

<=! Y"
i=1

Zi(Xi%XY+¢) +
Y"
i=1

Wi(Ai%XY+¢)
/2>?

=
Y"
i=1

Y"
j=1

ZiZj(Sij % Si,Y+¢% SY+¢,j + SY+¢,Y+¢)

+2
Y"
i=1

Y"
j=1

ZiWj(Uij % Si,Y+¢%UY+¢,j + SY+¢,Y+¢)

+
Y"
i=1

Y"
j=1

WiWj(Tij %UY+¢,i%UY+¢,j + SY+¢,Y+¢):

Some simplification of the expression for V(Z,W) is possible.
Since Si,Y+¢ = SY+¢,i

Y"
i=1

Y"
j=1

ZiZjSi,Y+¢ =
Y"
i=1

Y"
j=1

ZiZjSY+¢,j :

Therefore,

Y"
i=1

Y"
j=1

ZiZjSi,Y+¢+
Y"
i=1

Y"
j=1

ZiZjSY+¢,j +2
Y"
i=1

Y"
j=1

ZiWjSi,Y+¢

= 2
Y"
i=1

Y"
j=1

(ZiZj +ZiWj)Si,Y+¢

= 2

#
Y"
i=1

ZiSi,Y+¢

$68 Y"
j=1

(Zj +Wj)

9;= 2 Y"
i=1

ZiSi,Y+¢,

since
.Y
j=1(Zj +Wj) = 1.
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Similarly,

2
Y"
i=1

Y"
j=1

ZiWjUY+¢,j +
Y"
i=1

Y"
j=1

WiWjUY+¢,i+
Y"
i=1

Y"
j=1

WiWjUY+¢,j

= 2

#
Y"
i=1

(Zi+Wi)

$68 Y"
j=1

WjUY+¢,j

9;= 2 Y"
i=1

WiUY+¢,i:

Also we have:

Y"
i=1

Y"
j=1

ZiZjSY+¢,Y+¢+2
Y"
i=1

Y"
j=1

ZiWjSY+¢,Y+¢

+
Y"
i=1

Y"
j=1

WiWjSY+¢,Y+¢

= SY+¢,Y+¢

#
Y"
i=1

(Zi+Wi)

$68 Y"
j=1

(Zj +Wj)

9;= SY+¢,Y+¢:
Thus, V(Z,W) simplifies to:

V(Z,W) =
Y"
i=1

Y"
j=1

ZiZjSij +2
Y"
i=1

Y"
j=1

ZiWjUij

+
Y"
i=1

Y"
j=1

WiWjTij %2
Y"
i=1

ZiSi,Y+¢

% 2
Y"
i=1

WiUY+¢,i+ SY+¢,Y+¢:

The constraint equation
.Y
i=1Zi+

.Y
i=1Wi% 1 = 0 is incorpo-

rated via the Lagrange multiplier ¸. We minimize V(Z,W)%
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¸(
.Y
i=1Zi+

.Y
i=1Wi%1), by taking each of 2Y partial deriva-

tives with respect to the Zs and Ws and setting them equal to
zero. Setting the partial derivative with respect to Zk equal to
zero:

2
Y"
j=1

ZjSkj +2
Y"
j=1

WjUkj %2Sk,Y+¢%¸= 0:

This equation can be rewritten as:

Y"
j=1

ZjSkj +
Y"
j=1

WjUkj = ¸=2+ Sk,Y+¢:

Similarly, by setting the partial derivative with respect to Wk
equal to zero we get:

Y"
j=1

ZjUjk+
Y"
j=1

WjTkj = ¸=2+UY+¢,k:

The above 2Y linear equations (one from the partial derivative
of each Zk and each Wk) plus the constraint equation are Equa-
tions 8.1 in the main text. Note the similarities to the Equations
2.4, 6.7, 10.12 and 10.13 in the main text. Each set of equa-
tions applies to a somewhat different situation. However, each
such set of linear equations depends on the covariance struc-
ture and can be solved for the credibilities using matrix meth-
ods.

In a situation where there were different years of Mas-
sachusetts and countrywide data, Equations 8.1 would be some-
what different in form. For example, assume Massachusetts data
for years 1, 2, 3 and 4 plus countrywide data for years 2 and
3 were being used to predict Massachusetts relativities for year
8. The Equations 8.1 would become seven linear equations in
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seven unknowns:

Z1S11 +Z2S12 +Z3S13 +Z4S14 +W2U12 +W3U13 = ¸=2+ S18,

Z1S21 +Z2S22 +Z3S23 +Z4S24 +W2U22 +W3U23 = ¸=2+ S28,

Z1S31 +Z2S32 +Z3S33 +Z4S34 +W2U32 +W3U33 = ¸=2+ S38,

Z1S41 +Z2S42 +Z3S43 +Z4S44 +W2U42 +W3U43 = ¸=2+ S48,

Z1U12 +Z2U22 +Z3U32 +Z4U42 +W2T22 +W3T32 = ¸=2+U82,

Z1U13 +Z2U23 +Z3U33 +Z4U43 +W2T23 +W3T33 = ¸=2+U83,

and Z1 +Z2 +Z3 +Z4 +W2 +W3 = 1:

In this case, the equations each have four terms involving
the four weights to each of the years of Massachusetts data, but
only two terms involving the two weights to each of the years of
countrywide data. There are 4+2+1 = 7 unknowns, including
the Lagrange multiplier.
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APPENDIX F

ESTIMATING PARAMETERS OF BETWEEN STATE COVARIANCES

In order to calculate credibilities when using data from one
or more outside states to calculate classification relativities, it is
necessary to estimate the variance-covariance structure. This ap-
pendix will present an example of how to estimate the parameters
of the between state covariances.

Assume as in Section 8 we are estimating Massachusetts class
relativities and will use New York data in addition to that from
Massachusetts.

Then there are three types of variance-covariance matrices.
The first type involves covariances between data from Mas-
sachusetts. The second type involves covariances between data
from New York. The third type of covariance is that involving
data from Massachusetts versus New York. It is expected that
for a given volume of data, the correlation of relativities between
states is less than the correlation of relativities within states. This
is what is observed.

For three years of data combined for each state, adjusted as
it would be for classification ratemaking,270 the relative pure
premiums were calculated for the classes in the Manufacturing
industry group. Then the correlations between the New York
and Massachusetts relative pure premiums were calculated for
various sizes of class.271 The results are in the table below.

How does this compare to the correlation within a single state
that we would expect if we could run the risk process twice

270Claims sizes are limited. Losses would be adjusted for law changes and loss develop-
ment. See Kallop [12] and Feldblum [13]. In this case, these adjustments were performed
by whichever rating bureau has responsibility for that state.
271The size of class was taken as the square root of the product of the payroll (summed
over three years) for each state. In other words, the geometric average of the payroll for
the two states was used for each class.
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Manufacturing Industry Group

Three Years of Payroll
($ million) Correlations NY vs. MA

Number of
Minimum Maximum Classes Observed Capped272

1 3 12 .047 .041
3 10 35 .348 .382
10 30 44 .106 .127
30 100 45 .596 .592
100 300 29 .623 .623
300 1,000 5 .818 .823

and create two parallel universes?273 In that case the portion
of the covariance related to the expected value of the process
variance, the term involving e2 or K, would vanish.274

Ignoring shifting risk parameters,275 the covariances between
single years of data are given by Equation 4.13:

Cov[Xi,Xj] = r
2"1+ I=E+ ±ij(K=E+ J)#, E + ­:

Then for the sum of three years of data, X1, X2 and X3:

Cov[X1 +X2 +X3,X1 +X2 +X3] = r
2"9+9I=E+3K=E+3J#,

E + ­:
If we have data from two parallel versions of Massachusetts,

we set K = 0, and J , to represent the possibly different J param-

272The relativity for each class was capped between 5 and 1/5, in order to limit the impact
of any one class on the computed correlation.
273In the dice examples in Sections 3 and 4, one just rerolls the dice keeping everything
else constant.
274For example, if X1 and X2 are each independent results of rolling 10 six-sided dice,
then their covariance is zero, while the process variance of X1 or X2 is positive. The usual
Bühlmann covariance structure is Cov[Xi,Xj] = ¿

2 + ±ij´
2. For i != j, Cov[Xi,Xj] = ¿2;

the term involving the expected value of the process variance, ´2, vanishes.
275Setting ½= 1 and ° = 1.



650 CREDIBILITY WITH SHIFTING RISK PARAMETERS

eter when taking the covariance between two parallel versions of
Massachusetts.

Then the correlation for three years of data from each of two
parallel versions of Massachusetts is:

9+9I=E+3J ,

9+9I=E+3K=E+3J
=

(3+ J ,)E+3I
(3+ J)E+3I+K

, E + ­:

If we include shifting risk parameters, we get a slightly dif-
ferent expression for the correlations. The covariances are given
by Equation 5.8:

Cov[Xi,Xj] = r
2"½$i%j$+ °$i%j$I=E+ ±ij(K=E+ J)#, E + ­:

For the sum of three years of data, the terms involving ½ sum
to 3+4½+2½2. Similarly, the terms involving ° sum to (3+4°+
2°2)I=E. Using the values from Section 7.7, for ½= :98, 3+4½+
2½2 = 8:84, while for ° = :85, 3+4°+2°2 = 7:85.

Thus, the correlations equal:

8:84+7:85I=E+3J ,

8:84+7:85I=E+3K=E+3J
=

(2:95+ J ,)E+2:62I
(2:95+ J)E+2:62I+K

,

E + ­:
Similarly for E )­ starting with Equation 5.9, we obtain a

correlation of:

8:84+7:85I=­+3J ,

8:84+7:85I=­+3K=E+3J
=

(2:95+ J ,)E+2:62IE=­
(2:95+ J)E+2:62IE=­+K

,

E ) ­:
Depending on whether or not the effects that are responsible

for parameter uncertainty are reproduced,276 the term involving
u2 or J may or may not vanish. In the case of MA vs. NY,
the two states would be affected by some of the same macroe-

276In the dice examples in Section 3, do we maintain the same coin flip or is the coin
flipped again?
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conomic and other forces that produce parameter uncertainty.
Thus, for covariances between MA and NY, we would expect
that a portion of the term involving J would remain. Since the
two parallel versions of Massachusetts will be used to compare
to the interstate situation, we will also assume that in that case
a portion of the term involving J will remain. For illustrative
purposes take J , = :05 for the covariances between two parallel
versions of Massachusetts, one-half of the assumed value for the
intrastate covariances.277

Using the estimated parameters from Section 7.7, with J , =
:05, we get the correlations shown below as “Expected In-
trastate.”278 These have been compared to the observed corre-
lations between New York and Massachusetts.

Ratio to Expected
Payroll 3 Years Correlations Intrastate

Expected NY vs. MA, NY vs. MA,
($ million) Intrastate NY vs. MA Capped279 NY vs. MA Capped

2 .215 .047 .041 .22 .19
6.5 .458 .348 .382 .76 .83
20 .600 .106 .127 .18 .21
65 .782 .596 .592 .76 .76
200 .900 .623 .623 .69 .69
650 .955 .818 .823 .86 .86

Similar comparisons were done for other large states and for
the Goods and Services industry group. Here are the ratios of the
observed interstate correlations to the expected intrastate corre-

277The credibilities are relatively insensitive to this choice.
278In order to translate payrolls into expected losses the payrolls were multiplied by the
observed pure premium for the Manufacturing industry group of about $2.50 per $100 of
payroll. Thus $1 million of payroll for 3 years corresponds to $8,333 of annual expected
losses.
279The relativity for each class was capped between 5 and 1/5, in order to limit the impact
of any one class on the computed correlation.
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lations:

RATIO OF INTERSTATE TO EXPECTED INTRASTATE
CORRELATIONS280 BY THREE YEARS OF PAYROLL ($ MILLION)

Manufacturing Goods and Services

State 3 to 10 10 to 30 30 to 100 100 to 300 10 to 100 100 to 1,000

Connecticut %:07 :58 .39 .74 .90 .86
Florida :08 :68 .81 .66 .23 .85
Georgia :11 :34 .23 .40 .61 .84
Illinois :50 :10 .60 .81 .58 .92
Michigan — :09 .59 .56 1.09 .82
Missouri :12 :31 .45 .67 .94 .88
New Jersey :72 :03 .53 .63 — —
New York :76 :18 .76 .69 1.09 .96
Oregon :78 :88 .73 — .95 .87
Wisconsin :18 %:04 .69 .66 .86 .89
Average .35 .32 .58 .65 .81 .87

Generally, the between state correlations are lower than the
within state correlations, for a given volume of data. In this case,
the between state correlations are perhaps 55% of the within state
correlations for Manufacturing281 and perhaps 85% for Goods
and Services. A ratio of 70% would result if the r2 factor multi-
plying the interstate covariances were 70% of the r2 factor mul-
tiplying the intrastate covariances.282

This ratio of 70% will be used for illustrative purposes in Sec-
tion 8. As is shown in Section 8.7, the credibilities are relatively
insensitive to this choice for values within this general range.

280Only results for categories with 15 or more classes are displayed.
281The correlations for the smaller size categories for Manufacturing were affected by
two classes whose observed Massachusetts relativities were vastly different than those
observed in most other states.
282Recall that in the intrastate situation, the r2 factor did not affect the calculated cred-
ibilities. In the interstate situation with two (or more) values for r2, the relative size of
the r2 values will affect the credibilities.
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For the interstate covariances the K parameter will be zero.283

Also, the interstate covariances will use J = :05, one-half of the
assumed value for the intrastate covariances.

283As discussed above, the portion of the covariance related to the expected value of
the process variance would vanish when taking covariances between data from different
states.


