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INTRODUCTION

This discussion will present some of the mathematical aspects
of the effect of dispersion of loss development on excess ratios.
It will be shown how the formulas developed in “Retrospective
Rating: 1997 Excess Loss Factors” fit into this more general
mathematical framework.

THE PROBLEM

Even if one included average loss development beyond fifth
report in the estimation of excess ratios, there are at least two
phenomena that would affect excess ratios that are not being
considered. First, the different sizes of claims may have varying
expected amounts of development. If larger claims had higher
average development, this would raise the excess ratios for higher
limits.

Secondly, there is a “dispersion” effect. Assume we have two
claims of $1 million each that are expected on average to develop
by 10%. It makes a difference whether we assume we’ll have two
claims each at $1.1 million or one claim at $1 million and one
claim at $1.2 million. The ratio excess of $1.1 million will differ
in the two cases.1

It is assumed for simplicity that there is no development on
average; alternatively, any average development has already been

1In the former case it is zero, since there are no dollars excess of $1.1 million. In the
latter case it is 0.1/2.2, since there are $1.2–$1.1 million = $:1 million dollars excess of
$1.1 million, and total losses of $2.2 million.
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incorporated into the size of loss distribution. However, some
individual claims will develop more than average while others
will develop less than average. In total, the average development
factor is assumed to be unity.

SIMPLE EXAMPLE

Assume we have a piece-wise linear size of accident distribu-
tion such that:2

F(0) = 0

F(100) = :90

F(1,000) = :99

F(5,000) = 1:00:

Any size of loss distribution can be approximated sufficiently
well by such an “ogive.”3 For actual applications one would
have many more intervals, but this example will illustrate the
principles involved.

The probability density function is:

f(x) =

!""""#""""$
:009 0< x! 100
:0001 100< x! 1,000

:0000025 1,000< x! 5,000
0 x> 5,000:

One can compute the average size of claim as the sum of three
integrals of xf(x):

E[X] =
% 100

0
(:009)xdx+

% 1000

100
(:0001)xdx

+
% 5000

1000
(:0000025)xdx

= 45+49:5+30 = 124:5:

2Assume everything is in units of thousands of dollars. Thus, 5,000 actually corresponds
to $5 million.
3See Hogg and Klugman [3].
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The excess ratio at limit L can be computed as:

R(L) =
% "

L
(x#L)f(x)dx=E[X]:

In this case we can compute the numerator as a sum of three
terms:% "

L
(x#L)f(x)dx

= (If L < 100)
% 100

L
(x#L)(:009)dx

+(If L < 1000)
% 1000

max[100,L]
(x#L)(:0001)dx

+(If L < 5000)
% 5000

max[1000,L]
(x#L)(:0000025)dx:

If L < 100, let

R1(L) =
% 100

L
(x#L)dx

&% 100

0
xdx

= excess ratio at L if losses are uniformly distributed
on the interval [0,100]:

Note that R1(L) = 0 if L$ 100. Then the first term above is

R1(L)
% 100

0
:009xdx= R1(L)E1[X],

where E1[X] =
' 100
0 (:009)xdx is the contribution to the overall

mean from claims in the first interval. Then, working similarly
with the other two intervals:% "

0
(x#L)f(x)dx= R1(L)E1[X]+R2(L)E2[X]+R3(L)E3[X],

R(L) =
R1(L)E1[X]+R2(L)E2[X]+R3(L)E3[X]

E1[X]+E2[X]+E3[X]
:
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Thus, the overall excess ratio can be expressed as a weighted
average of excess ratios each computed as if the losses were
uniformly distributed on an interval. The weights are the contri-
butions to the overall mean of the claims in each interval. In this
case, the weights are 45, 49.5, and 30 or 45/124.5, 49.5/124.5,
and 30/124.5.

For example, for a limit of 70, the individual excess ratios
are:4 .09, .8727, and .9767. The weighted average is

R(70) =
(45)(:09)+ (49:5)(:8727)+ (30)(:9767)

124:5
= :6149:

Further, if the losses were uniform from 100 to 1000 then the
excess ratio would be:

1
900

% 1000

100
(x#70)dx

(
1
900

% 1000

100
xdx= (550#70)=550

= 480=550 = :8727:

Table 1 shows the excess ratios for this simple example for
several limits. As can be seen, in the absence of any loss de-
velopment, the ratio excess of 5,000 is zero; there are no losses
above 5,000.

SIMPLE DISPERSION

Assume for simplicity that each accident has an equal likeli-
hood of developing in a manner such that it is divided5 by either:
.75, .833, 1, 1.25, or 1.5. Then the average development is

1
5

)
1
:75

+
1
:833

+
1
1
+

1
1:25

+
1
1:5

*
= 1:

4For losses distributed uniformly on [a,b], for b > L > a, R(L) = (b#L)2=(b2# a2); for
L < a, R(L) = 1#2L=(b+a); for L > b, R(L) = 0. For the interval [0,100] we have the
first case. For the intervals [100,1,000] and [1,000,5,000] we have the second case.
5Loss development divisors are used in order to match the presentation in “Retrospective
Rating: 1997 Excess Loss Factors.” Loss development multipliers or factors could have
been used equally well for the presentation.



320 RETROSPECTIVE RATING: 1997 EXCESS LOSS FACTORS

TABLE 1

EXCESS RATIOS*

No Simple Gamma
LIMIT Development Dispersion** Dispersion***

50 .6888 .6813 .6945
100 .5582 .5597 .5684
500 .3012 .2932 .3076

1,000 .1606 .1632 .1721
2,000 .0904 .0856 .0930
3,000 .0402 .0394 .0459
4,000 .0100 .0156 .0190
5,000 .0000 .0045 .0069
6,000 .0000 .0005 .0024
7,000 .0000 .0000 .0008
8,000 .0000 .0000 .0003
9,000 .0000 .0000 .0001
10,000 .0000 .0000 .0000

*For simple piece-wise linear distribution with F(0) = 0, F(100) = :9, F(1000) = :99, F(5000) = 1.
**For five possibilities, see text. Mean development = 1; Variance of development = :060.
***For a gamma loss divisor with ®= 16:67, ¸= 15:67, see text. Mean development = 1; Variance
of development = :060.

Thus, the total expected losses are unaffected. The variance of
the development is .060.

We can compute excess ratios for each of the five possibilities
and average the results together. If all the accidents were divided
by 1.25; i.e., multiplied by .8, then a limit of 100 is equivalent
to a limit of 125 without any development. So the excess ratio
for 100 for the developed losses can be computed as R(125) for
the original distribution.6

Thus, to compute the excess ratio for the developed losses for
a limit of 100:

R̂(100) = 1
5(R(75)+R(83:3)+R(100)+R(125)+R(150))

= 1
5(:6009+ :5817+ :5582+ :5384+ :5191) = :5597:

6If each of the accidents are divided by 1.25, then the ratio excess of a limit of 100
declines from .5582 to .5384. Reducing the size of accidents reduces the excess ratio
over any fixed limit.
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Similarly, we can compute the excess ratio for the developed
losses for a limit of 5,000:

R̂(5000) = 1
5(R(3750)+R(4165)+R(5000)

+R(6250)+R(7500))

= 1
5(:0157+ :0070+0+0+0) = :0045:

So the dispersion effect has now produced some losses excess
of 5,000, without affecting the total expected losses.

As can be seen in Table 1, the dispersion effect raises the
excess ratios for higher limits and alters those for lower limits.
While this example could be changed to include more than 5
possibilities, the essence of the dispersion effect has been cap-
tured. However, if the possibilities were more dispersed around
the mean; i.e., if the variance of the development were greater,
then the impact of the dispersion would be greater.

CONTINUOUS LOSS DIVISORS APPLIED TO A UNIFORM
DISTRIBUTION ON AN INTERVAL

What if, rather than five possible loss divisors, one had a
continuous probability distribution?

Assume:

1. Losses are distributed uniformly on the interval [a,b].

2. Losses will develop with loss divisors r given by a dis-
tribution H(r), with density h(r).7

Then, as shown in Appendix A, the distribution function for
the developed losses y, is given by:

F(y) = [y=(b# a)]%E(R;b=y)#E(R;a=y)&,

7It is assumed that
' "
0
(h(r)=r)dr is finite, so that the overall loss development is finite.

In the case where H is a gamma distribution, this requirement means that the shape
parameter s must be greater than one.
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where E[R;L] is the limited expected value of the distribution of
loss divisors, at a limit L.

Appendix A also shows that the density function can be writ-
ten in a number of forms, as summarized below:

f(y) =
1

b# a
% b=y

a=y
rh(r)dr

=
1

b# a%E[R;b=y]# (b=y)(1#H(b=y))#E[R;a=y]
+ (a=y)(1#H(a=y))&

=
1

b# a%E[R;b=y]#E[R;a=y]&

+
1

y(b# a)%bH(b=y)# aH(a=y)&#
1
y
:

Further, Appendix A describes how one can use the density
function and distribution function to calculate the excess ratio of
the developed losses, as follows:

R(L) =
1

b2# a2
+
b2
% b=L

0
h(r)=rdr# a2

% a=L

0
h(r)=rdr

+2aLH(a=L)#2bLH(b=L)

+L2
% b=L

a=L
rh(r)dr

,&% "

0
h(r)=rdr:

GAMMA DISPERSION APPLIED TO THE UNIFORM DISTRIBUTION

Assume that the loss divisor r is distributed according to a
gamma distribution8 with parameter s and l:

h(r) =
lsrs#1e#lr

¡ (s)
,

where ¡ (n) = (n#1)!.
8Then the loss multipliers are distributed according to an inverse gamma. We assume
s > 1, so that the overall loss development is finite.
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Then, as shown in Appendix B, based on the general formula
in Appendix A, if the losses are uniformly distributed on the
interval [a,b], after development the excess ratio for the limit L
is given by:9

R(L) =
b2

b2# a2¡ (s#1; lb=L)#
a2

b2# a2¡ (s# 1; la=L)

+
2L(s# 1)
(b2# a2)l%a¡ (s; la=L)#b¡ (s; lb=L)&

+
L2(s#1)s
(b2# a2)l2 %¡ (s+1; lb=L)#¡ (s+1; la=L)&,

where ¡ (s;y) = 1=¡ (s)
' y
0 t
s#1e#t dt is the incomplete gamma

function.

One can apply this “gamma dispersion” effect to a piece-wise
linear size of accident distribution, such as in the prior example.

The mean development is the mean of an inverse gamma,
l=(s#1). For this discussion, the average development is unity,
so we take l = s#1. The variance of the development is the vari-
ance of an inverse gamma, l2=%(s#1)2(s#2)&. For l = s# 1, the
variance is 1=s#2. Thus, if one takes s= 18:67, (and l = 17:67)
then the variance of the development is 1=16:67 = :060, which
matches that in the simple dispersion example. However, the
gamma allows extreme possibilities (with a small probability),
so one gets a somewhat different behavior than in the simple
dispersion example.

As seen in Table 1, using the gamma dispersion for very high
limits (7,000 and above) yields excess ratios that are now posi-
tive rather than zero. Gamma dispersion can have a particularly
significant impact on very high limits, particularly if the variance
is large.

9These are the formulas developed and shown in “Retrospective Rating: 1997 Excess
Loss Factors.”
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Each excess ratio is computed as a weighted average of the
excess ratios computed for losses uniformly distributed on each
of the three assumed intervals. For example, for a limit of 2,000,
the excess ratio for losses distributed uniformly from 1,000 to
5,000, with gamma dispersion with s= 18:67 and l = 17:67 is
given by the formula from Appendix B:

R3(2000)

= (1:04167)¡ (17:67;44:175)# (:04167)¡ (17:67;8:835)
+ (:1667)¡ (18:67;8:835)# (:8333)¡ (18:67;44:175)
+ (:1761)¡ (19:67;44:175)# (:1761)¡ (19:67;8:835)

= (1:04167)(:9999980)# (:04167)(:0057148)
+ (:1667)(:0011302)# (:8333)(:999987)
+ (:1761)(:999949)# (:1761)(:0026)

= :384:

Similarly, for losses uniform from 100 to 1,000, R2(2000) =
:00008. For losses uniform from 0 to 100, R1(2000) = 10

#19.
Taking a weighted average, using weights of 45, 49.5, and 30,
one obtains R(2000) = :093, as displayed in Table 1.

Note that the gamma distribution used in this example has a
large value of s, the shape parameter. Therefore, the distribution
of loss divisors is close to normal.10 The distribution of loss
divisors has a skewness of 2=

'
s, which is only .49. The skewness

of the distribution of loss multipliers is that of an inverse gamma:
4
'
(s# 2)=(s#3) = 1:12. If one were to take a different form

of distribution with a larger skewness one would have a larger
chance of extreme results. Therefore, in the case of very high
limits, the excess ratios would be even larger.

10The distribution of loss multipliers is close to an inverse normal distribution.
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DISTRIBUTION OF DEVELOPED LOSSES

The particular situations examined so far are a special case of
a more general framework. As shown in Appendix C, if losses
at latest report are distributed via G(x) and the loss divisors r are
distributed independently of x via density function h(r),11 then
the distribution for the developed losses y is given by:

F(y) =
% "

0
G(yr)h(r)dr:

GAMMA LOSS DIVISORS APPLIED TO AN EXPONENTIAL
DISTRIBUTION

For example, if G(x) is an exponential distribution G(x) =
1# e#¸x and the loss divisors are gamma distributed h(r) =
lsrs#1e#lr=¡ (s), then

F(y) = 1# ls

¡ (s)

% "

0
rs#1e#lre#¸yr dr

= 1# ls

¡ (s)
¡ (s)

(l+¸y)s
= 1#

)
(l=¸)

(l=¸)+ y

*s
:

Thus F(y) has a Pareto distribution as per Hogg and Klugman
[3], with shape parameter s and scale parameter l=¸. Thus, the
excess ratio of the developed losses is that of a Pareto distribu-
tion:

R(L) =
)

(l=¸)
(l=¸)+L

*s#1
:

MATHEMATICAL RELATION TO MIXED DISTRIBUTIONS

The calculation of the distribution of the developed losses is
the same as that used to calculate the mixed distribution in the in-
verse gamma-exponential conjugate prior.12 (An inverse gamma

11With
' "
0
(h(r)=r)dr finite.

12See Herzog [2], or Venter [4]. The mixed distribution in the case of an inverse gamma—
Exponential conjugate prior is a Pareto distribution, as obtained above.
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distributed multiplier is the same as a gamma distributed divisor.)
In general, if the loss multipliers and the loss distribution form
any of the well known pairs13 of prior distributions of the scale
parameters of the conditional distributions and conditional dis-
tributions, then the developed losses will be given by the mixed
distribution. For example, as shown in Venter [4], a Weibull loss
distribution and a transformed gamma loss divisor14 would pro-
duce a Burr distribution of developed losses. Thus, there are a
number of mathematically convenient examples that might ap-
proximate a particular real world application.

GAMMA LOSS DIVISORS APPLIED TO PARETO LOSSES

Since the Pareto distribution is often used to model losses (or
at least the larger losses), it would be valuable to be able to apply
the concept of loss divisors to the Pareto distribution.

As shown in Appendix C, one can develop the mathematics
of applying gamma loss divisors to losses distributed by a Pareto
distribution with parameters ® and ¸: F(x) = 1# (¸=(¸+ x))®. As
derived in Appendix C, the excess ratio for the developed losses
is given by:

R(L) =
)
Xl

L

*s#1
U(s# 1,s+1#®,¸l=L),

where U is a confluent hypergeometric function.15

It is also shown in Appendix C that when the average de-
velopment is unity16 then the excess ratios of the developed
losses can be approximated by replacing ¸ in the Pareto by
¸( = ¸(s# 1)=(s# (®=2)#1).

13Such as shown in Venter [4]. Venter displays a list of conjugate priors, but for the
current application there is no requirement that it be a conjugate prior situation.
14An inverse transformed gamma loss multiplier.
15See Appendix D and Handbook of Mathematical Functions [1].
16Also, we need the shape parameter of the gamma, s, to be greater than ®+1.
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Table 2 and Figure 1 compare the excess ratios for a Pareto
with ®= 3:5 and ¸= 1,000, for the developed losses17 with a
gamma divisor with s= 6 and l = 5, and for an approximat-
ing Pareto with ®= 3:5 and ¸= 1,000(s#1)=(s# (®=2)# 1) =
1,538. The excess ratios for the developed losses are larger than
those for the undeveloped losses. The approximation using the
rescaled Pareto yields excess ratios that are too high for the lower
limits, but it does an excellent job of approximating the excess
ratios for higher limits.

As shown in Appendix C, in the tail, the loss development18

multiplies the excess ratios by a factor of approximately:

(s#1)®#1¡ (s#®)=¡ (s#1))
)
(s#1)

()
s# ®

2
# 1

**®#1
:

In this example, this factor is: 52:5¡ (2:5)=¡ (5) = 3:1. Figure 2
shows how this adjustment factor varies as the shape parameters
of the Pareto and gamma vary. As the shape parameter of the
Pareto, ®, gets smaller, the losses have a heavier tail and the
impact of the dispersion increases. As the coefficient of variation
of the gamma19 increases, the impact of the dispersion increases.

In general, as the coefficient of variation of the loss divisors
increases, the impact of the dispersion increases. As the coef-
ficient of variation approaches zero, we approach the situation
where each claim develops by the average amount and there is
no effect of dispersion. Thus, in order to apply this technique,
one of the key inputs would be the coefficient of variation of the
loss divisors.

CONCLUSIONS

The effect of the dispersion of loss development beyond the
latest available report can be incorporated into the calculation of

17Then R(L) = (¸l=L)s#1U(s# 1,s+1#®,¸l=L) = (L=5000)#5U(5,3:5,5000=L).
18For gamma dispersion with l = s# 1 so the average development is unity.
19The coefficient of variation is the standard deviation divided by the mean. For the
gamma distribution with shape parameter s, the coefficient of variation is 1=

'
s.
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TABLE 2

EXCESS RATIOS

Undeveloped Approximating
Losses Developed
Pareto Developed Pareto

LIMIT (®= 3:5,¸= 1,000) Losses* (®= 3:5,¸= 1,538)

500 .3629 .3960 .4947
1,000 .1768 .2152 .2859
2,500 .0436 .0668 .0895
5,000 .0113 .0211 .0268
10,000 .0025 .0055 .0065
25,000 .00029 .00076 .00081
50,000 .00005 .00015 .00015
100,000 .000010 .000029 .000028

*Assuming gamma loss divisor, with s= 6 and l = 5. R(L) = (5000=L)2:5U(5,1:5;5000=L).

FIGURE 1

EXCESS RATIOS
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FIGURE 2

ADJUSTMENT FACTOR TO APPLY TO EXCESS RATIOS

excess ratios. In the case of loss dispersion which is (approxi-
mately) independent of size of loss, for many special cases one
can calculate the distribution of the developed losses in closed
form. In these cases, the excess ratios follow directly.

In other situations, one can approximate the loss distribution
via a piece-wise linear distribution and then apply the effects of
dispersion to each interval. Since on each interval the piece-wise
linear approximation is a uniform distribution, one can apply
the formulas developed in Appendix A. Then one can weight
together the excess ratios for the developed losses from the indi-
vidual intervals in order to get the excess ratio for all developed
losses.
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APPENDIX A

LOSS DIVISORS APPLIED TO A UNIFORM DISTRIBUTION ON AN
INTERVAL

Assume:

Losses are distributed uniformly on the interval [a,b]. Losses
will develop with loss divisors r given by a distribution H(r) and
density h(r).

Then:

The distribution function for the developed losses y, is given
by:

F(y) = (y=b# a)%E[R;b=y]#E[R;a=y]&,
where E[R;L] is the limited expected value of the distribution of
loss divisors, at a limit L.

Proof:

The developed losses y are the ratio of the undeveloped losses
x and the loss divisor r; y = x=r or x= yr. Thus since x is uniform
on [a,b],20 the conditional distribution of y given r is:

F(y * r) =

!""#""$
0 yr ! a

ry# a
b# a a! yr ! b
1 yr $ b:

The unconditional distribution of y can be computed by in-
tegrating the conditional distribution of y given r times the as-
sumed density function of r:

20For the uniform distribution on [a,b], F(x) = 0 if x! a, F(x) = (x# a)=(b#a) if a!
x! b, and F(x) = 1 if x$ b.
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F(y) =
% "

r=0
F(y * r)h(r)dr

=
% b=y

a=y

)
ry# a
b# a

*
h(r)dr+

% "

b=y
h(r)dr

=
y

b# a
% b=y

a=y
rh(r)dr+

a

b# a
)
H

)
a

y

*
#H

)
b

y

**
+1#H(b=y)

=
y

b# a

+% b=y

0
rh(r)dr#

% a=y

0
rh(r)dr+

a

y
H

)
a

y

*
# a
y

+
b

y
# b
y
H

)
b

y

*,

=
y

b# a

+-% b=y

0
rh(r)+

)
b

y

*
(1#H(b=y))

.

#
-% a=y

0
rh(r)+

)
a

y

*
(1#H(a=y))

.,

=
y

b# a
/
E

0
R;
b

y

1
#E

0
R;
a

y

12
:

Similarly, we can get the density function f(y). For condi-
tional density at y given r is:

f(y * r) =

!"""#"""$
0 yr ! a
r

b# a a! yr ! b

0 yr $ b:
The unconditional density at y can be computed by integrating

the conditional density at y given r times the assumed density
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function of r:

f(y) =
% "

0
f(y * r)h(r)dr

=
% b=y

a=y

r

b# ah(r)dr

=
1

b# a
% b=y

a=y
rh(r)dr:

We can put this type of integral in terms of limited expected
values, since

E[R;r] =
% r

0
rh(r)dr+ r(1#H(r))

f(y) =
1

b# a%E[R;b=y]# (b=y)(1#H(b=y))

#E[R;a=y]+ (a=y)(1#H(a=y))&

=
1

b# a%E[R;b=y]#E[R;a=y]&

+
1

y(b# a)%bH(b=y)# aH(a=y)&#
1
y
:

One can use the density function and distribution function to
calculate the excess ratio of the developed losses. The numerator
of this excess ratio is the (developed) losses excess of L:% "

L
(y#L)f(y)dy =

% "

L
yf(y)dy#L(1#F(L)):

Since f(y) = 1=(b# a)' b=ya=y rh(r)dr we have% "

L
yf(y)dy =

1
b# a

% "

y=L
y

% b=y

r=a=y
rh(r)drdy:
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Switching the order of integration:

% "

L
yf(y)dy =

1
b# a

% a=L

r=0

% b=r

y=a=r
yrh(r)dydr

+
1

b# a
% b=L

r=a=L

% b=r

y=L
yrh(r)dydr

=
1

2(b# a)
% a=L

r=0

3
b2

r2
# a

2

r2

4
rh(r)dr

+
1

2(b# a)
% b=L

r=a=L

3
b2

r2
#L2

4
rh(r)dr

=
b2

2(b# a)
% b=L

r=0
h(r)=rdr# a2

2(b# a)
% a=L

r=0
h(r)=rdr

# L2

2(b# a)
% b=L

r=a=L
rh(r)dr:

In the course of deriving the form of the distribution function
we had

F(y) =
y

b# a
% b=y

a=y
rh(r)dr+1+

a

b# aH
)
a

y

*
# b

b# aH
)
b

y

*
:

Thus

1#F(L) =

b

b# aH(b=L)#
a

b# aH(a=L)#
L

b# a
% b=L

a=L
rh(r)dr:
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Thus combining the terms, the numerator of the excess ratio
is: % "

L
yf(y)dy#L(1#F(L))

=
b2

2(b# a)
% b=L

0
h(r)=rdr# a2

2(b# a)
% a=L

0
h(r)=rdr

+
aL

(b# a)H(a=L)#
bL

b# aH(b=L)

+
L2

2(b# a)
% b=L

a=L
rh(r)dr:

The denominator of the excess ratio is:21% "

0
yf(y)dy = lim

L+0

% "

L
yf(y)dy

=
b2# a2
2(b# a)

% "

0
h(r)=rdr

=
b+ a
2

% "

0
h(r)=rdr:

Combining the numerator and denominator, the excess ratio
(of the developed losses) at L is:

R(L) =
1

b2# a2
+
b2
% b=L

0
h(r)=rdr# a2

% a=L

0
h(r)=rdr

+2aLH(a=L)#2bLH(b=L)

+L2
% b=L

a=L
rh(r)dr

,&% "

0
h(r)=rdr:

21The denominator of the excess ratio is the mean of the developed losses. It is equal to
the product of the mean undeveloped losses (b+a)=2, and the average loss development' "
0
h(r)=rdr.
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APPENDIX B

GAMMA LOSS DIVISORS APPLIED TO LOSSES UNIFORM ON AN
INTERVAL

For the situation discussed in Appendix A but for the specific
case where the distribution of the loss divisors, h(r), is a gamma
distribution with parameters s and l:% x

0
h(r)rdr =

% x

0
lse#lrrs=¡ (s)dr = (ls=¡ (s))

% x

0
e#lrrs dr

= (ls=¡ (s))(¡ (s+1)=ls+1)¡ (s+1; lx)

= (s=l)¡ (s+1; lx)

H(x) =
% x

0
h(r)dr =

% x

0
lse#lrrs#1=¡ (s)dr = ¡ (s; lx)% x

0
h(r)=rdr =

% x

0
lse#lrrs#2=¡ (s)dr

= (ls=¡ (s))(¡ (s# 1)=ls#1)¡ (s# 1; lx)

=
l

s# 1¡ (s#1; lx)% "

0
h(r)=rdr = (l=s#1)¡ (s#1;") = l(s# 1):

Thus, using the formula from Appendix A, the excess ratio
of the developed losses for limit L is in this case:

R(L) =
b2

b2# a2¡ (s#1; lb=L)#
a2

b2# a2¡ (s# 1; la=L)

+
2L(s# 1)
(b2# a2)l%a¡ (s; la=L)#b¡ (s; lb=L)&

+
L2(s#1)s
(b2# a2)l2 %¡ (s+1; lb=L)#¡ (s+1; la=L)&:

For the loss divisors given by a gamma distribution with pa-
rameters s and l, we can plug in the limited expected value for
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the gamma distribution in terms of the incomplete gamma func-
tion:22

E[R;r] =
s

l
¡ (s+1; lr)+ r[1#¡ (s; lr)]:

Thus using the formula derived in Appendix A:

F(y) =
y

b# a
/
E

0
R;
b

y

1
#E

0
R;
a

y

12
=

ys

l(b# a)
/
¡

)
s+1;

lb

y

*
#¡

)
s+1;

la

y

*2
+1+

a

b# a¡
)
s;
la

y

*
# b

b# a¡
)
s;
lb

y

*
:

Also using the formula derived in Appendix A, the probability
density function is given by:

f(y) =
1

b# a
% b=y

a=y
rh(r)dr

=
s

(b# a)l%¡ (s+1; lb=y)#¡ (s+1; la=y)&:

22See Hogg and Klugman [3, page 226].
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APPENDIX C

GAMMA LOSS DIVISORS APPLIED TO A PARETO DISTRIBUTION

Assume:

Losses are distributed (at latest report) on (0,") via a dis-
tribution function G(x). Losses will develop with loss divisors
r given by a density function h(r).23 (The distribution of r is
independent of x.)

Then:

The distribution function for the developed losses y, is given
by:

F(y) =
% "

0
G(yr)h(r)dr:

Proof:

The developed losses y are the ratio of the undeveloped losses
x and the loss divisor r; y = x=r or x= yr.

Given a value for r, the developed losses are less than y if the
undeveloped losses are less than yr. Thus:

F(y * r) =G(yr):
Integrating over all possible values of r we have

F(y) =
% "

0
F(y * r)h(r)dr =

% "

0
G(yr)h(r)dr:

In the specific case where r follows a gamma distribution with
parameters s and l and the undeveloped losses follow a Pareto
distribution with parameters ® and ¸:

G(x) = 1#
)

¸

¸+ x

*®
,

h(r) = lsrs#1e#lr=¡ (s):

23It is assumed that
' "
0
(h(r)=r)dr is finite, so that the average loss development is finite.



RETROSPECTIVE RATING: 1997 EXCESS LOSS FACTORS 339

Then the distribution function for the developed losses is

F(y) =
% "

0
h(r)G(yr)dr

=
% "

0

)
1#

)
¸

¸+ yr

*®*
lsrs#1e#lr=(¡ (s))dr

=
% "

0
lsrs#1e#lr=¡ (s)dr# ¸

®ls

¡ (s)

% "

0
rs#1e#lr(¸+ yr)#® dr:

The first integral is unity,24 while the second integral can be
put in terms of confluent hypergeometric functions.25

Let q= (y=¸)r, then the second integral becomes

¸s#®

ys

% "

q=0
qs#1e#¸lq=y(1+ q)#® dq

=
¸s#®

ys
¡ (s)U(s,s+1#®;¸l=y)

where U is a confluent hypergeometric function such that26

U(a,b;z) = (1=¡ (a))
% "

0
e#ztta#1(1+ t)b#a#1dt:

Thus the distribution function of the developed losses is:

F(y) = 1# ¸
®ls

¡ (s)
¸s#®

ys
¡ (s)U(s,s+1#®;¸l=y)

= 1#
)
¸l

y

*s
U(s,s+1#®;¸l=y):

Similarly one can compute the density function of the devel-
oped losses. Differentiating the distribution function one gets:

f(y) =
% "

0
rg(yr)h(r)dr:

24It is the cumulative distribution function of the gamma distribution at infinity.
25See Appendix D and Handbook of Mathematical Functions [1].
26See Equation 13.2.5 in Handbook of Mathematical Functions [1].
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In the specific case where h is gamma and g is Pareto it turns
out that the density of the developed losses is:

f(y) =
s®ls¸s

ys+1
U(s+1,s+1#®; l¸=y):

This can be obtained either by substituting the specific form
of y and h into the above integral or by differentiating F(y), and
making use of the facts that27

d

dz
U(a,b;z) =#aU(a+1,b+1;z),

U(a#1,b;z)# zU(a,b+1;z) = (a#b)U(a,b;z),

f(y) =
d

dy
F(y) =

d

dy

)
1# ¸

sls

ys
U

)
s,s+1#®; ¸l

y

**
=
¸slss

ys+1
U

)
s,s+1#®; ¸l

y

*
# ¸

sls

ys

)
¸l

y2

*
U(
)
s,s+1#®; ¸l

y

*
=
s¸sls

ys+1
%U(s,s+1#®;¸l=y)

# (¸l=y)U(s+1,s+2#®;¸l=y)&

=
s¸sls

ys+1
%(s+1)# (s+1#®)&U(s+1,s+1#®;¸l=y)

=
s®¸sls

ys+1
U(s+1,s+1#®;¸l=y):

One can use the density function and distribution function to
calculate the excess ratio of the developed losses. The numerator
of this excess ratio is the total (developed) losses excess of L:% "

L
(y#L)f(y)dy =

% "

L
yf(y)dy#L(1#F(L)),

27See Equations 13.4.21 and 13.4.18 in Handbook of Mathematical Functions [1].
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% "

L
yf(y)dy = s®¸sls

% "

L
y#sU(s+1,s+1#®;¸l=y)dy:

Letting z = ¸l=y this integral becomes

# s®
% ¸l=L

0
zsU(s+1,s+1#®;z) ¸l#z2 dz

= ¸ls®
% ¸l=L

0
zs#2U(s+1,s+1#®;z)dz:

Using the theorem from Appendix D:% "

L

yf(y)dy =
¸ls®zs#1

s®

0
U(s,s+1#®;z)+ U(s# a,s+1#®;z)

(s#1)(®# 1)

1¸l=L
Z=0

= ¸l

)
¸l

L

*s#1)
U

)
s,s+1#®; ¸l

L

*
+
U(s# 1,s+1#®;¸l=L)

(s#1)(®# 1)

*
:

Now

L(1#F(L)) = ¸sls

Ls#1
U(s,s+1#®;¸l=L):

Thus the numerator of the excess ratio is% "

L
yf(y)dy+L(1#F(L))

=
¸sls

(s#1)(®# 1)Ls#1U(s# 1,s+1#®;¸l=L):

The denominator of the excess ratio is the total (developed)
losses or the mean of the undeveloped losses times the mean loss
development. The former is the mean of the Pareto or ¸=(®#1).
The latter is the mean of the inverse gamma or l=(s# 1).
Thus the excess ratio is:

R(L) =
)
¸l

L

*s#1
U(s#1,s+1#®,¸l=L):
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Note that this compares to the excess ratio for the undeveloped
losses (given by a Pareto) of (¸=¸+L)®#1. For z small:28

U(a,b,z)) z1#b¡ (b#1)=¡ (a) b > 2:

Thus for large limits L, and s > ®+1

R(L) =
)
¸l

L

*s#1
U(s#1,s+1#®,¸l=L)

)
)
¸l

L

*s#1 ¡ (s#®)
¡ (s#1)

)
¸l

L

*®#s
=
)
¸l

L

*®#1
¡ (s#®)=¡ (s#1):

For the Pareto for large limits

R(L) = (¸=(¸+L))®#1 ) (¸=L)®#1:
Thus the ratio of the excess ratios for the developed and the

undeveloped losses is approximately: l®#1¡ (s#®)=¡ (s#1). If
the mean development is unity, then l = s#1. Then this ratio is:

(s#1)®#1=%(s#®#1) , , ,(s#2)&

)
)
(s#1)

()
s# ®

2
# 1

**®#1
:

Since for a Pareto for large limits R(L)) ¸®#1=L®#1 if one
adjusts ¸ by multiplying by a factor of (s#1)=(s# (®=2)#1),
then one will approximately multiply the excess ratios by the
desired adjustment factor.

28See Equation 13.5.6, Handbook of Mathematical Functions [1].
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APPENDIX D

CONFLUENT HYPERGEOMETRIC FUNCTIONS29

There are a number of related functions referred to as conflu-
ent hypergeometric functions. They can be usefully thought of
as generalizations of the beta and gamma functions. They can be
thought of as two parameter distributions. Let:

M(a,b,z) =
¡ (b)

¡ (b# a)¡ (a)
% 1

0
eztta#1(1# t)b#a#1dt,

U(a,b,z) =
1
¡ (a)

% "

0
e#ztta#1(1+ t)b#a#1dt:

Then M can be computed using the following power series
in z:

M(a,b;z) = 1+
az

b
+
a(a+1)z2

b(b+1)(2!
+
a(a+1)(a+2)z3

b(b+1)(b+2)(3!)
+ , , , :

U can be computed as a combination of two values of M:

U(a,b;z)

=
¼

sin¼b

3
M(a,b,z)

¡ (1+ a#b)¡ (b) #
z1#bM(1+ a#b,2#b,z)

¡ (a)¡ (2#b)

4
:

U is related to the incomplete gamma function:

U(1# a,1# a;x) = ex¡ (a;x):
Among the facts used in Appendix C are:

d

dz
U(a,b;z) =#aU(a+1,b+1;z),

U(a#1,b;z)# zU(a,b+1;z) = (a#b)U(a,b;z):
For z small and b > 2, U(a,b;z)) z1#b¡ (b#1)=¡ (a).

29See Handbook of Mathematical Functions [1].
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THEOREM%
za#3U(a,b,z)dz

=# za#2

(a#1)(b# a)
U(a#1,b,z)#U(a#2,b,z)

%(a# 2)(b+1# a)& :

Given:

dU(a,b,z)
dz

=#aU(a+1,b+1,z), and

zU(a,b+1,z)#U(a#1,b,z) = (b# a)U(a,b,z):

Proof:

Let

º = za#2(U(a# 1,b,z)#U(a#2,b,z)=%(a#2)(b+1# a)&)
dº

dz
= (a# 2)º=z+ za#2#(a# 1)U(a,b+1,z)+U(a#1,b+1,z)

(b+1# a)
= za#3%(a#2)U(a#1,b,z)#U(a#2,b,z)=(b+1# a)

# (a#1)zU(a,b+1,z)
+ zU(®#1,b+1,z)=(b+1#®)&

= za#3%(zU(®#1,b+1,z)#U(®#2,b,z))=(b+1#®)
# (a# 1)(zU(a,b+1,z)#U(®#1,b,z))#U(®#1,b,z)&

= za#3(U(a# 1,b,z)# (a#1)(b# a)U(a,b,z)#U(a# 1,b,z))
=#za#3(a#1)(b# a)U(a,b,z): Q.E.D.



Errata for Discussion by Howard Mahler of “Retrospective Rating: 1997 Excess Loss Factors”

At the bottom of page 320, the equation for 

� 

R^ (100) is incorrect.

This example of simple dispersion is an example of a mixture with five pieces. 

The excess ratio of the mixture is a weighted average of individual excess ratios, with the weights 
the product of the means and the probabilities for each piece of the mixture.1 

If the probability of each piece of a mixture is pi, Σpi = 1, the mean of each piece of the mixture is 

mi, and Ri is the excess ratio for each piece of the mixture, then 

� 

R^ (L) = Σ pi mi Ri(L).

If each loss is divided by for example .75, then after development, the excess ratio at L is the 
same as the original excess ratio at .75 L.2  
Ri(L) is the excess ratio when the losses have all been divided by ri.
Thus Ri(L) = R(ri L). 

In the example on page 320, each mean is proportional to 1/divisor = 1/ri, and each probability is 
the same at 1/5.  Thus the weights are: (1/5)(1/ri).

The sum of the weights is: Σ (1/5)(1/ri) = (1/5)(1/.75 + 1/.833 + 1/1 + 1/1.25 + 1/1.5) = 1.3 

Thus 

� 

R^ (L) = Σ (1/5)(1/ri) R(ri L) = (1/5) Σ R(ri L) /ri.

Therefore, the corrected equation at the bottom of page 320 is:

� 

R^ (100) = (1/5){R(75)/.75 + R(83.3)/.833 + R(100)/1 + R(125)/1.25 + R(150)/1.50} 
  = (1/5){.6009/.75 + .5817/.833 + .5582/1 + .5384/1.25 + .5191/1.50} = .5669.

Similarly, the corrected equation at the top of page 321 is:

� 

R^ (5000) = (1/5){R(3750)/.75 + R(4165)/.833 + R(5000)/1 + R(6250)/1.25 + R(7500)/1.50} 
  = (1/5){.0157/.75 + .0070/.833 + 0/1 + 0/1.25 + 0/1.50} = .0059.

1 See page 154 of “Workers Compensation Excess Ratios: An Alternate Method of Estimation” by Mahler.
2 If each loss is multiplied by 1/.75 = 1.333, this is mathematically the same as uniform inflation of 33.3%.
Thus we can get the excess ratio after development, by taking the original excess ratio at the deflated value of
L/1.333 = .75 L.  Increasing the sizes of loss, increases the excess ratio over a fixed limit.
3 Mahler chose these loss divisors so that the total expected losses are unaffected.
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At page 324, some of the numerical values shown in the computation of R3(2000) are mixed up, 
although the final value is correct at 0.384 as shown. 
It should have read:
R3(2000) = (1.04167)(0.9999980) - (0.04167)(0.0057148)

+ (0.1667)(0.0026029) - (0.8333)(0.999995)
+ (0.1761)(0.999987) - (0.1761)(0.0011302) = 0.384.

Also, in Table 1 the excess ratios were computed for Gamma loss divisors with shape parameter 
16.67 and inverse scale parameter 15.67.  However, the text at page 323 refers to Gamma loss 
divisors with shape parameter s = 18.67 and inverse scale parameter l = 17.67; this distribution of 
loss divisors corresponds to a mean loss development of 1 and a variance of loss development 
of 0.060, matching the simple dispersion example.  

Using the intended Gamma parameters of s = 18.67 and l = 17.67 changes the excess ratios in 
Table 1 slightly, although the pattern remains the same.

Errata updated 29 July 2012



The values in the simple dispersion column of Table 1 at page 320 are revised in a similar manner 
to that for 5000. 
The values in Gamma dispersion column of Table 1 at page 320 are revised based on a shape 
parameter of s = 18.67 and inverse scale parameter of l = 17.67.

Corrected Table 1
  Excess Ratios

     No    Simple  Gamma
LIMIT Development Dispersion Dispersion
       50    .6888    .6949    .6939
     100    .5582    .5669    .5673
     500    .3012    .3080    .3069
  1,000    .1606    .1705    .1709
  2,000       .0904    .0931    .0927
  3,000    .0402    .0462    .0453
  4,000    .0100    .0194      .0182
  5,000    .0000    .0059      .0062
  6,000    .0000    .0007    .0020
  7,000    .0000    .0000    .0006
  8,000    .0000    .0000    .0002
  9,000    .0000    .0000    .0001
10,000    .0000    .0000    .0000 

As can be seen in corrected Table 1, the simple dispersion effect raises the excess ratios, 
especially at the higher limits.4 

At page 326, the formula near the bottom of page should have λ in place of X:

R(L) = (λ l/L)s-1 U(s-1, s+1-α, λ l/L).

 

4 It can be demonstrated that when dispersion has no overall effect, loss dispersion either increases an excess 
ratio or keeps it the same.  In most practical applications, the excess ratio will be increased by loss dispersion.
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