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Abstract

This paper presents an alternative method of calcu-
lating excess ratios for workers compensation insurance.
While the method shares many similarities with that pre-
sented by Gillam [1], there are important differences in
approach. The (adjusted) data is relied upon directly for
lower limits. For higher limits this is supplemented by a
mixed Pareto-exponential distribution fitted to the (ad-
justed) data.

1. INTRODUCTION

The excess ratio for a limit L is defined as the ratio of losses
excess of L to the total ground-up losses. If f(x) is the probability
density function for the size of loss distribution, then the excess
ratio is defined as:

R(L) =
!!
L (x"L)f(x)dx!!

0 xf(x)dx
:

The excess ratio can also be written in terms of the limited
expected value E[X;L] and the mean E[X]: R(L) = 1"E[X;L]=
E[X]. See for example Hogg and Klugman [2].

The excess ratio is an important statistic with many applica-
tions. For example, it can be used to calculate excess loss factors
for workers compensation insurance, as discussed in Gillam [1].
Generally, the excess loss factor for a limit is the product of an
excess ratio and a permissible loss ratio with the possible addi-
tion of a risk load.1

1The similar excess loss and allocated expense factors (ELAFs) are for use in the ALAE
option for retrospective rating. Let 1+ a be the factor to load losses for allocated loss
adjustment expense. Then for an accident limit L, one computes R(L=(1+ a)) and multi-
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Since excess loss factors are typically calculated by hazard
group and accident limit, excess ratios need to be estimated by
hazard group and by accident limit. This paper will show one
method of estimating such excess ratios, with an emphasis on
general principles rather than on the important details that may
affect the estimate in specific situations.

2. DATA

As always, the first step is to collect the appropriate data. As
in Gillam [1], Unit Statistical Plan data is used at third, fourth,
and fifth report. All medical only losses are assumed to be below
any accident limit. For lost time claims, the Unit Statistical Plan
data has the individual claim size2 for those claims greater than
$2,000. (Those claims of size less than $2,000 may be reported
on a grouped basis; all of their losses are below any accident
limit.)

The reported class codes can be used to divide the data into
hazard groups.3 Using the reported information the proportion
of loss dollars excess of any accident limit can be calculated.4

In order to illustrate the method in this paper, it will be ap-
plied to Massachusetts workers compensation data from com-
posite policy years 1988/1989 at 5th report,5 1989/1990 at 4th
report and 1990/1991 at 3rd report. In practice it is often appro-
priate to examine indications using data from several evaluation
dates.

plies by a permissible loss and allocated LAE ratio, in order to get an ELAF. This method
of calculating ELAFs assumes that the expected ALAE ratio is approximately the same
for all claim sizes. The effects of variations in this assumption are beyond the scope of
this paper. (ALAE data by claim has only recently started to be collected by workers
compensation rating bureaus.)
2Paid losses plus case reserves, divided between medical and indemnity.
3There are four hazard groups, with hazard group 4 having the highest expected claim
severity.
4Provided the accident limit is greater than $2,000 (times any adjustment factors).
5Composite policy year 1988/1989 includes all data from policies with effective dates
from July 1, 1988 to June 30, 1989. Fifth report is evaluated 66 months from policy
inception.
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3. ADJUSTMENTS TO DATA

The claim severity is adjusted from that observed in the data
to that expected in the policy effective period at the appropri-
ate report.6 Each claim is multiplied by an appropriate trend,
law amendment and development factor. The product of these
adjustment factors for a particular example is shown in Exhibit
1. These adjustment factors should be calculated in a manner
consistent with the procedures that produced the rates.7 In other
words, whatever procedure was used to project past losses to ul-
timate in the effective period in order to estimate rates, should
also be applied to the data in order to estimate excess ratios on
a consistent basis.

In the example presented in Exhibit 1, the adjustment factors
vary by injury kind and between medical and indemnity. To the
extent that expected severity trend, development, or law changes
differ significantly by claim size within injury kind, the adjust-
ment factors could be varied by claim size interval as well. This
refinement is beyond the scope of this paper.

The excess loss factors are used in pricing excess coverage
on a per occurrence basis, as discussed in Gillam [1]. Therefore,
we are interested in a distribution of loss values for accidents
rather than claims. After the above adjustments, all claims are
grouped into accidents except medical only claims.8 A computer
program was used which groups data by hazard group, accident
date, and policy number, on the assumption that a single policy
will not incur two or more accidents on one particular date.9

6The factors in Exhibit 1 include an estimate of average development to ultimate. How-
ever, the impact of the dispersion of claim sizes due to development beyond fifth report
has not been taken into account.
7While the adjustment factors are an important part of the process, they do not represent
a difference in the method presented. Therefore, the details are beyond the scope of this
paper. Gillam [1] gives an example. See Feldblum [3] for a general discussion of workers
compensation ratemaking.
8Medical only losses are much smaller than the accident limits purchased, and thus none
of them will exceed a relevant loss limit. All medical only losses are assumed to be
primary.
9Claims without a reported accident date are grouped by hazard group and claim number.
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Exhibit 2 shows a comparison of excess ratios computed us-
ing ungrouped claim data and data grouped into accidents. For
ungrouped data, the excess ratios obtained after adjusting the
limit by dividing by a factor of 1.1 were also examined.10

The differences between excess ratios calculated from the un-
grouped and grouped data were relatively small. At lower limits
the 1.1 factor seemed to produce too much of an adjustment, but
at higher limits it approximated the effect of the grouping of the
data into accidents.

It should be noted that while these results may be interesting,
they are far from conclusive. They represent the results for one
state for one point in time. At the higher limits random fluctu-
ations are expected to produce differing results over time. Even
more importantly, the method used to group claims into acci-
dents is far from perfect. Thus, it is inappropriate to assume the
difference represents an error in either method of accounting for
multi-claim accidents.

The accident data resulting from the grouping process forms
the basis of the analysis.11 The excess ratios computed from this
data are shown in Exhibit 3.

4. CURVE FITTING PROCEDURE

The mean residual life statistic provides a convenient way to
examine the tails of loss distributions.12 The mean residual life
at a limit x is defined as e(x) = (dollars excess of x)=(number
of accidents larger than x). Figure 1 displays the mean residual
lives for each of the four hazard groups. As expected, the higher
the hazard group the larger the mean residual life. However, as
we reach higher limits the data in the two smaller hazard groups,

10This is similar to the method in Gillam [1].
11For the three composite policy years combined there were a total of 157,726 lost-time
accidents of which 13,699 had adjusted values greater than $100,000.
12See for example Hogg and Klugman [2]. The mean residual life is the average excess
cost of a claim that exceeds a given limit.
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FIGURE 1

OBSERVED MEAN RESIDUAL LIVES ($000) BY HAZARD GROUP

1 and 4, becomes sparse. The chance of a very large claim ap-
pearing in the data for these hazard groups is too small13 to get
a reliable estimate of the mean residual life at high limits.

The hazard groups seem to have a similar pattern, with the
mean residual life increasing, at least up to an accident limit of
several million dollars. A number of adjustments are made to the
accident data in order to fit a distribution to it.

13For example, we can estimate that on average we expect about 0.4 accidents greater than
$1 million for hazard group 1. This is based on 96 accidents greater than $100,000 in the
data set for hazard group 1 and a tail probability of the fitted mixed Pareto-exponential
distribution of .0038 at an entry ratio of 12.4. (:0038)(96)# :4. In the reported data there
were 39 accidents greater than $1 million of which none were in hazard group 1, 11
were in hazard group 2, 27 were in hazard group 3, and 1 was in hazard group 4.
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FIGURE 2

MEAN RESIDUAL LIVES BY HAZARD GROUP
Data Truncated and Shifted at $100,000 and then Normalized

to a Mean of Unity

First, the accident data for third, fourth, and fifth report are
combined. Next, for each of the four hazard groups, the data are
truncated and shifted at $100,000.14 Finally, each of these four
sets of data is normalized to a mean of unity. Figure 2 shows the
mean residual lives for the resulting truncated, shifted and then
normalized data by hazard group. Bearing in mind the limited
data for hazard groups 1 and 4, it is plausible that the normalized

14Accidents with losses less than or equal to $100,000 are eliminated from consideration
(for now). Those of size x > $100,000 have $100,000 subtracted from them and appear
in the truncated and shifted data as x" $100,000.
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FIGURE 3

MEAN RESIDUAL LIVES, OBSERVED VS. FITTED
Data Truncated and Shifted at $100,000 and then Normalized

to a Mean of Unity

hazard group data might all come from approximately the same
distribution. These four sets of normalized data are combined,
as displayed in Figure 3.

A mixture15 of Pareto and exponential distributions is fit
to this combined data16 using the method of maximum likeli-

15See for example, Hogg and Klugman [2] for a discussion of the mixture of loss dis-
tribution models. The probability density function is f(x) = pg(x)+ (1"p)h(x), where g
and h are each probability density function.
16The data has been combined across reports, injury kinds, and hazard groups, repre-
senting over 13,000 accidents over $100,000 in size.
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hood.17 The Pareto and exponential curves are standard size of
loss distributions, described in Exhibits 5 and 6. The mixed dis-
tribution is (p) (Pareto distribution)+ (1"p) (exponential distri-
bution) where p is a fitted parameter with a value between zero
and one. Together with the two Pareto parameters (shape and
scale) and the single exponential parameter, the mixed distribu-
tion has a total of four parameters.

The fitted parameters are displayed in Exhibit 4. Figure 3
compares the mean residual lives for the fitted curve and the ob-
served data. Figure 4 shows the probability density functions for
the mixed Pareto-exponential as well as the Pareto and exponen-
tial distributions. For small entry ratios the mixed curve behaves
as the short-tailed exponential, while for larger entry ratios it
behaves as the long-tailed Pareto.

Figure 5 compares the excess ratios for the mixed distribution
to that of the exponential and the Pareto. As derived in the Ap-
pendix, the excess ratio for the mixed distribution is a weighted
average of the excess ratios of the individual distributions, with
the weights being (p) (mean of Pareto) and (1"p) (mean of the
exponential). In this case, the weights are .2132 and .7868.18

Thus, for lower entry ratios the excess ratio of the mixed dis-
tribution is close to that for the exponential. At higher limits,
the excess ratio for the short-tailed exponential is too small to
contribute significantly. Therefore, the excess ratio of the mixed
distribution for higher entry ratios is approximately 21% of that
for the Pareto.

17The result of the maximum likelihood method has a mean slightly different from unity,
so the scale parameters of the Pareto and exponential have been adjusted so as to have the
desired mean of unity. The method of maximum likelihood is a commonly used method
for fitting size of loss distributions to either grouped or ungrouped data, as discussed
in Hogg and Klugman [2]. In this case, the method was applied to the individual data
points rather than data grouped into intervals.
18This is based on p= :04294, a mean of the Pareto of 12:83704=(3:58490" 1) = 4:9662
and a mean of the exponential of .82205, as shown in Exhibit 4. :2132 = (:04294)(4:9662)
=$(:04294)(4:9662)+ (:95706)(:82205)%.
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FIGURE 4

PROBABILITY DENSITY FUNCTIONS
Data Truncated and Shifted at $100,000 and then Normalized

to a Mean of Unity

5. ESTIMATION OF EXCESS RATIOS

For each hazard group this fitted curve, scaled to the observed
mean, is used in Exhibit 7 to estimate the excess ratios for the
data truncated and shifted at $100,000.

The excess ratios for accident limits less than or equal to
$100,000 are determined directly from the data. For accident
limits L above $100,000, the excess ratio is estimated from the
product of (empirical excess ratio at $100,000)& (excess ratio es-
timated from mixed Pareto-exponential curve for L" $100,000).
See the Appendix. The former is shown in Exhibit 2, the latter in
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FIGURE 5

EXCESS RATIOS
Data Truncated and Shifted at $100,000 and then Normalized

to a Mean of Unity

Exhibit 7, while the product is in Exhibit 8.19 Figure 6 compares
the estimated and observed excess ratios.

This method provides a smooth transition from relying on data
for lower accident limits to relying on a fitted curve to provide
some of the information at higher accident limits. It is important
to note that even at higher accident limits an important contribu-
tion to the excess ratio is R(100,000) which is calculated directly
from the data.

19It should be noted that for a limit of $100,000 the two methods automatically give the
same answer since the excess ratio estimated from the curve at 0 is always unity.
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FIGURE 6

EXCESS RATIOS BY HAZARD GROUP
Observed versus Estimated

6. SELECTION OF A TRUNCATION POINT

The $100,000 truncation point was selected to permit the max-
imum reliance on reported data while still retaining enough data
above the truncation point to permit the reasonable fitting of a
loss distribution. For this technique and data set, a truncation
point around $100,000 achieves the desired balance. Other val-
ues such as $50,000 or $150,000 could also have been used
without substantially altering the estimated excess ratios.

In general, the truncation point should be a round number
prior to the “thinning out” of the data. In this data set there
are over 13,000 accidents with values greater than $100,000,
with the two smallest hazard groups having about 100 or 200
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accidents.20 For the two larger hazard groups, a higher truncation
point could have been selected, but for hazard groups 1 and 4 a
higher truncation point would make it difficult to get a reliable
average value to use to normalize the data.21

7. FEATURES OF THE PROCEDURE

This procedure allows us to rely on the actual data for the
lower layers where there is a larger volume of data less subject
to random fluctuation. The task of fitting curves to the smaller
accidents is avoided totally.

Fitting curves to the combined data regardless of injury kind
allows claims to be grouped into accidents.22 It also avoids rely-
ing on the sometimes arbitrary or judgmental division of claims
between injury kind.23 The mixed Pareto-exponential distribu-
tion fit to the truncated and shifted data assigns the preponder-
ance of weight to the short-tailed exponential distribution.24 The
long-tailed Pareto distribution models the behavior of the ex-
treme tail of the accident distribution and has a very large effect
on the estimated excess ratios for limits over $500,000.

Thus, the estimation procedure can be viewed in terms of three
layers. The layer of losses below $100,000 is estimated with-
out curve fitting. The layer from $100,000 to about $500,000 is

20There are 96 accidents from hazard group 1 and 228 accidents from hazard group 4.
21These average values are used in Exhibit 7 in order to calculate excess ratios by hazard
group.
22An accident may consist of claims of several different injury kinds. For the calculation
of the effect of accident limits it is not inherently necessary to divide dollars between
injury kinds.
23Note, however, that prior to grouping by accident, claims of differing injury kinds have
somewhat different adjustment factors applied to them, as shown in Exhibit 1.
24As is common in the use of mixed distribution, a mixture of a longer and shorter tailed
distribution was selected. Originally, the short-tailed distribution was a Weibull. However,
the fitted Weibull portions of the mixed distribution were very close to an exponential.
Therefore, the one parameter exponential was substituted for the two parameter Weibull
of which the exponential is a special case.
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modeled largely by the exponential distribution. The layer above
about $500,000 is modeled largely by the Pareto distribution.25

8. CONCLUSION

Actuaries should be familiar with the Pareto distribution, the
exponential distribution, and truncated and shifted data. These
basic concepts have been employed together in a procedure with
a powerful ability to fit the observed data. This procedure of
estimating excess ratios is likely to be useful in various practical
applications.

25The parameters of the fitted Pareto-exponential determine the approximate layers above
$100,000. Although it may be conceptually useful to think of it that way, there is no actual
division into layers above $100,000.
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EXHIBIT 1

COMBINED TREND, LAW, AND DEVELOPMENT FACTORS

INDEMNITY

Composite Injury Injury Injury Injury Injury
Pol. Yr. Kind 1 Kind 2 Kind 3 Kind 4 Kind 5

88/89 1.79 1.82 1.41 1.28 1.04
89/90 1.53 1.87 1.38 1.26 0.95
90/91 1.42 1.56 1.44 1.31 0.91

MEDICAL

Composite Injury Injury Injury Injury Injury Injury
Pol. Yr. Kind 1 Kind 2 Kind 3 Kind 4 Kind 5 Kind 6

88/89 2.29 2.29 2.29 1.85 1.85 1.85
89/90 3.93 2.06 2.15 1.74 1.61 1.67
90/91 3.30 1.96 2.00 1.62 1.38 1.50

Notes: Product of separate factors calculated to bring all losses to ultimate and a common level,
consistent with a 10/1/96 effective date. Injury Kind 1 = Fatal, Injury Kind 2 = Permanent Total,
Injury Kind 3 =Major Permanent Partial, Injury Kind 4 =Minor Permanent Partial, Injury Kind
5 = Temporary Total, Injury Kind 6 =Medical Only.

EXHIBIT 2

OBSERVED EXCESS RATIOS FOR UNADJUSTED DATA1

Hazard Group 2

Claim Data

Limit ($000) Accident Data2 Using Limit Using Limit' 1:1
25 .5230 .5130 .5373
100 .1417 .1342 .1553
500 .0167 .0157 .0171

1,000 .0087 .0078 .0087
2,000 .0042 .0039 .0043

Hazard Group 3

25 .6335 .6259 .6465
100 .2369 .2276 .2560
500 .0311 .0295 .0324

1,000 .0128 .0118 .0138
2,000 .0042 .0041 .0047

1The data for three separate reports, 88/89 at 3rd, 87/88 at 4th, 86/87 at 5th have been combined and
then an excess ratio has been calculated. The data have not been adjusted for trend, law amendments,
or development.
2Claims with the same hazard group, accident date, and policy number are grouped into the same
accident.
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EXHIBIT 3

EXCESS RATIOS BASED ON ADJUSTED DATA1

Accident
Limit Hazard Hazard Hazard Hazard
($000) Group 12 Group 2 Group 3 Group 42

25 0.5950 0.6288 0.7283 0.8064
30 0.5530 0.5888 0.6960 0.7817
35 0.5142 0.5521 0.6655 0.7581
40 0.4791 0.5184 0.6366 0.7353
50 0.4177 0.4586 0.5831 0.6918
75 0.2974 0.3441 0.4709 0.5935
100 0.2106 0.2643 0.3832 0.5098
125 0.1494 0.2072 0.3146 0.4353
150 0.1086 0.1647 0.2604 0.3715
175 0.0804 0.1327 0.2171 0.3165
200 0.0622 0.1081 0.1827 0.2699
250 0.0400 0.0754 0.1333 0.2011
300 0.0252 0.0559 0.1021 0.1526
500 0.0044 0.0271 0.0541 0.0730

1,000 0.0000 0.0126 0.0286 0.0317
2,000 0.0000 0.0045 0.0118 0.0033
3,000 0.0000 0.0021 0.0066 0.0000
4,000 0.0000 0.0009 0.0047 0.0000
5,000 0.0000 0.0000 0.0034 0.0000

1Massachusetts Workers Compensation, Composite Policy Years 88/89 at 5th, 89/90 at 4th, 90/91 at
3rd.
2Note there is relatively little data for hazard groups 1 and 4 since they each represent only between 1
and 2 percent of total premiums. In this reported data there were no accidents greater than $1,000,000
for hazard group 1 and only one for hazard group 4. Thus the empirical excess ratios at higher limits
for these hazard groups are poor estimates of future expected excess ratios.
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EXHIBIT 4

MIXED PARETO-EXPONENTIAL DISTRIBUTION

Parameters:

Pareto Shape = s 3.58490
Pareto Scale = b 12.83704
Exponential Scale = c 0.82205
Weight to Pareto = p 0.04294

Mean = 1 Coef. of Var. = 1:94
Variance = 3:75 Skewness = 30

Excess Ratios

Entry Ratio Excess Ratio Entry Ratio Excess Ratio

0.1 0.9057 11 0.0431
0.2 0.8217 12 0.0387
0.3 0.7470 13 0.0350
0.4 0.6806 14 0.0317
0.5 0.6214 15 0.0288
0.6 0.5687 20 0.0188
0.7 0.5217 25 0.0131
0.8 0.4797 30 0.0095
0.9 0.4422 35 0.0071
1.0 0.4088 40 0.0055
1.25 0.3397 45 0.0044
1.5 0.2872 50 0.0035
1.75 0.2469 55 0.0029
2.0 0.2157 60 0.0024
2.5 0.1722 65 0.0020
3.0 0.1444 70 0.0017
3.5 0.1255 75 0.0015
4.0 0.1118 80 0.0013
4.5 0.1014 85 0.0011
5.0 0.0929 90 0.0010
6.0 0.0797 95 0.0009
7.0 0.0694 100 0.0008
8.0 0.0610
9.0 0.0540
10.0 0.0481

Note: See the Appendix for a sample calculation of an excess ratio.
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EXHIBIT 5

PARETO DISTRIBUTION

F(x;s,b) = 1"
"
1+

x

b

#"s
f(x;s,b) =

s

b

"
1+

x

b

#"(s+1)
E(Xy) =

by¡ (y+1)¡ (s" y)
¡ (s)

, "1< y < s

If y is an integer N,

E(XN ) =
bNN!$N

i=1(s" i)
N < s

Mean =
b

s" 1 Variance =
b2s

(s"1)2(s" 2)

Coefficient of Variation =

%
s

s"2 s > 2

Skewness =
2(s+1)
s"3

%
s" 2
s

s > 3

Excess Ratio = R(x) =
"
1+

x

b

#1"s
Mean Residual Life = e(x) =

b+ x
s"1

Note: s is the shape parameter, b is the scale parameter.
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EXHIBIT 6

EXPONENTIAL DISTRIBUTION

F(x;c) = 1" e"x=c

f(x;c) =
1
c
e"x=c

E(Xy) = cy¡ (1+ y) y >"1
If y is an integer N,

E(XN) = cNN! N >"1
Mean = c

Variance = c2

Coefficient of Variation = Standard Deviation'Mean = 1
Skewness = 2

Excess Ratio = R(x) = e"x=c

Mean Residual Life = e(x) = c

Note: c is the scale parameter.
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EXHIBIT 8

ESTIMATED EXCESS RATIOS BASED ON ADJUSTED DATA AND
CURVES FIT TO DATA TRUNCATED AND SHIFTED AT $100,000

Accident
Limit Hazard Hazard Hazard Hazard
($000) Group 1 Group 2 Group 3 Group 4

25 0.5950 0.6288 0.7283 0.8064
30 0.5530 0.5888 0.6960 0.7817
35 0.5142 0.5521 0.6655 0.7581
40 0.4791 0.5184 0.6366 0.7353
50 0.4177 0.4586 0.5831 0.6918
75 0.2974 0.3441 0.4709 0.5935
100 0.2106 0.2643 0.3832 0.5098
125 0.1509 0.2064 0.3143 0.4379
150 0.1109 0.1633 0.2598 0.3779
175 0.0839 0.1311 0.2168 0.3278
200 0.0655 0.1070 0.1826 0.2857
250 0.0439 0.0750 0.1337 0.2210
300 0.0330 0.0563 0.1024 0.1753
500 0.0180 0.0293 0.0517 0.0890

1,000 0.0078 0.0141 0.0256 0.0434
2,000 0.0025 0.0053 0.0107 0.0203
3,000 0.0012 0.0026 0.0056 0.0114
4,000 0.0006 0.0015 0.0033 0.0071
5,000 0.0004 0.0010 0.0021 0.0047

Note: For accident limits of $100,000 or less the excess ratio is taken directly from Exhibit 3. For
accident limits larger than $100,000, the excess ratio is a product of that for $100,000 in Exhibit 3
and the excess ratio shown in Exhibit 7. For example, for hazard group 3 at a limit of $1 million,
(:3832)(:0669) = :0256.
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APPENDIX

Excess Ratios, Truncated and Shifted Data

Let f(x) be the size of loss probability density function. Then
the excess ratio for limit L is given by:

R(L) =
!!
L (x"L)f(x)dx!!

0 xf(x)dx

=
average dollars of loss excess of L

average size of loss

=
total dollars of loss excess of L

total dollars of loss
:

Assume we have a truncation point of T. Assume we look at
the size of loss distribution for the data truncated and shifted at
T. So for a loss x > T, we instead look at x"T. Then the excess
ratio for the truncated and shifted data for ground up limit L > T
can be written as

R̂(L"T):
Assume we were computing the (observed) excess ratio for a

$500,000 accident limit, for hazard group 3 data26

R($500,000) =
HG3 Losses Excess of $500,000

Total HG3 Losses (including Medical Only)
:

We can also express this in terms of the data truncated and
shifted at $100,000 as follows:

R($500,000) =
HG3 Losses Excess of $500,000
HG3 Losses Excess of $100,000

& HG3 Losses Excess of $100,000
Total HG3 Losses (including Medical Only)

:

26For 3rd, 4th, and 5th report combined, adjusted for trend, law changes, and devel-
opment.
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However, the second term is the excess ratio at $100,000,
R($100,000), while the first term is R̂($400,000) = excess ratio
at $400,000 for the data truncated and shifted at $100,000. Thus

R($500,000) = R̂($400,000)&R($100,000):
In general, for limits L > $100,000

R(L) = R̂(L" $100,000)&R(100,000):
In the methodology used here, R̂(L"$100,000) is estimated

via a curve fit to the data truncated and shifted at $100,000, while
R(100,000) is estimated from the data.

Excess Ratios, Mixed Distributions

Let a (mixed) distribution be a weighted average of two other
distributions:

f(x) = pg(x)+ (1"p)h(x):
Then the mean is a weighted average of the two means:

mf =
& !

0
xf(x)dx=

& !

0
x$pg(x)+ (1"p)h(x)%dx

= p
& !

0
xg(x)dx+(1"p)

& !

0
xh(x)dx

= pmg+(1"p)mh:
The excess ratio for limit L is given by:

Rf(L) =
!!
L (x"L)f(x)dx!!

0 xf(x)dx

=
p
!!
L (x"L)g(x)dx+(1"p)

!!
L (x"L)h(x)dx

pmg +(1"p)mh

=
pmgRg(L)+ (1"p)mhRh(L)

pmg+(1"p)mh
:

So the excess ratio for a mixed distribution is a weighted
average of the excess ratios for the individual distributions, with



WORKERS COMPENSATION EXCESS RATIOS 155

weights equal to the product of the mean of each distribution
times the weight in the mixture of each distribution.27

For example, for the mixed Pareto-exponential distribution
with parameters: 3.5849, 12.83704, .82205, .04294, at an entry
ratio of 2, the excess ratio is computed as follows:

excess ratio for Pareto (3:5849,12:83704) at entry ratio 2
(of the mixed distribution)

=
'
1+

2
12:83704

(1"3:5849
= :6878

excess ratio for exponential (.82205) at entry ratio 2
(of the mixed distribution)

= e"2=:82205 = :0878

mean for Pareto (3:5849,12,83704)

=
12:83704
3:5849"1 = 4:9662

mean for exponential (:82205) = :82205

excess ratio for Pareto-exponential at entry ratio 2

=
(:04294)(4:9662)(:6878)+ (1" :04294)(:82205)(:0878)

(:04294)(4:9662)+ (1" :04294)(:82205)
= :2157=1 = :2157:

This matches the value shown on Exhibit 4.

Moments of Mixed Models

Moments of a mixed model are a weighted average of the
moments of the individual distributions. For example, for the
mixed Pareto-exponential distribution with parameters: 3.5849,

27This is closely related to the similar result for increased limit factors discussed in Venter
[4].
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12.83704, .82205, .04294, the moments are a weighted average
using weights of .04294 applied to the moments of the Pareto and
1" :04294 = :95706 applied to the moments of the exponential.

Moment Pareto Exponential Pareto-exponential

1 4.9662 .82205 1
2 80.4478 1.35153 4.7479
3 5296.86 3.3331 230.64

Then the variance of the Pareto-exponential is 4:7479"12 =
3:7479. Note that the variance of the mixed distribution is not
the weighted average of the individual variances. The skewness
of the Pareto-exponential is

$230:64" (3)(4:7479)(12)+2(13)%=3:74791:5 = 30:1:
The coefficient of variation is (

(
3:7479)=1 = 1:94. These match

the values shown on Exhibit 4.


