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Abstract 

This paper describes how an actuary can use fuzzy 
logic to adjust insurance rates by considering both claim 
experience data and supplementary information. This 
supplementary data may be financial or marketing data 
or statements that reflect the philosophy of  the actuary's 
company or client. The paper shows how to build and 
fine-tune a rate-making model by using workers com- 
pensation insurance data from an insurance company. 
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1. INTRODUCTION 

Through the education programs of the Society of Actuar- 
ies and the Casualty Actuarial Society, actuaries are equipped 
with statistical tools to analyze experience data and to determine 
necessary rate changes for their insurance products. Students are 
often surprised to learn that those rate changes are frequently not 
accepted "as is" by company management. Actuaries work with 
sales, marketing, and underwriting personnel to develop rates 
that will be competitive and adequate. 
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Actuaries frequently consider statistical data specific to rates, 
such as the results of experience studies. In setting premiums, 
actuaries also consider constraints that supplement experience 
data. These constraints may reflect company philosophy, such as 
"We wish to increase our market share moderately from year to 
year." They may also include financial data, such as "Raise the 
rates if we experience high loss ratios or low profit margins." 

The theory of fuzzy sets provides a natural setting in which to 
handle such statements. Through fuzzy sets, one can account for 
vague notions whose boundaries are not clearly defined, such as 
"large amount of business." Fuzzy logic provides a uniform way 
to handle such factors that influence the indicated rate change 
(Zadeh [20]). A fuzzy logic system is a type of expert system. 
An advantage of using a fuzzy logic system is that it provides 
a systematic way to develop mathematical rules from linguistic 
ones. This paper describes step-by-step how an actuary can ad- 
just rates by beginning with linguistic rules that consider both 
experience data and supplementary information. 

Fuzzy sets have only recently been applied to problems in ac- 
tuarial science. DeWit [5] and Lemaire [13] show how to apply 
fuzzy sets in individual underwriting, and Young [16] indicates 
how to use fuzzy sets in group health underwriting. Ostaszewski 
[15] suggests several areas in actuarial science in which fuzzy 
sets may prove useful. Cummins and Derrig [2] apply a form 
of fuzzy logic to calculate fuzzy trends in property-liability in- 
surance. Derrig and Ostaszewski [4] employ fuzzy clustering in 
risk classification and provide an example in automobile insur- 
ance. Cummins and Derrig [3] use fuzzy arithmetic in pricing 
property-liability insurance. In an earlier paper [18], I show how 
to develop a fuzzy logic model with which actuaries can adjust 
insurance rates by considering only constraints or information 
that are ancillary to experience data. 

Section 2 introduces fuzzy sets and defines operators corre- 
sponding to the linguistic connectors and and or and the modifier 
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not. It also describes a simple fuzzy inference system. Refer- 
ences for fuzzy sets include Dubois and Prade [7], Kosko [12], 
and Zadeh [19]. Some references for fuzzy logic and fuzzy in- 
ference are Bellman and Zadeh [1], Driankov et al. [6], Kandel 
and Langholz [9], Klir and Folger [11], Mamdani [14], Zadeh 
[20], and Zimmermann [21]. 

Section 3 describes how to construct and fine-tune a pricing 
model using fuzzy inference. Section 4 shows how to build a 
pricing model using workers compensation insurance data from 
an insurance company. Finally, Section 5 summarizes the paper 's  
key points. 

2. FUZZY INFERENCE 

Fuzzy sets describe concepts that are vague (Zadeh [19]). The 
fuzziness of  a set arises from the lack of well-defined bound- 
aries. This lack is due to the imprecise nature of language; that 
is, objects can possess an attribute to various degrees. A fuzzy 
set corresponding to a given characteristic assigns a value to an 
object, the degree to which the object possesses the attribute. 

Examples of fuzzy sets encountered in insurance pricing are 
stable rates, large profits, and small amounts of business renewed 
or written. Indeed, rates can be stable to different degrees de- 
pending on the relative or absolute changes in the premium rate. 
Also, profits can be large to different degrees depending on the 
relative or absolute amount of  profits. 

Fuzzy sets generalize nonfuzzy, or crisp, sets. A crisp set, C, 
is given by a characteristic function: 

nc  : X ~ {0,1}, 

in which Xc(X)= 1 if x is in C; otherwise, Xc(X)= 0. Fuzzy 
sets recognize that objects can belong to a given set to different 
degrees. They essentially expand the notion of  set to allow partial 
membership in a set. 
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DEFINITION 2.1 A fuZZy set, A, in a universe of discourse, X, is a 
function m a on X that takes values in the unit interval [0, 1]: 

m A : X ~ [0, 1]. 

The function m a is called the membership function of A, and for 
any x in X, mA(x ) in [0, 1] represents the grade of membership of 
x i n A .  

EXAMPLE 2.1 One may define stable rates by the following hy- 
pothetical fuzzy set: 

0, if r < - 0 . 1 0 ,  

r + 0 . 1 0  if - 0 . 1 0 < r < - 0 . 0 5 ,  
0.05 ' 

mstable(r ) = 1, if - 0.05 < r < 0.05, 

0.10-r__ if 0 . 0 5 < r < 0 . 1 0 ,  
0.05 ' 

0, if r_> 0.10, 

in which r is the relative rate change. For example, the degree to 
which a rate increase of  8% is stable is 0.40. It does not mean, 
however, that one will view an 8% rate increase as stable 40% 
of  the time and unstable the rest of  the time. See Figure 1 for the 
graph of  this fuzzy set. The points + 0.05 and 4-0.10 depend on 
the line of  business. Also, one may want to use a fuzzy set that 
is not necessarily piecewise linear. 

We now define three basic operations on fuzzy sets. 

DEFINITION 2 . 2  

given by 

mauB(X) - max[ma(x),ms(x)], x E X, 

and the intersection, A M B, is given by 

manB(x ) =-- min[ma(x) ,mB(x)] ,  x E X .  

The union, A U B, of two fuzzy sets, A and B, is 
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FIGURE 1 

GRAPH OF FUZZY SET OF STABLE RATES, EXAMPLE 2.1 
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The complement, -A ,  of fuzzy set A is given by 

m_A(X ) ~ 1 - -mA(X ), X E X.  

The union operation acts as an or operator, the intersection 
operation acts as and, and the complement operation acts as not. 
Thus, for example, mAnB(X) represents the degree to which x is 
a member of both A and B. The given definitions are not the 
only acceptable ones for these operations. Klir and Folger [11] 
specify axioms that union, intersection, and complement satisfy. 
Also, Dubois and Prade [7] and Young [16] discuss alternative 
operators. One in particular is the intersection operator called the 
algebraic product. The algebraic product of two fuzzy sets A and 
B is given by 

mAB(X ) = mA(X ) • roB(X). 

The algebraic product allows the fuzzy sets to interact in the in- 
tersection. That is, both fuzzy sets contribute to the value of the 
intersection, as opposed to the min operator in which the mini- 
mum of the two values determines the value of the intersection. 
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We will consider this intersection operator in some of  the ex- 
amples below. Unless otherwise stated, however, the intersection 
operator is the min operator. 

EXAMPLE 2.2 Suppose we want to intersect the fuzzy set of  
stable rates from Example 2.1 with the fuzzy set of low actual- 
to-expected ratios given by 

1, if x < 0 . 9 0 ,  
1.10 - x  

mt°w(x) = ] ---~-~-0---' if 0.90 < r < 1.10, 

1.0, if 1.10 <x ,  

in which x is the ratio of actual claims to expected claims (A/E 
ratio).l We first imbed these fuzzy sets in the product space of  
pairs {(r,x) : r >_ -1 .00 ,  x > 0}, as follows 

mstable(r, X) = mstable (r) 

mtow(r,x ) = mlow(X ). 

See Figure 2 for the graph of the intersection of these two fuzzy 
sets using the min operator and Figure 3 for the graph of  the 
intersection of these two fuzzy sets using the algebraic product. 

Note that the algebraic product operator allows the two fuzzy 
sets to interact more than does the min operator. For exam- 
ple, suppose the rate decrease is 6% and the A/E ratio is 0.95. 
Then, the degree to which the rate change is stable is 0.80, and 
the degree to which the A/E ratio is low is 0.75. The degree 
to which the rate change is stable and the A/E ratio is low is 
min(0.80,0.75) = 0.75 if we use the min operator to intersect the 

lOne type of  experience study is called an actual-to-expected study. In this study, one 
compares the actual (incurred) claims relative to the expected claims built into the pre- 
mium. If this study is performed before the claims have run out, then one develops the 
actual claims to an ultimate basis to estimate actual incurred claims. One result of  this 
study is the ratio o f  actual claims to expected claims, called the actual-to-expected ra- 
tio, or briefly A/E ratio. A high A/E ratio indicates that the allowance for claims in the 
premium is too low. 
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FIGURE 2 

INTERSECTION OF STABLE RATES AND LOW 
ACTUAL-TO-EXPECTED RATIO (USING THE MIN OPERATOR) 

1.0 

MIN o.,. 

0 

RateCl" 
itio 

two fuzzy sets, and is (0.80)(0.75) = 0.60 if we use the algebraic 
product to intersect them. 

A few years after fuzzy sets were introduced, Bellman and 
Zadeh [1] developed the first fuzzy logic model in which goals 
and constraints were defined as fuzzy sets and their intersection 
was the fuzzy set of the decision. Cummins and Derrig [2] use 
the method of Bellman and Zadeh to calculate a trend factor 
in property-liability insurance. They calculate several possible 
trends using accepted statistical procedures. For each trend, they 
determine the degree to which the estimate is good by intersecting 
several fuzzy goals. They suggest that one may choose the trend 
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FIGURE 3 

INTERSECTION OF STABLE RATES AND LOW 
ACTUAL-TO-EXPECTED RATIO (USING THE ALGEBRAIC 

PRODUCT) 
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that has the highest degree of goodness. Cummins and Derrig 
also propose that one may calculate a trend that accounts for all 
the trends by forming a weighted average of these trends using 
the membership degrees as weights. It is this latter method that 
more closely relates to the technique proposed below. 

This paper shows how actuaries may incorporate supplemen- 
tary information in their pricing models, for example, amount of 
business written or profit earned. Instead of using the method 
designed by Bellman and Zadeh [1], we follow Zadeh [20] by 
applying fuzzy inference. In particular, we use a simple form of 
fuzzy inference proposed by Mamdani [14], who has been a pi- 
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oneer in applying fuzzy logic in industry. We describe this fuzzy 
inference after the following example. 2 

E X A M P L E  2 . 3  

(a) If the A/E ratio is high and the amount of  business is large, 
then raise the rates. 

(b) If the A/E ratio is moderate and the amount of  business is 
moderate, then do not change the rates. 

(c) If the A/E ratio is low and the amount of  business is small, 
then lower the rates. 

An actuary can only apply a crisp rate change, not a fuzzy 
expression such as "raise the rates." We therefore set the phrase 
"raise the rates" equal to the largest rate increase we are willing to 
administer; similarly, "lower the rates" is replaced by the largest 
rate decrease we are willing to administer. The reason for doing 
so will become evident as we proceed below. 

In general, our fuzzy system is a collection of n fuzzy rules: 

If x is A l, then y is Yl. 

If x is A2, then y is Y2. 

If x is An, then y is Yn" 

If we are given specific input, or explanatory, data J (possibly 
multi-dimensional if the A i are compound hypotheses, as in Ex- 
ample 2.3), then measure the degree to which J satisfies the 
hypothesis A i in rule i, i = 1 . . . . .  n, namely, mA,(Yc). To calculate 

2Throughout this paper, by default, assume that if none of the hypotheses is satisfied 
to a positive degree, then do nothing. In the following example, this would mean "do 
not change the rates." This convention is consistent with the weighting scheme defined 
below in Equation 2.1 if one sets 0/0 equal to 0. 
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the output ~, form the weighted average 

n 

~-'~yimA, (~C) 
_ i = 1  (2.1) 

n 

i=1  

A fuzzy hypothesis A may be a compound statement, such 
as "our company has been writing a great deal of business and 
earning a small amount of profit." In this case, we intersect the 
fuzzy sets corresponding to a great deal of business and a small 
amount of profit with the min operator, as in Definition 2.2. 
Alternatively, one may use the algebraic product operator to in- 
tersect the fuzzy sets, as in Example 2.2. Also, if a compound 
hypothesis involves the connector or and modifier not, then use 
the max and negative operators, respectively, to combine the in- 
dividual fuzzy sets. In Section 3, we describe how to obtain a 
specific output Yi, i = 1 . . . . .  n, if the conclusion is expressed as a 
fuzzy statement, such as "raise the rates a great deal." 

EXAMPLE 2.4 To continue with Example 2.3, suppose that we 
have determined the following values of Yi that correspond to the 
conclusions in the fuzzy rules that we state in that example: 

(a) If the A/E ratio is high and the amount of business is large, 
then raise the rates 15%. 

(b) If the A/E ratio is moderate and the amount of business is 
moderate, then do not change the rates. 

(c) If the A/E ratio is low and the amount of business is small, 
then lower the rates 10%. 

Again, if none of the hypotheses is satisfied, then do not 
change the rates. We are given that the actual-to-expected (A/E) 
ratio is 1.05, and the amount of business is 3.0 (on some appro- 
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priate scale). Given fuzzy sets for the components of the hypothe- 
ses, the next step is to calculate the degree to which the input 
satisfies each hypothesis. Evaluate the degree of membership of 
the A/E ratio, 1.05, in the fuzzy sets for high, moderate, and low. 
Hypothetically, suppose that the A/E ratio is high to degree 0.75, 
moderate to degree 0.25, and low to degree 0.0. Similarly, eval- 
uate the degree of membership of the amount of business, 3.0, 
in the fuzzy sets for large, moderate, and small. Suppose that the 
amount of business is large to degree 0.50, moderate to degree 
0.50, and small to degree 0.0. The hypothesis of the first rule is, 
thus, satisfied to degree rnin(0.75,0.50) = 0.50; the second rule, 
min(0.25,0.50) = 0.25; and the third rule, min(0.0,0.0)= 0.0. 
Our rate change is, therefore, 

= 0.50(0.15) + 0.25(0.00) + 0.0(-0.10) = 0.10, 
0.50 + 0.25 + 0.0 

or increase the rates 10%. Compare the expression for ~ with 
Equation 2.1. If, instead of the min operator, we were to use 
the algebraic product operator for intersection, the rate change 
would be 

= 0.375(0.15) + 0.125(0.00) + 0.0(-0.10) = 0.1125. 
0.375 + 0.125 + 0.0 

In Examples 2.3 and 2.4, we incorporate experience data, the 
actual-to-expected ratio, in the hypotheses of our fuzzy rules. 
One may also include experience data in the conclusion, as in 
the following example. 

EXAMPLE 2.5 The following fuzzy rules may more accurately 
reflect the philosophy of the company: 

(a) If the amount of business is increasing greatly and the 
profit margin is decreasing greatly, then raise the rates more 
than indicated by the A/E ratio. 
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(b) If the amount of business is stable and the profit margin is 
stable, then change the rates as indicated by the A/E ratio. 

(c) If the amount of business is decreasing greatly and the 
profit margin is increasing greatly, then lower the rates 
more than indicated by the A/E ratio. 

3. B U I L D I N G  A F U Z Z Y  I N F E R E N C E  M O D E L  

The previous section describes how to obtain a crisp output 
given a fuzzy inference model and crisp input ~. This section ex- 
plains how to construct and fine-tune a fuzzy logic model. Young 
[18] presents steps that may be followed to build a fuzzy logic 
model. They are repeated here so that this work is self-contained. 
Section 4 shows how to follow these steps in creating and fine- 
tuning a fuzzy logic model. Because the following procedure 
formalizes the discussion in Section 2, the casual or first-time 
reader may wish to skip to Section 4. 

. Verbally state linguistic rules. These rules may reflect 
current or desired company philosophy. They may arise 
from the business sense of actuaries. They may result from 
the combined input of  several functions in the insurance 
company. 

. Create the fuzzy sets corresponding to the hypotheses. As- 
sume that the linguistic variables used are naturally or- 
dered. For example, the linguistic variable of  amount of  
business is naturally ordered because large amounts of 
business correspond with large numbers that measure the 
amount of business, and similarly for small amounts of 
business. 

(a) To create the fuzzy sets for the j th dimension of  the 
input, partition the input space Xj = [Xj, I,Xj.n(j) ] into 
n(j) -- 1 disjoint subintervals, one fewer than the num- 
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ber, n(j), of  fuzzy sets defined on Xj. Write the bound- 
ary points of the subintervals: 

xj, 1 < xj, z < . . .  < xj,,~/). 

Even though the input space Xj may be infinitely long, 
the example below describes how to determine xj. l and 
xj,,,(j) so that we can effectively limit Xj to the finite 
interval [Xj,l,Xj,n(j) ]. 

(b) The graph of the leftmost fuzzy set  ALl is defined 
to be the line segment joining the points (xj, 1, 1) and 
(x j2,0) and 0 elsewhere. The graph of  each of  the 
middle n ( j ) -  2 sets  Ajj¢O. ) is the triangular fuzzy set 
that connects the points (xj,k(j)_ 1,0), (xj,k(j~, 1), and 
(xj,k(j)+l,O) and 0 elsewhere, k(j) = 2 . . . . .  n ( j ) -  1. Fi- 
nally, the n(j)-th fuzzy set Aj,n(j) is the line segment 
joining the points (xj,n(j)_ l, 0) and (xj,n(j), 1) and 0 else- 
where. Note that for any input value of x j, the sum 
(over k(j)) of its membership values in the sets Aj,k(j) 
is 1; thus, we say that the Aj.k(j) form a fuzzy partition 
of xj. 

See Figure 4 for an illustration of a partition of  the 
variable of  amount of business into four fuzzy sets. 
Other forms of  fuzzy sets may be used to partition a 
variable, but triangular fuzzy sets are easy to compute 
and are completely determined by the points in the 
partition of Xj. 

(c) Combine the fuzzy sets that comprise each hypothe- 
sis into one fuzzy set using the operators min, max, 
and negative, corresponding to the linguistic connec- 
tors and and or and modifier not, respectively. 

3. Determine the output values {Yi} for the conclusions. Set 
the output value Yi to the desired output if the hypothesis 
of rule i is met to degree 1.0. 
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FIGURE 4 

A FUZZY PARTITION OF AMOUNT OF BUSINESS 
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4. Fine-tune the fuzzy rules, if applicable. If learning data is 
available, either historical data that is still relevant or hy- 
pothetical data from experts, then use that data to modify 
the values Xj,k(j) and the values Yi. This is done to opti- 
mize any one of a number of objectives. In this work, we 
minimize a squared-error loss function. 

Given data of the form {(x~,y;) • l = 1 . . . . .  L}, pairs of 
input and output values, either from prior rating periods 
or from experts' opinions, the model may be fine-tuned 
using the following simple method: Perturb the parameters 
{Xj,k(j) } and {Yi} to minimize the squared error 

~-~(y; - ~(x;)) 2, 

I = l  
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in which ~(xT) is the output of the fuzzy logic model, 
given the input x~. These errors may also be weighted to 
reflect the relative importance of each ordered pair. In the 
next section, we minimize such a weighted sum of squared 
errors: 

L 

wt(y 7 - ~(xT)) z, (3.1) 
/=1 

in which wt, l = 1 . . . . .  L, is the weight for the pair (xT,yT). 
The data, {(x~,y~) • 1 = 1 . . . . .  L}, is called learning data 
because one "trains" the fuzzy logic system to follow the 
data to the degree measured by Equation 3.1. 

The interested reader may wish to explore other meth- 
ods for fine-tuning a fuzzy logic model. Glorennec [8], 
Katayama et al. [10], and Driankov et al. [6] describe sev- 
eral methods for adjusting the parameters to fit learning 
data. Also, Young [17] proposes using a measure of impli- 
cation derived from fuzzy subsethood to fine-tune fuzzy 
logic models. This measure of implication measures the 
degree to which the input implies the output. To fine-tune 
a given model, therefore, perturb the parameters of the 
model to maximize this measure of implication. 

4. W O R K E R S  C O M P E N S A T I O N  E X A M P L E  

Here is an example of building and fine-tuning fuzzy logic 
models, using workers compensation insurance data from an in- 
surance company for four consecutive rating periods. Call the 
insurance company Workers Compensation Insurer (WCI). To 
protect the interests of this insurance company, the data has been 
masked by linearly transforming it and by relabeling the geo- 
graphic regions and the dates involved. 

There is a distinction between prescriptive and descriptive 
modeling. The first part of this section briefly explains the de- 
cision process that WCI works through every six months, and 
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proposes and builds fuzzy logic systems that model that process. 
That is, fuzzy models are built based on the expert opinions of 
the actuaries and other managers at WCI. This is prescriptive 
modeling, and it corresponds to Steps 1 through 3 in Section 
3. The second part of this section fits three fuzzy logic models 
based on the data that WCI provides, using Step 4 in Section 3. 
That is, we seek to find fuzzy models that describe what WCI 
has actually done in the past. 

WCI files rates for its workers compensation insurance line in 
various states. Every six months, WCI determines the adequacy 
of those filed rates. WCI represents that adequacy by an indicated 
target. For example, an indicated target of +5% in a state means 
that WCI requires premiums equal to 105% of its filed rates to 
reach a specified return on surplus. Similarly, an indicated target 
of - 7 %  means that WCI requires premium equal to 93% of its 
filed rates. 

In the fuzzy models, the indicated target is based on the ex- 
perience data. WCI calculates it by comparing the filed rates in 
a state with the sum of the experience loss ratio and expense 
ratio in that state, among other items. Based on the indicated 
target and supplementary (financial and marketing) data, WCI 
then chooses a selected target for each state. (See Section 4.1.1 
for more about how WCI selects a target.) Financial data include 
competitively-driven rate departures with respect to previous se- 
lected targets. For example, a rate departure of - 1 %  means that 
actual premium was 99% of (filed rates),(1 + selected target). 
Marketing data include retention ratios and actual versus planned 
initial premium. 

4.1. Prescriptive Modeling 

4.1.1 Verbally state linguistic rules. To develop linguistic 
rules for a prescriptive model, the pricing actuaries and prod- 
uct developers at WCI provide information about how an ideal 
"target selector" would use the data for choosing a target. As a 
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rule of  thumb, if the indicated target increases over the previous 
six months, then the selected target increases, and vice versa. 
However, this rate change is tempered by how well the region 
met its previous targets and by how much business is written in 
the region. For example, if the region had a positive rate depar- 
ture recently, then WCI might consider increasing the selected 
target. Also, if the amount of  business is low relative to planned, 
then WCI might consider decreasing the selected target in or- 
der to stimulate growth. On the other hand, a large amount of  
initial business (relative to planned initial business) may not be 
desirable because of  the legal or competitive climate in a given 
state. 

In view of  the opinions of  the experts at WCI, the following 
linguistic rules are developed on which to base a prescriptive 
fuzzy logic model: 

(a) 

(b) 

(c) 

If the change in indicated target from time t - 1 to time t is 
positive, and if the recent rate departure is positive, and if 
the amount of  business is good, then the change in selected 
target from time t - 1 to time t is positive. 

If the change in indicated target from time t -  1 to time t 
is zero, and if the recent rate departure is zero, and if the 
amount of  business is moderate, then the change in selected 
target f rom time t -  1 to time t is zero. 

If the change in indicated target from time t - 1 to time t is 
negative, and if the recent rate departure is negative, and if 
the amount of  business is bad, then the change in selected 
target from time t -  1 to time t is negative. 

Methods for measuring the amount of  business include pre- 
mium, number  of  accounts, retention ratio, close ratio (percent- 
age of  new business written to new business quoted), and pre- 
mium for new business. This paper measures amount of  business 
by the sum of  the retention ratio and the minimum of  the ratio 
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of actual initial premium to planned initial premium and the in- 
verse of that ratio, that is, min(actual/planned, planned/actual). 
This minimum lies between 0.0 and 1.0, and it takes into account 
that writing a great deal of  business (relative to the planned ini- 
tial premium) is not necessarily a profitable goal. The closer 
the minimum is to 1.0, the better the region has met its tar- 
get. If the ratio actual/planned is very small or very large, then 
min(actual/planned, planned/actual) is close to 0.0. Therefore, a 
good amount of  business is measured relative to a maximum of 
2.0, after expressing the retention ratio as a decimal. 

4.1.2 Create the fuzzy sets corresponding to the hypotheses and 
determine the output values for the conclusions. In the above 
linguistic rules, each hypothesis is a compound statement that 
combines three fuzzy sets with the connector and. Denote the 
space of  change in indicated target by X l , the space of rate depar- 
tures (RD) by X 2, and the space of  amount of  business by X 3. On 
each of these spaces, define three fuzzy sets---one for each fuzzy 
rule. 

To get the endpoints of  each of these spaces and the interme- 
diate boundary points, work backwards as follows: Determine 
the maximum and minimum changes in the selected target from 
time t -  1 to time t. For example, suppose that the maximum 
allowable change in selected target is + 10%, and the min imum 
is - 10 %.  Then, determine the changes in indicated target, the 
rate departures, and the sum of retention ratio and rain(A/P, P/A) 
that would lead to those maximum and minimum changes. Sup- 
pose that the selected target would be increased 10% if the in- 
dicated target increased by at least 15%, if the rate departure were 
at least +3%, and if the measure of  the amount of business were 
greater than or equal to 1.8. Also, suppose that the selected tar- 
get would be decreased by 10% if the indicated target decreased 
by at least 10%, if the rate departure were at least - 5 % ,  and if 
the measure of  the amount of business were less than or equal 
to 1.0. 
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Then, the space of change in indicated target is effec- 
tively X l = [ -10%,  15%], the space of rate departures is X 2 = 
[ -5%,3%],  and the space of amount of business is X 3 = 
[ 1.0, 1.8]. In this representation, all rate departures less than - 5 %  
are identified with - 5 %  because the change in selected target 
resulting from any rate departure less than - 5 %  is the same as 
the change in selected target if the rate departure were identically 
-5%.  Observed values outside the ranges selected for other vari- 
ables are treated similarly. 

To get the intermediate points at which no change in select- 
ed target occurs, decide what values of change in indicated tar- 
get, rate departure, and amount of business would lead to no 
change. Suppose that these values are 0%, 0%, and 1.6, respec- 
tively. The defining equations of the fuzzy sets for positive, 
zero, and negative changes in indicated target (chind) are, re- 
spectively, 

mp°sitive(chind)=max[ O'min(chind~O\ 1 5 - 0  ' 1)] 

[ (15-chind chind+!O~] 
mze~o(chind) = max 0,min -1-5-O ' 0 + 10 JJ 

mnesative(chind) = max [O'mJn ( l' O - +-l'O J ] " 

Similarly, the defining equations of the fuzzy sets for positive, 
zero, and negative rate departures are, respectively, 

[0, mJn f rd - 0 mposiave(rd) max 

[ ( 3 - r d  rd+5)l  
mze~o(rd) = max O,min 3 - 0 '  0 + 5 

= max l. (1 '  ( ) + 5 ) 1  ' 
[0, rain 0 - rd mnegaave(rd) 
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and the defining equations of the fuzzy sets for good, moderate, 
and bad amounts of business are, respectively, 

[0, min { bus--1.6 
\ 1 .8-  i ~ ' l ) ]  mgood(bUs) max 

mm°derate(bUS) =max[O'min( l'8-busl.8 1.6'bus-1.6 1-~1"0)] 

mb~(bus)=max[O, min(1 ,1"6-bus~ ] 
1.6-  1.0Jj " 

Finally, the change in selected target is given by 

[mal (chind, rd, bus). 10 + maz (chind, rd, bus). 0 

+ ma3 (chind, rd, bus). ( -  10)] 

- [mal (chind, rd, bus) + maz(chind, rd, bus) 

+ ma3 (chind, rd, bus)], 

(see Equation 2.1) in which 

mal (chind, rd, bus) 

= mJn[mpositive(chind), mpositive(rd), mgooa(bus)] 

m t2 ( chind, rd, bus) 

= min[mzero(chind), mzero(rd), mmoderate(bus)] 
ma3 (chind, rd, bus) 

= min [mnegative(chind), mnegative(rd), mbad(bus)]. 

(4.1) 

Figure 5 plots contours of the change in selected target against 
rate departure and amount of business while fixing the change 
in indicated target at +10%. Amount of business is along the 
vertical and rate departure lies along the horizontal. Note that 
the region for "no change" is relatively large. 

If the three variables--change in indicated target, rate depar- 
ture, and amount of business--may interact when connected by 
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FIGURE 5 
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and, then consider replacing the min operator with the algebraic 
product. Also other intersection operators may be used, including 
those that form weighted averages of  the values of  the member- 
ship functions. There are many ways to formulate the fuzzy rules, 
but an actuary should, at a minimum, check contour plots to see 
which formulation coincides with the philosophy or practices 
of  the company. For example, in Figure 5, it should be verified 
that such a large area of no change is consistent with the com- 
pany's  pricing philosophy when the change in the indicated tar- 
get is + 10%. 
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TABLE 1 

Variable 1 Variable 2 Weighted Correlations 

Current Indicated Current Selected 0.952 
Change in Indicated Change in Selected 0.812 
Previous Selected Current Selected 0.909 
Previous RD Change in Selected 0.281 
Current RD Change in Selected 0.151 
Previous Retention Current Selected -0.412 
Previous Retention Change in Selected 0.236 
Current Retention Current Selected -0.429 
Current Retention Change in Selected -0.035 
Actual/Planned Initial Current Selected -0.115 
Actual/Planned Initial Change in Selected -0.149 
min(Act/Plan,Plan/Act) Current Selected -0 .270 
min(Act/Plan,PlardAct) Change in Selected 0.005 

4.2. Descriptive Modeling 

Turning to the descriptive portion of  fuzzy modeling, fuzzy 
models are fit to the data that WCI provided. In selecting a tar- 
get, the actuaries consider the relative amount of  business in each 
state. For this reason, the fuzzy models were fine-tuned by min- 
imizing a weighted sum of  squared errors, as in Equation 3.1. 
The data for each period were weighted according to the pre- 
mium in each state, after normalizing the weights so that they 
add to 1.00. Then, each six-month period was weighted equally. 
That is, a weighted sum of squared errors was calculated for each 
six months, then those four numbers were added together to get 
a total sum of squared errors. As a benchmark for the fuzzy 
models, linear functions were fitted via weighted least squares 
regression. 

Weighted correlations were calculated between variables of  
interest. See Table 1 for those correlations. The weights used 
were the same as those used in fine-tuning the fuzzy logic models 
and in calculating the linear regressions. Note that the correla- 
tions between the current indicated and current selected, between 
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TABLE 2 

WEIGHTED CORRELATIONS BETWEEN ERRORS AND 
REMAINING VARIABLES 

Model (1), Model (1), Model (2), 
Exhibit 1 Exhibit 3 Exhibit 3 

Previous RD 0.025 -0 .075 -0 .074  
Current RD 0.085 0.027 -0 .058 
Previous Retention -0 .124 -0 .059  -0 .079  
Current Retention 0.160 -0.063 -0 .132  
Actual/Planned Initial 0.064 -0 .007 0.006 
min(Actual/Plan,Plan/Actual) -0 .066 0.081 0.027 

the change in indicated and change in selected, and between the 
previous and current selected targets are fairly high. 

An actuary may begin by considering simple fuzzy logic mod- 
els involving one or two explanatory variables that correlate 
highly with the change in the selected target or the target it- 
self. Starting from the simple models that fit most closely to the 
data, an actuary may then expand them to include more com- 
plicated models with two or more explanatory variables. Those 
more complicated models may not be substantially more accu- 
rate than the simple ones. In this case, the correlations between 
the errors from the simple models and remaining variables of 
interest (see Table 2) are fairly small, thus confirming that more 
complicated models may not add accuracy to the description of  
WCI 's  target selecting practices. 

In general, models with two rules are nearly as accurate as 
those with three or more rules. For this reason, only the results 
of fine-tuning models with two rules (plus the default rule of 
no action if none of the hypotheses is satisfied) are presented 
here. Exhibits 1 through 3 display the results obtained using 
three simple models. To fine-tune these fuzzy logic models, Ex- 
cel 's Solver was used to minimize the weighted sum of squared 
errors from the four six-month periods, given the starting values, 
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as listed in Exhibits 1 through 3. Solver uses a gradient-descent 
method (beginning with the starting values) to optimize an ob- 
jective function subject to constraints. The starting values are the 
endpoints of the input spaces and the changes in the selected (or 
the selected target itself) that correspond to the conclusions. Each 
model described in the exhibits involves only two fuzzy rules, 
plus the default rule of no action, so only the boundary points 
of the input spaces and the two output values (either the selected 
target or changes in the selected) were specified. In the optimiza- 
tion, the left-hand endpoint was constrained to be less than or 
equal to the right-hand endpoints. In general, the solution ob- 
tained by Excel's Solver yields a local minimum. Although the 
global minimum may not have been reached, the solution may be 
desirable because, in some sense, it is close to the initial system. 

Exhibit 1 considers rules that depend on the value of the 
change in the indicated target from the previous selection period. 
To compare with a standard model, the weighted least squares 
regression line that uses the same explanatory variable, namely, 
the change in indicated target, is included. The fuzzy model fits 
only slightly better, as measured by the sum of squared errors, 
than does the linear regression. In the fuzzy model in Exhibit 1, 
the starting values of -10.00 and 10.00 for the change in the 
indicated target from the previous period imply that the space of 
indicated targets is partitioned into the two fuzzy sets graphed 
in Figure 6. The set {-10.00, 10.00} associated with the change 
in the selected target means that if the change in the indicated 
target were - 10.00 or less, then the change in the selected would 
be -10.00.  Similarly, if the change in the indicated target were 
10.00 or more, then the change in the selected would be 10.00. 
Figure 7 graphs the change in the selected target as a function 
of the change in the indicated, before fine-tuning using Excel's 
Solver. 

To minimize the squared-error loss in Equation 3.1, both the 
endpoints of the interval for the change in the indicated tar- 
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FIGURE 8 
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get, -10 .00  and 10.00, and the changes in the selected target, 
-10 .00  and 10.00, are varied. The interval for change in the 
indicated target becomes the interval [-15.73,  12.34], and the 
interval for changes in selected target becomes [-10.52,6.92].  
Thus, the maximum decrease in selected target is -10 .52  and 
the maximum increase is 6.92. See Figure 8 for a graph of the 
change in the selected target as a function of the change in the 
indicated target, after fine-tuning using Excel 's Solver. 

The form of the presentation and the results are similar in 
the following two exhibits. Exhibit 2 expands on the model in 
Exhibit 1 by considering the most recent and the previous rate 
departures. Exhibit 3 calculates the selected target itself as a func- 
tion of the current indicated target and the previous selected tar- 
get. Two fuzzy models were fitted---one that joins the phrases in 
the hypotheses with or  (the max operator), and another that uses 
and  (the min operator). The former model provides the better fit 
of the two models, and it has an average error 0.35% smaller 
than that of linear regression. 
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5. SUMMARY AND CONCLUSIONS 

This paper demonstrates how to build and fine-tune a fuzzy 
logic system from linguistic rules to finished model, while dis- 
tinguishing between the prescriptive phase and the descriptive 
phase. It emphasizes models that combine experience data with 
supplementary data. It compares those fuzzy models with linear 
regressions to judge their performance. 

Even though a given fuzzy logic model may fit only slightly 
better than a standard linear regression model, the main advan- 
tage of fuzzy logic is that an actuary can begin with verbal rules 
and create a mathematical model that follows those rules. Fuzzy 
logic allows linguistic rules to be handled in a consistent man- 
ner; it allows possibly conflicting goals and constraints to be 
combined. By fine-tuning a model using historical data, an ac- 
tuary can judge whether his or her company has followed those 
rules. A model can also be fine-tuned based on information from 
several (possibly conflicting) experts. 
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E X H I B I T  1 

CHANGE IN SELECTED TARGET AS A FUNCTION OF THE 
CHANGE IN INDICATED TARGET 

(1) Fuzzy model: 
(a) If the indicated target decreases from time t - 1 to time t, then decrease the 
selected target from time t - 1 to time t. 
(b) If the indicated target increases from time t - 1 to time t, then increase the 
selected target from time t - 1 to time t. 

Starting Values 

Indicated Change [ - 10.00, 10.00] 
Selected Change { -  10.00, 10.00} 

Sum of squared errors 

Average error 

Solver Solution 

[-15.73,12.34] 

t-10.52,6.92} 

34.98 

3 ~ " ~ - 8 / 4  = 2.96 

(2) Linear regression: 
Change in selected = -0 .84  + 0.48 * (change in indicated) 

Sum of squared errors 39.62 

Average error ~ / 4  = 3. 15 
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E X H I B I T  2 

C H A N G E  IN S E L E C T E D  T A R G E T  AS A F U N C T I O N  O F  T H E  

C H A N G E  IN I N D I C A T E D  T A R G E T  A N D  O F  T H E  R A T E  D E P A R T U R E  

(1) Fuzzy model using the most recent rate departure: 
(a) If the indicated target decreases from time t -  1 to time t and if the recent 
rate departure (RD~) is negative, then decrease the selected target from t -  1 to 
time t. 
(b) If the indicated target increases from time t -  1 to time t and if the recent 
rate departure (RD~) is positive, then increase the selected target from time t - 1 
to time t. 
Note: By default, if both hypotheses have zero weight, then do not change the 
selected target. 

Starting Values Solver Solution 

Indicated Change [ -  10.00,10.00] [ -  15.73, 12.34] 
RD t [ -  10.00,10.00] [-37.87,  23.20] 
Selected Change {-10.00,  10.00} { -  11.09,7.32} 

Sum of  squared errors 32.88 

Average error V/32.88/4 = 2.87 

(2) Fuzzy model using the previous rate departure: 
(a) If the indicated target decreases from time t - 1 to time t and if the previous 
rate departure (RDt_l) is negative, then decrease the selected target from time 
t - 1 to time t. 
(b) If the indicated target increases from time t - 1 to time t and if the previous 
rate departure (RDt_j) is positive, then increase the selected target from time 
t - I  to t imet.  

Starting Values Solver Solution 

Indicated Change [ -  10.00, 10.00] [ -  13.31,11.85] 
RD,_ ~ [ -  10.00,10.00] [-23.06,  12.67] 

Selected Change { -  10.00, 10.00} { - 11.25, 7.09} 

Sum of  squared errors 32.74 

Average error ~ 4  = 2.86 

(3) Linear regression using the most recent rate departure: 
Change in selected = -0 .75  + 0.48.  (change in indicated) + 0.22 * RD t 

Sum of squared errors 38.28 

Average error ~ 4  = 3.09 

(4) Linear regression using the previous rate departure: 
Change in selected = -0 .34  + 0.47 * (change in indicated) + 0.42 * RDt_ 1 

Sum of  squared errors 37.26 

Average error ~ = 3.05 
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EXHIBIT  3 

S E L E C T E D  T A R G E T  AS A F U N C T I O N  O F  T H E  I N D I C A T E D  

T A R G E T  A N D  O F  T H E  P R E V I O U S  S E L E C T E D  T A R G E T  

765 

(1) Fuzzy model using or:  

(a) If the current indicated target or the previous selected target is low, then the 
current selected target is low. 
(b) If the current indicated target or the previous selected target is high, then 
the current selected target is high. 

Starting Values Solver Solution 

Indicated t [-20.00,20.00] [ -  131.38, 62.67] 

Selected t - j [ -20.00,  20.00] [ - 143.55, 48.75] 

Selected t { - 20.00, 20.00 } { - 124.99, 48.03 } 

Sum of  squared errors 27.09 

Average error ~ = 2.60 

(2) Fuzzy model using a n d :  

(a) If the current indicated target and the previous selected target are low, then 
the current selected target is low. 
(b) If the current indicated target and the previous selected target are high, then 
the current selected target is high. 

Starting Values Solver Solution 

Indicated t [-20.00,  20.00] [-20.27,  48.18] 

Selected~_ l [-20.00,  20.00] [-31.18,  36.64] 

Selected: { -  20.00, 20.00} { -21.55,28.53 } 

Sum of  squared errors 34.99 
Average error ~ / 4  = 2.96 

(3) Linear regression: 
Selected t = -3 .84  + 0.45 * Indicated/+ 0.38 * Selectedt_ 1 

Sum of  squared errors 34.90 

Average error ~ / 4  = 2.95 


