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Abstract 

In this paper, a practical and flexible model involving 
simple Markov chains is developed that incorporates the 
phenomenon of  shifting risk parameters. One can view 
this model as a generalization o f  the gamma-Poisson, 
beta-binomial, and similar models. 

The model is applied to a variety of  examples in order 
to illustrate its possible uses: 

• dice, 
• a mixture of  four Poissons, 
• California driving data (modeled by a gamma-Pois- 

son), and 
• baseball data (modeled by a mixture of  binomials). 

The model is sufficiently flexible to be applied to other 
situations. 

In each case, the Markov chain model is used to ex- 
plore the effects o f  shifting risk parameters over time. 
A formula is developed and used to calculate covari- 
ances. Based on the Markov chain model, when shift- 
ing risk parameters over time are significant, the logs 
o f  the covariances between years of  data are expected 
to decline linearly as the separation between years in- 
creases. 

A formula is developed and used to calculate credi- 
bilities from the variances and covariances. When shift- 
ing risk parameters are significant, older years receive 
less credibility and as more and more years o f  data are 
added, the sum of  the credibilities goes to a limit less 
than one. 
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1. INTRODUCTION 

The phenomenon of shifting risk parameters over time has 
been explored in past Proceedings papers by Venezian [14, 15] 
and Mahler [7, 9, 10]. It has been shown that this phenome- 
non can significantly impact the relative value of  data for use 
in predicting the future. Specifically, it can significantly affect 
the credibility assigned to data to be used for experience 
rating. 

In this paper, a practical model involving simple Markov 
chains is developed that incorporates the phenomenon of  shift- 
ing risk parameters. One can view this model as a generaliza- 
tion of the gamma-Poisson, beta-binomial, and similar models. 
The model is applied to a variety of examples in order to illustrate 
its possible uses. 

Biihlmann credibility 1 is discussed, for example, in Mayerson 
[11], Hewitt [4, 5], Philbrick [12], and Herzog [3]. Biihlmann 
derived, under certain assumptions, the linear least squares esti- 
mator; a similar derivation is performed for the more general 
situation in this paper in Appendix C. In order to apply Biihl- 
mann credibility, the Bi.ihlmann credibility parameter is calcu- 
lated as 

K = expected value of process variance 
variance of hypothetical means 

where the expected value of process variance and the variance 
of hypothetical means are each calculated for a single observa- 
tion of the risk process. Then for N observations, the Bi.ihlmann 
credibility is Z = N/(N + K). 

IBfihlmann credibility is also referred to as Bayesian credibility or least squares 
credibility. 
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2. S I M P L E  E X A M P L E  I N V O L V I N G  D I C E  

2.1. Biihlmann Credibility 

Assume Joe selects N dice of  the same type and rolls them. 
Assume Joe selected either four-sided, six-sided, or eight-sided 
dice, with a priori probabilities o f  25%, 50%, and 25%, respec- 
tively. Joe tells you how many dice he rolled and the resulting 
sum, but you do not know the type of  dice Joe selected. Joe will 
roll the same dice again. 

You can use Biihlmann credibility to predict the sum of  that 
next roll. The expected value of  the process variance 2 (for one 
die) is 3.08. The variance of  the hypothetical means 3 is .500. 
Therefore K = expected value of  process variance/variance of  
hypothetical means = 6.16. The credibility assigned to the ob- 
servation is Z = N / ( N  + K) = N / ( N  + 6.16). Thus for example, 
if Joe rolls 3 dice which sum to 14, then Z = 33% and the 
credibility estimate of  the sum of  the next roll o f  three dice 4 
is (14)(33%) + (10.5)(67%) = 11.7. 

The credibility can also be written as: 

Z = 

Z = 

.5N 2 

.5N 2 + 3.08N (2.1) 

variance of  hypothetical means for the sum of  N dice 
(variance of  hypothetical means for the sum of  N dice 

+ expected value of  the process variance for 
the sum of  N dice) 

variance of  hypothetical means for the sum of  N dice 

total variance for the sum of  N dice 

2The process variances for 4, 6, and 8-sided dice are, respectively, 1.25, 2.92, and 5.25. 
3The means for 4, 6, and 8-sided dice are, respectively, 2.5, 3.5, and 4.5. 
4The complement  of  credibility o f  1 - .33 = .67 is assigned to the overall a priori mean 
of  3.5 per die times 3 dice. 
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where we have used the fact that the total variance is the sum of 
the expected value of process variance and variance of hypothet- 
ical means. Also note that the variance of the hypothetical means 
for the sum of N identical dice is simply N 2 times the variance 
of hypothetical means for one die since each of the means is 
multiplied by N. This is a special case of the general result for 
any random variable Y, Var[NY] = N2Var[Y]. In this case, Y is 
the hypothetical mean for a single roll of each type of die. In 
contrast, the expected value of the process variance for the sum 
of N identical dice is just N times the expected value of process 
variance for a single die. This is a special case of the general re- 
suit, Var[X l + X 2 + ' "  + XN] = NVar[X] for X i independent and 
identically distributed. 

This simple example has so far been a review of basic 5 
Bi.ihlmann credibility. Next we will complicate the risk process 
by adding shifting risk parameters over time. 

2.2. Dice Example, Shifting Parameters Over Time 

Let's introduce a somewhat different risk process. Joe selects a 
die and rolls it. Then prior to the next trial, Beth may at random 
replace that die with another die. Assume Beth's replacement 

works such that: process 

1. 

. 

. 

A four-sided die will be replaced 20% of the time by a 
six-sided die. 6 

A six-sided die will be replaced 10% of the time by a 
four-sided die and 15% of the time by an eight-sided die. 

An eight-sided die will be replaced 30% of the time by 
a six-sided die. 

Then the process repeats: Joe rolls a die and Beth (possi- 
bly) replaces the die. Beth's actions will eventually scramble the 

SThis material is currently included on the Part 4B Exam syllabus. 

6The remaining 80% of the time the die is left alone. 
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information one could obtain in her absence by summing the 
results of  many trials. However,  if one uses the most recent trial's 
result, it is unlikely that Beth will have affected the situation. 
Thus more recent trials provide more valuable information for 
predicting the future. Therefore, more recent trials of  data should 
be given more credibility than less recent trials of  data. 

This is generally the case when one has shifting risk param- 
eters over time. We will determine how to calculate the cred- 
ibilities for this example as well as in more general situations 
applicable to insurance. 

2.3. Markov Chains 

Beth 's  risk process is a simple example of  a Markov chain. 7 
See Appendix A for a discussion of  Markov chains. There are 
three "states": 4-sided die, 6-sided die, and 8-sided die. For each 
trial there is a new, possibly different, state. The probabili ty of  
being in a state depends only on the state for the previous trial. 
Beth 's  Markov chain was completely described by the "transition 
probabilities" between the states. 

Label the states 1, 2, and 3 corresponding to 4-sided, 6-sided, 
and 8-sided die. Then let P21 = the probability of  being in state 1 
given that the previous trial was in state 2. This is the probabili ty 
of  Beth replacing a 6-sided die with a 4-sided die, or 10%. Thus 
/}21 = 10%. Similarly, P23 = the chance of  Beth replacing a 6- 
sided die with an 8-sided die = 15%. P22 = the chance of  Beth 
leaving a 6-sided die alone = 75%. Note that P21 + P22 + P23 = 
10% + 75% + 15% = 100%. The probabilities o f  all the things 
Beth can do to a 6-sided die add up to 100%. 

Generally, the transition probabilities for a Markov chain are 
arranged in a matrix P. For Beth 's  "risk process," the matrix of  

7Feller [2], Resnick [13]. 
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transition probabilities is: 

.80 .20 0 ) 

.10 .75 .15 

0 .30 .70 

where we have previously discussed the second row. Note we 
have assumed no chance of  Beth's  "risk process" replacing an 
eight-sided die with a four-sided die so that P31 = 0. 

We note that each of  the rows of  the matrix sums to unity. 
As discussed previously, this is a general property of  transition 
matrices. In addition, this matrix was chosen to have a special 
property. 

We have assumed Joe 's  probability of initially picking each of  
three types of  dice is 25%, 50%, and 25%. Thus the initial prob- 
ability vector is I I 1 The Markov chains we will be dealing 4 '  2 '  4" 
with will, in the limit, go to a so-called stationary distribution. 
For the chosen transition probabilities, 1 l I is that stationary 

4 '  2 '  4 

distribution. 8 We expect this initial distribution to, on average, 
continue over time. 

We can see this by thinking of  the expected number  of  each 
type of  die Beth adds or subtracts. 

1. There is a ~ chance that Joe picks a 4-sided die. There 

is a ¼ × 20% = 5% chance that Beth adds a 6-sided die 
and subtracts a 4-sided die. 

2. There is a ½ chance that Joe picks a 6-sided die. There is 
a 10%/2 = 5% chance that Beth adds a 4-sided die and 
subtracts a 6-sided die and a 15%/2 = 7½% chance Beth 
adds an 8-sided die and subtracts a 6-sided die. 

SThe transition probabilities were chosen so that the initial state would be a stationary 
distribution. See Appendix D for a discussion of how such a transition matrix can be 
constructed from a given stationary distribution. 
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3. There is a ¼ chance that Joe picks an 8-sided die. There 

is a 30%/4 = 71% chance that Beth adds a 6-sided die 
and subtracts an 8-sided die. 

In summary, the change in the probability of  a 4-sided die 
is expected to be 5 % -  5% = 0. The change in the probability 
of  a 6-sided die is expected to be 5% - 5% + 71% - 71% = 0. 
The change in the probability of  an 8-sided die is expected to be 
7 ½ % -  7½% = 0. Thus we indeed have a stable situation on an 
expected basis. 

Let c~ be the vector of  a priori probabilities. All we have done 
is verify the matrix equation that c~P = c~. This is the definition 
of  a stationary distribution. 

In general, if /3 is a vector of  the initial probabilities of  being 
in each state, then the matrix product o f / 3  and the transition 
matrix P , /3P,  is the vector of  probabilities after one trial. 

One last important point is how we would calculate, for ex- 
ample, the probability, if Joe initially picked a 4-sided die, of  
Beth after 2 trials replacing this 4-sided die with an 8-sided die. 
This would be the product of  the probabilities of  replacing a 4- 
sided die with a 6-sided die after the first trial and then replacing 
the 6-sided die with an 8-sided die after the second trial. In this 
case, that probability is Pl2P23 = (.20)(.15) = 3%. 

If Joe initially picked a 4-sided die, what is the probability of  
having a 4-sided die after two trials? Either Beth did not replace 
the die at both trials or she replaced the 4-sided die at trial one 
with a 6-sided die and then at trial two replaced the 6-sided 
die with a 4-sided die. These probabilities a r e  el le l l  + PI2P21 = 

(.80)(.80) + (.20)(. 10) = .66. 

Similarly, if Joe initially picked a 4-sided die, the chance 
of having a 6-sided die after two trials is PllPI2 +PI2P22 = 
(.80)(.20) + ( .20)( .75)-- .31.  Note that given that Joe picked a 
4-sided die, the probabilities of  the three possible situations after 
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two trials add up to unity: .66 + .31 + .03 = 1.00. One can also 
verify that these are the entries of the first row of  p2. 

In general, one could easily compute such probabilities by 
taking matrix products of P. p2 = p × p contains the transition 
probabilities for two trials, p3 = p × p × p contains the transition 
probabilities for three trials, etc. Thus i f /3  is a vector of  the 
initial probabilities of  being in each state, then/3pN is the vector 
of probabilities after N trials. 

2.4.  E i g e n v e c t o r s  a n d  E i g e n v a l u e s  

In order to more easily compute credibilities as well as gain a 
better understanding of  the behavior in specific examples, eigen- 
vectors and eigenvalues are useful. An eigenvector v i and related 
e i g e n v a l u e / ~ i  of a matrix M are such that 

M v  i = /~il)i• 

Appendix B contains a brief discussion of eigenvectors and 
eigenvalues. If the transpose of P has an eigenvector vi, then 

p T v  i = Ail~ i o r  v i P  = Ail~ i. 

Recall Beth's transition matrix: o) 
• . 7 5  . 1 5  . 

.30 .70 

Its transpose has eigenvalues 9 of 1, .769, and .481. It has 
corresponding eigenvectors I° of (1,2, 1), ( 1 , - . 314 , - . 686 ) ,  and 
(1 , -3 .186,2•  186)• The eigenvalue 1 corresponds to the station- 
ary distribution; its corresponding eigenvector (1,2, 1) is propor- 
tional to the stationary distribution. II By the definition of an 
eigenvector with an eigenvalue of 1: v l P  = l v  I = v I. 

9We have chosen to list the eigenvalues starting with unity for the sake of  convenience. 
l°Note, the eigenvectors may each be multiplied by any constant and remain eigenvectors. 
l lRecall that in this example, the stationary distribution was (¼, l l ~,~)- 
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Let ,X be the vector of  eigenvalues o f P  r .  Let V be the matrix of  
corresponding eigenvectors, with each row being an eigenvector. 
In this case ,X = (1,.769,.481), while 

(i 2 1 / 
V = - . 3 1 4  - . 686  and 

-3 .186  2.186 / 

V - 1  = 

.250 .658 .092)  

• 250 - . 103  - . 147  . 

• 250 - .451 .201 

The elements of  the first column of  V-1 are all equal, and are 
the proportionality constant to convert the first eigenvector (the 
elements of  the first row of  V) into the stationary distribution or. 
In our example, the first column of  V -1 is (.25,.25,.25) where 
each element is the inverse of  the sum of  the first eigenvector 12 
(1,2, 1). The sum of  any eigenvector but the first is zero. 

We have the following result of  multiplying matrices13: 

li 0 0 / VPV -1 = .769 0 . 

0 .481 

So the matrix of  eigenvectors of  pT can be used to convert P 
to a diagonal matrix whose elements are the eigenvalues o f  pT. 
Let this diagonal matrix be A. 

2.5. Limits 

VPV-I = A. (2.2) 

|2We could have just  as easily chosen the first eigenvector as (~, I I ~, ~), in which case 
since it sums  to unity, it is the stationary distribution. 
13This follows f rom the matrix equation V P  = AV, which taking each row in turn says 
v i P  = .~iVi . 
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In general, for any matrix P and any invertible matrix V, 

p2 = V - I ( V P V - I ) ( V P V - I ) v  = V - I ( V P V - I ) Z V .  

This result extends similarly to higher powers: 

pg = V - 1 ( V P V - I ) g V .  

Substituting the particular expression for A from Equation 2.2, 
one obtains 

Pg = V-  I Ag V. (2.3) 

So taking powers of  the transition matrix corresponds to tak- 
ing powers of  the diagonal matrix A. We use the matrix of  eigen- 
vectors V to translate back and forth. Ag is diagonal with ele- 
ments A g. As g ---, cx~, A~ ~ 0 for ]Ail < 1. Since I)ki] < 1 for i > 1, 
A g approaches a matrix, all but one of whose elements is zero, 
and element (Ag)ll  = 1 g = 1. 

As discussed in Appendix A, Pg ~ A,  as g ---, c~, where A is a 
matrix each of  whose rows is proportional to the first eigenvector; 
each row of  A is the stationary distribution. 

For any initial distribution /3, l i m u ~ / 3 P U  = 3.4 = c~ since 
the sum of  the elements of /3 is unity and since the rows of  A are 
each the stationary distribution c~. Thus for any initial distri- 
bution, after enough time passes, we approach the stationary dis- 
tribution: 

/3P g ---, c~, Pg ---, A, and A 8 (i°i) 0 

0 
(2.4) 

The speed with which this convergence takes place is depen- 
dent on [Ai[ for i ¢ 1. The smaller IAi[ for i ¢ 1, the larger the 
effect of  shifting parameters over time. In the current example, 
A 2 = .769 and A 3 = .481, so convergence takes a while. 
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F o r N  =5 ,  

A 5 = 

(i ° .269 

0 

p5 = V- I  A s V  = 

0i6) 
.429 .437 

.219 .521 

.134 .521 

and 

.134)  

.261 . 

.344 

For N = 20, 

(i ° A 20 = . 0 0 5  

0 

p2O = V- l A2o V = 

0) 
0 

4 ×  10 -7 

.253 .499 

.249 .500 

.248 .501 

and 

.248 ) 

.250 . 

.252 

Thus after five trials we expect to have retained a small 
amount of information about Joe's initial pick. For example, if 
Joe initially picked a 4-sided die, after five trials there is .429 
chance of  a 4-sided die, a .437 chance of  a 6-sided die, and a 
.134 chance of an 8-sided die. After 20 trials, for all practical 
purposes the probabilities are independent of Joe's initial pick. 
Beth's process has scrambled things sufficiently in order to re- 
move any trace of  the initial pick. 

We conclude that the outcome of the first trial would pro- 
vide no useful information for the prediction of  the 21st trial. 
On the other hand, the outcome of  the 16th trial would provide 
some small amount of  useful information for the prediction of  the 
21st trial, being only five trials apart. Thus, we would expect 
to give the 16th trial some small credibility and the first trial 
virtually zero credibility when predicting the outcome of  the 
21 st trial. 



592 A MARKOV CHAIN MODEL OF SHIVI'ING RISK PARAMETERS 

2.6. Covar iances  

In insurance applications, a year of  data takes the place of  a 
trial in the example involving dice. In order to calculate credibili- 
ties, we need to calculate the variances as well as the covariances 
between different years of  data. As developed in Appendix E, 

let ~" be the vector such that 

(i = ((l~ x oO'rV-1) i (Vlz) i .  (2.5) 

Then, for g > 0, the covariance of two years of  data separated 
by g years is given by 

Cov[X, U] = ~ (i Ag. (2.6) 
i>1 

Note that )~i and ~'i which determine the behavior of  the co- 
variances are each directly and easily calculable 14 from the as- 
sumed transition matrix and the means of  the states. The steps 
developed in Appendix E are: 

1. Assume 15 a transition matrix P corresponding to the as- 
sumed states with means given by the vector #. 

2. Calculate the eigenvalues and eigenvectors of  the trans- 
pose of  the transition matrix p r .  

3. Arrange the eigenvalues in descending order with the 
first one unity; this is the vector A. 

4. V is the matrix whose rows are the eigenvectors corre- 
sponding (in the same order) to the eigenvalues A i. 

5. The stationary distribution c~ is proportional to the eigen- 
vector corresponding to the eigenvalue of  unity; the ele- 
ments of  c~ should sum to unity since it is a probability 
distribution. 

14Assuming the calculations will be performed on a computer. 

15In many of the examples, we will assume a stationary distribution a and then construct 
a transition matrix P such that otP = a ,  using the method in Appendix D. 



A MARKOV CHAIN MODEL OF SHIFTING RISK PARAMETERS 593 

6. (/~ × e~) is the vector whose ith element is ].~iog i. 

7. V - l  is the matrix inverse of  V. 

8. ff is the vector whose ith element is the product of  the ith 
element of  the vector (/~ × o o T v  - l  and the ith element 
of  the vector V/~. 

9. For X and U separated by g years, g > 0: 

C o v [ X , U ]  = 

i > 1  

The vector ff is defined in Equation 2.5 in terms of/~,  or, and 
V. ~, the vector of  means for each state, and o~, the distribution 
of  probabilities for the states, are not dependent on the rate of  
shifting parameters. 

V is a matrix whose rows are the eigenvectors of  pT. The 
eigenvectors of  (pe,)r = (pr)g are the same as those of  pT. By 
raising P to a power, one can alter the rate at which parameters 
shift over time without changing the eigenvectors. Therefore,  
since V does not depend on the power to which P is raised, it 
does not reflect the speed of  shifting risk parameters. 

Therefore, if, which is calculated from /~, o~, and V, reflects 
the "structure" of  the Markov chain rather than the rate of  shifting 
risk parameters. In contrast, the eigenvalues )k i d o  reflect the rate 
at which risk parameters shift. If P is raised to the power g, so 
are the eigenvalues. 

Thus writing the covariance between two years of  data in 
terms of  ff and A as in Equation 2.6 isolates the effect of  the rate 
of  shifting parameters into A g. 

2.7. The Variance-Covariance Matrix 

For a single year, the variance of  X (the covariance of  X 
with itself) is not affected directly by shifting risk parameters 
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over time. 16 With stationary probabilities of  being in the different 
states, the variance of  X can be calculated ignoring shifting risk 
parameters. 

The variance of  X is computed in the usual way as the sum 
of the variance of hypothetical means and the expected value of 
process variance. As discussed previously in Section 2.1, for Joe 
rolling a single die, the variance of hypothetical means is .50 
and the expected value of process variance is 3.08. Therefore, 
the total variance of  X is 3.58. 

For this example, as calculated in Appendix E, the covariances 
for trials separated by given amounts are: 

Separa t ion  Covar iance  17 

Covar iance  - 

Variance of  
Hypothe t ica l  

Means  

0 3.583318 

1 .3750 .750 

2 .2837 .568 
3 ,2159 .432 

4 .1649 .330 
5 .1263 .253 
6 .0968 .194 

7 .0743 .149 
8 .0570 .114 

9 .0438 .088 
10 .0337 .067 

20 .0024 .0048 

30 .0002 .0004 

In this case for g > t), the covariances are (.468)(.769 g) + (.(132)(.418 x). Therefore, the variance of hy- 
pothetical means is .5, we expect the covariance + variance ~t" hypothetical means to be approximately 
.77& 

t6To the extent  the probabi l i t i es  o f  be ing  in different  states is not stat ionary,  the expec ted  
value of  the p rocess  var iance  may  move  over  time. That  is not the s i tuat ion here. 
17Based on exact  ca lcu la t ion  wi th  no in termedia te  rounding. 
laTotal var iance  = sum of  the var iance  of  hypothe t ica l  means  of  .50 and the process 
var iance  of  3.08. 
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Note that setting g = 0 in the formula for Cov[X,U] gives 
.468 + .032 = .500, the variance of  hypothetical means. In gen- 
eral, one can calculate the variance of X by getting the variance of 
hypothetical means in this manner and adding the expected value 
of process variance. The process variance will depend, among 
other things, on the particular type of process, e.g., binomial, 
Poisson, negative binomial, rolling a die, spinning a spinner, etc. 

In summary, as shown in Appendix E, the variance-covariance 
matrix between years of data is given by 

Cov[X,U] = (.468)(.769 g) + (.032)(.481 g) + 3.08 (if g = 0). 

In general, for years of  data X i and Xj: 

Cov[Xi,Xj] = ~ CkA~ -jl + 6ij 
k>l  

where 

(EPV) (2.7) 

EPV = expected value of the process variance 

0 i C j  
¢5ij = 

1 i = j  

2.8. Credibilities 

Assume we have data from years 1,2 . . . . .  Y and we wish to 
predict the outcome in year Y + A. Then, as shown in Appendix 
C, the least squares credibilities are given by solving the Y linear 
equations in Y unknowns: 19 

Z C°v[Xi,Xj]Zj = C°v[Xi'Xy+A] 
j=l 

i = 1,2 . . . . .  Y. (2.8) 

t9The equations are those in Mahler [10]. 
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Given values for the variances and covariances, one can solve 
for the credibilities to assign to each year by s imple matrix tech- 
niques. 

In our example,  assume we use the ou tcome of  one trial to 
predict  the ou tcome of  the next trial. Then we get one equation: 

Cov[XI,XI]Z 1 = C o v [ X  1 ,X2]  , and 

C°v[Xl 'X2]  - . 3 7 5 0 / 3 . 5 8 3 3  = 10.5%. 
Zl - Var[X] 

Note that this is lower than the credibility for a single trial in the 
absence of  shifting parameters,  which is .50/3.58 = 14.0%. 2o 

If  we use two years of  data to predict the subsequent  year, 
then we get two equations in two unknowns:  

Z 1 C o v [ X 1 , X l ]  + Z2Cov[XI,X2] -- C o v [ X I , X 3 ] ,  and 

Z 1 C o v [ X  1 , X  2] + Z2Cov[X2,X2] = C o v [ X 2 , X 3 ] .  

For this example,  

3 .5833Z 1 + .3750Z 2 = .2837, and 

.3750Z I + 3.5833Z 2 = .3750. 

The  solution is 

3.5833 . 3 7 5 0 ) - '  ( . 2 8 3 7 )  = ( . 0 6 9 ) .  

.3750 3.5833 .3750J  \ . 0 9 7 /  

We would  give 9.7% credibility to the most  recent year of  data, 
6.9% to the second most  recent year, and the complement  of  
credibility, 83.4%, to the overall a priori mean of  3.5. 

2°The ratio of credibilities is .75, the ratio of the covariance (with shifting parameters) 
to the variance of hypothetical means. 
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Similarly for three years of  data, the equations are: 

3.5833Z 1 + .3750Z 2 + .2837Z 3 = .2159, 

.3750Z l + 3.5833Z 2 + .3750Z 3 = .2837, and 

.2837Z l + .3750Z 2 + 3.5833Z 3 = .3750, 

which has the solution Z 1 = 4.6%, Z 2 = 6.4%, Z 3 = 9.4%. 

If, instead of  using years 1 through 3 to predict year 4, we 
were using them to predict year 5, the right hand sides of  the 
equations would be instead.  1649, .2159, and .2837. This would 
instead result in a solution Z 1 = 3.5%, Z 2 = 4.9%, Z 3 = 7.1%. 
The additional year of  delay in the availability of  data has re- 
sulted in lower credibilities. 21 

2.9. Varying the Rate at which Parameters Shift 

One can easily modify this example to either slow down or 
speed up the rate at which parameters shift over time. For exam- 
ple, the transition probabilities could be revised so it is one-fifth 
as likely for Beth to switch the type of  die after each trial. Such 
a revised transition matrix (.96.040) 

.02 .95 .03 

0 .06 .94 

has the same stationary distribution .25, .5, .25, but the parame- 
ters shift about one-fifth as fast. 

One can speed up the rate at which parameters shift by rais- 
ing the transition matrix to a power. For example, squaring the 
given transition matrix yields a new transition matrix in which 
the parameters shift exactly twice as  fas t .  22 

2t Note  the Equa t ions  2.8 are suff ic ient ly  genera l  to a c c o m m o d a t e  gaps  be tween  the years  
of  data as wel l  as a gap  be tween  the las t  year  of  data  and the year  be ing  predicted.  
22If t~P = t~, we  have  otP 2 = (c~P)P = a P  = oc Therefore ,  i f  a is a s ta t ionary d is t r ibut ion 

for P, it is a s ta t ionary d is t r ibut ion for p2 (or p 3  or p4,  etc.). 



598 A MARKOV CHAIN MODEL OF SHIFTING RISK PARAMETERS 

FIGURE 1 

COVARIANCES BETWEEN DATA SEPARATED BY GIVEN NUMBER 
OF TRIALS, EXAMPLES WITH DICE, SHIFTING PARAMETERS 

OVER TIME 
. . . . . . . . . . . . . . .  . . . . - -  

1E-01 

1 E-02 

1E-03 

1 E-04 

1 E-05 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Separation of Trials of Data 
Y-Axis on a Log Scale. One die rotled per tdal. 

The Markov chain that corresponds to the transition matrix 
p2 results in covariances of data X[ that follow from those for 
data X i from the Markov chain corresponding to P: 

Cov[X'I  ,Xtl+g ] -- C ° v [ X l  ,XI +2g]" 

The covariance for a separation of ten years with transition 
matrix p2 is the same as that for a separation of 20 years with 
transition matrix P. 

Figure 1 compares the covariance structure for the basic ex- 
ample to one with no shifting, one-fifth the amount of shifting, 
and twice the shifting. The vertical axis is on a logarithmic scale. 
As expected on this logarithmic scale, the covariances decline ap- 
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FIGURE 2 

SUM OF CREDIBILITIES, EXAMPLES WITH DICE, 
SHIFTING PARAMETERS OVER TIME, VARYING RATES 
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proximately linearly, with the slope of  the decline approximately 
proportional to the amount of shifting. In the absence of shift- 
ing risk parameters over time, the covariances do not decline, 
rather they are the same regardless of the number of  years of 
separation. 23 

Figure 2 compares the sum of the credibilities one would as- 
sign to individual years of data for different amounts of shifting. 
In the case of no shifting, the sum of  the credibilities approaches 
unity as the number of years approaches infinity. 24 The greater 

Z3In many practical applications, the decline will be so small over the time periods o f  
interest that it makes sense to ignore the decline. Thus while the case of  no decline forever 
is not realistic, it is a very good approximation for many practical applications. 
24For this example with no shifting and Y years of  data, each year is assigned 
I / ( Y  + 6.1666) credibility. The sum is Y / ( Y  + 6.1666). 
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FIGURE 3 

C R E D I B I L I T I E S  A S S I G N E D  T O  E A C H  O F  T E N  T R I A L S  O F  D A T A  

E X A M P L E S  W I T H  D I C E ,  V A R I O U S  R A T E S  O F  S H I F T I N G  

P A R A M E T E R S  O V E R  T I M E  
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the shifting, the smaller the sums of the credibilities. The sum 
of  credibilities approaches a value less than unity as the number 
of years of  data increases. The greater the shifting, the lower the 
limit and the faster it is reached. 

Figure 3 compares the credibilities that would be assigned 
to individual years of  data when using ten years of data. In the 
absence of  shifting, each year is assigned equal credibility. 25 The 
greater the shifting, the greater the difference in credibilities as- 

ZSFor Y = 10, e a c h  y e a r  is a s s i g n e d  c red ib i l i ty  o f  1 / ( 1 0  + 6 .1666 )  = 6 .2%.  
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signed to the different years of  data. When risk parameters shift 
rapidly over time, the value of recent information is greater rel- 
ative to older information. 

We note that the most recent year of  data is assigned more 
credibility for the basic example than it is in the absence of  shift- 
ing. This reflects the fact that in the former situation the relative 
value of  the most recent year' s data is large compared to the data 
available from other years. When using ten years of  data in the 
absence of  shifting, the total value of the available information 
is higher, as is the value of  the most recent year. However, the 
value Of the most recent year's data relative to all the information 
available is lower without shifting than with shifting. In contrast, 
as was shown previously, when using only one year of data, the 
credibility is lower in the presence of  shifting. 

Finally, Figure 4 compares the effects of delays in gathering 
the data. For the basic example, we see how the credibilities de- 
crease as the delay increases. When risk parameters are changing 
quickly over time, the effect of any delay in collecting data can 
be very substantial. 

2.10. Size of Risk and Shifting Risk Parameters 

Assume that Joe selects N dice (of the same kind) and rolls 
them. The resulting sum is the result of one trial or year. After 
each trial, Beth (possibly) changes the type of  dice with transition 
matrix P. (We assume Beth either changes the type of all N dice 
or leaves them all alone.) 

Since we are just adding the results of rolling N identical dice 
in each year, the covariance between two separate years is given 
by N 2 times what it was for the case with a single die: 

N C o v [ X 1 , X l + g  ] = 2 g 

i>1 
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FIGURE 4 

CREDIBILITIES ASSIGNED TO EACH OF TEN TRIALS OF DATA, 

EXAMPLES WITH DICE, EFFECTS OF VARIOUS DELAYS, 

SHIFTING PARAMETERS OVER TIME 
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The variance for a year is given by N (expected value of 
process variance for a single die) + N 2 (variance of hypothetical 
means for a single die). 

As before, given Y years of  data, we can solve Y equations 
in Y unknowns 26 for the credibilities assigned to each year. As 
in the case of  standard BiJhlmann credibility, since the expected 
value of  process variance increases with N rather than N 2, as N 
increases, so does the credibility. 

26The same Equations 2.8 apply, but the actual values of the variance and covariances 
depend on N, the number of dice. 
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FIGURE 5 

SUM OF CREDIBILITIES, SHIFTING PARAMETERS OVER TIME, 
VARIOUS NUMBERS OF DICE PER TRIAL 
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Figure 5 compares the sum of  credibilities assigned to Y years 
for different numbers of  dice, N, for the transition matrix dis- 
cussed previously: /8° °) 

.10 .75 .15 . 

0 .30 .70 

As expected, the more dice used per roll, the higher the cred- 
ibility. Also, the more dice, the quicker the limit is approached 
as the number of  years of  data increases. For a fixed amount of  
shifting, for larger risks, the more recent years are relatively more 
valuable compared to older years than is the case for smaller 
risks. For larger risks, the random noise in the observation of  a 
single year is less, so one can rely on fewer years of  information. 
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As the number of  dice approaches infinity, one relies almost 
solely on the most recent year of  data. In this case, the sum of 
credibilities approaches 75.6%, with about 74% credibility being 
assigned to the most recent year. 

In general, as the number of dice approaches infinity, the sum 
of the credibility approaches a number less than unity in the 
presence of shifting risk parameters. Having Joe roll more dice 
per trial does not get rid of the effect of Beth (possibly) shifting 
all the dice between trials. Increasing the size of  the risk will not 
eliminate the uncertainty caused by shifting risk parameters over 
time. 27 

3. S I M P L E  P O I S S O N  E X A M P L E  

3. I. Biihlmann Credibility 

To take a simplified insurance example, assume that for in- 
dividual insureds the claim frequency in each year is given by 
a Poisson distribution. 28 Assume that there are four types of in- 
sureds with different frequencies: 

Type of  A Priori Mean 
Insured Probability Frequency 

Excellent 40% .25 
Good 30% .50 
Bad 20% .75 
Ugly 10% 1.00 

Then the overall mean is .50. The variance of hypothetical 
means is 1/16. The expected value of process variance is the 

27Note in the model used here, the rate of  shifting was assumed to be independent of  the 
size of  risk. This was a simplifying assumption which may or may not be a reasonable 
approximation to a particular real world application. 
2SFor parameter 0, f ( n )  = e-°O n In! .  The mean and variance of  the Poisson are each equal 
to O. 
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expected value o f  hypothetical means 29 which is the overall mean 
of  .50. 

The Bfihlmann credibility parameter is K = . 5 0 / ( l )  = 8. 
Therefore, the credibility of  Y years of  data from an individual 
insured is: 3° 

Y 
Z - (3.1) 

Y + 8 "  

For example, one year of  data would be assigned a credibility 
of  about i 1%. Note that the total variance is .5 + ~ = .5625. The 
credibility of  a single year is the variance of  hypothetical means 
divided by the total variance = .0625/.5625 = ~-. 

3.2. Shifting Risk Parameters, Simple Poisson Example 

Assume that in the previous example, the individual insured 
has a chance of  shifting states each year. For example, an excel- 
lent insured might have an 18% chance of  switching to a good 
insured the following year, 31 and an 82% chance of  remaining 
an excellent insured. Assume the following transition matrix for 
illustrative purposes: 

.820 .180 0 0 

.240 .592 .168 0 

0 .252 .608 .140 

0 0 .280 .720 

This transition matrix has the selected initial distribution 
(.4, .3, .2,. 1) as a stationary distribution. 32 

29Since for the Poisson, the mean is equal to the variance. 
3°We assume that we do not know what type of risk the individual is and that the 
complement of credibility is to be assigned to the overall mean. 
3JNote that we are referring to presumed changes in the unobservable expected claim 
frequency rather than observed changes in the actual number of claims from year to year. 
32It can be easily verified that (.4,.3,.2,.I)P = (.4,.3,.2,.1). See Appendix D for how this 
transition matrix was constructed. 
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As with the dice example, one can compute the variance- 
covariance matrix and thus the credibilities. 

The expected value of  process variance for a single year in 
this example is .50. Note that this depends on the fact that for 
each insured for each year we have assumed a Poisson process. 

The transpose of  the transition matrix has eigenvalues of  

X = (1,.855,.580,.305). 

The eigenvectors are the rows of: 

V = 

1 .75 .5 .25 

1 .1456 - .5623 - .5833  

1 - 1  - .6667 .6667 

1 -2 .1456  1.729 - .5833  

v - l =  

3 09 

• •0643 - .2667  -.1976| 
.4 - .3722  - . 2666  .2388]  

4  333 

and 

(/~ x a )  

(/~ x c O V  - I  = 

V/~ = 

(.25, .50, .75, 1.00) = the assumed means 
(.40, .30, .20, .10) = the stationary distribution 
(.10, .15, .15, .10) 
(.2, - .0903 ,  - .0067,  - .0030)  

(1.25, - .6822,  - .0833,  - .  1094) 

has as its ith element the product of  the ith element of  the 
above two vectors, as shown in Equation 2.5; therefore, 

¢ = (.25, .0616, .0006, .0003). 

Therefore,  for g > 0, the covariance of two different years is 
given by Equation 2.6: 
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C o v [ X 1 , X l + g ]  = ~ ¢ i ~  
i>1 

C o v [ X l ,  X I +g]  = (.0616)(.855 g) + (.0006)(.580 g) 

+ (.0003)(.305 g) for g > O. (3.2) 

For a single year, we set g = 0 and add the expected value of  
process variance: 33 

Var(X) = .0625 + .5  = .5625. (3.3) 

One can use this variance-covariance structure in the Equa- 
tions 2.8 for the credibilities. For example, if  using three years 
of  data X l , X 2, X 3 to estimate the next year, X 4, then the three 
equations in three unknowns are: 34 

.5625Z l + .0531Z2+ .0453Z 3 = .0386, 

.0531Z 1 + . 5 6 2 5 Z  2 + . 0 5 3 1 Z  3 = .0453, and 

.0453Z 1 + . 0 5 3 1 Z  2 + . 5 6 2 5 Z  3 = .0531. 

The solution is Z 1 = 5.6%, Z 2 = 6.7%, and Z 3 = 8.4%. Table 1 
displays the solutions for various numbers of  years of  data. 

Figure 6 shows the sum of  the credibilities both in the pres- 
ence of  shifting risk parameters and in the absence of  shifting 
risk parameters. 35 Also shown are credibilities corresponding to 
twice the original rate of  shifting 36 and to five times the original 
rate of  shifting. 37 As was seen before, the presence of  shifting 
risk parameters lowers the credibilities. The more rapid the shift- 
ing, the greater the effect on the credibilities. 

33This matches the result prior to considering shifting parameters over time, as it should. 
34Cov[Xi ,X 2] = .0531. Cov[XI,X3] = .0453. Cov[X I ,X4] = .0386. Var[X] = .5625. 
35As was seen in the previous section, in the absence of shifting risk parameters, I/(Y + 8) 
credibility is assigned to each of Y years for a total of  Y/(Y + 8). 
36Based on using the square of  the original transition matrix. 
37Based on using the fifth power of  the original transition matrix. 
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TABLE 1 

CREDIBILITY 

S I M P L E  P O I S S O N  E X A M P L E  WITH SHIFTING R I S K  P A R A M E T E R S  

(No Delay in Receiving Data) 

Years Between 
Data and 
Estimate 

Number of Years of Data Used 

1 2 3 4 5 10 

1 (Most Recent) 9.4% 8.8% 8.4% 8.1% 8.0% 7.8% 
2 7.2% 6.7% 6.4% 6.3% 60% 
3 5.6% 5.2% 5.0% 4.7% 
4 4.3% 4.0% 3.7% 
5 3.3% 2.9% 
6 2.2% 
7 1.8% 
8 1.4% 
8 1.1% 
10 0,9% 

Total Credibility 9,4% 16.0% 20.7% 24.0% 26.6% 32.5% 

With shifting risk parameters, as the number of  years of  data 
approaches infinity, the sum of  the credibilities approaches a limit 
less than unity. For faster shifting, this limit is lower and it is 
approached more rapidly. 

Since the first term in the covariance in Equation 3.2 domi- 
nates, the variance-covariance structure in Equations 3.2 and 3.3 
can be approximated by: 

Cov[Xi,Xj]  = (.0625)(.85Ei-jl) + .56ij (3.4) 

where ~Sij = 0 for i ¢ j and 1 for i = j .  

In general, 

Cov[Xi,Xj]  = T2.X li-jl + ~Sijrl 2 (3.5) 

where 7j 2 is the expected value of process variance, r 2 is the 
variance of  hypothetical means and ~ is the dominant  eigen- 
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FIGURE 6 

S U M  OF C R E D I B I L I T I E S ,  S I M P L E  P O I S S O N  E X A M P L E ,  

V A R I O U S  RATES OF S H I F I ' I N G  P A R A M E T E R S  O V E R  T I M E  
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value (other than unity) of  the transpose of the transition matrix 
of the Markov chain. 

For one year of  data, predicting year 1 + A, the credibility is 
obtained by solving Equation 2.8: 

Z(r  2 + 77 2)  = r2)~ a Z = )~eX/(l + K) (3.6) 

where K = 7/2/?-  2 = Bfihlmann credibility parameter. 

As shown in Mahler [9], when one has years 1 to Y predicting 
year Y + A, the sum of the credibilities is approximately: 38 

3SAs discussed on pages 162-164 of Mahler [9], this approximation underestimates the  
credibilities. However, here we have also approximated the covariances, therefore the 
approximation can go in either direction. 
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Y 

E Z i 
i= l  

A A Ai-1 

Y 

~ ' A  i-l + K 
i=1 

(3.7) 

In the absence of  shifting risk parameters, A = 1 and the sum 
of  the credibilities given by Equation 3.7 becomes the familiar 
Y/(Y + K). 

In the current example, A = .855, 712 = .5, "r 2 = .0625, and K = 
r/2/r 2 = 8. Thus Equation 3.7 becomes for & = 1 

v (.855) (.855) i-I 
\ i = 1  I (3.8) 

For Y = 3, Equation 3.8 gives ~ Z  i ~20 .9%.  As seen above, 
the exact solution gives Z 1 + Z 2 + Z3 = 5.6% + 6.7% + 8.4% = 
20.7%, which happens to be somewhat  lower in this case. 

As the number of  years of data increases in Equation 3.7, the 
approximate sum of  the credibilities approaches: 

In this example, for A = 1, A = .855 and K = 8, the sum of the 
credibilities approaches approximately 39.6%. As seen in Figure 
6, the sum of  the credibilities actually approaches 34.7%. Thus 
while this approximation is conceptually useful, one should be 
cautious in using it for precise numerical results. 

Figure 7 displays the credibilities that would be assigned to 
each of  ten years of  data. In the absence of  shifting risk parame- 
ters, each year  of  data is assigned equal credibility. With shifting 
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FIGURE 7 

CREDIBILITIES ASSIGNED TO EACH OF TEN YEARS OF DATA, 

SIMPLE POISSON EXAMPLE, VARIOUS RATES OF SHIFTING 

PARAMETERS OVER TIME 
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risk parameters, more recent years of data are given more weight 
than older years of data. The faster the shifting, the less weight 
is given to the older years of data. 

4. CALIFORNIA DRIVING DATA 

Mahler [7] examined California driving data. Two sets of data 
were examined: male and female drivers. The latter set showed 
more significant evidence of shifting parameters over time. The 
Markov chain model will be used to model the data for female 
drivers. 39 

39The techniques could be applied in a similar manner to the male drivers. 



612 A MARKOV CHAIN MODEL OF SHIFTING RISK PARAMETERS 

FIGURE 8 
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For 23,872 female drivers over a period of  nine years, there 
were 7,988 accidents, for an annual accident frequency of  .0372. 
The average variance of  a year of  data was .0386. 

4.1. Gamma-Poisson 

Such data can be commonly fit with a "gamma-Poisson" in 
which each insured's frequency is a Poisson process and the 
Poisson parameters vary over the portfolio via a gamma distri- 
bution, a° Key features of  the gamma-Poisson are displayed in 
Figure 8. The frequency distribution for the portfolio is negative 

4°See for example, Mayerson [11], Dropkin [1], Herzog [3], and Hossack, Pollard, and 
Zehnwirth [6]. 
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TABLE 2 

NUMBER OF DRIVERS WITH VARYING NUMBERS OF CLAIMS 
OVER NINE YEARS 

Maximum 
California Likelihood Markov 

Number of  Female Negative Chain 
Claims Drivers Binomial* Simulation 

0 17,649 17,654 17,695 
1 4,829 4,822 4,852 
2 1,106 1,101 1,029 
3 229 235 239 
4 44 48 49 
5 9 10 6 
6 4 2 2 
7 1 0 0 
8 1 0 0 
9+ 0 0 0 

23,872 23,872 23,872 

*Negative binomial distribution with parameters p = .8164, k = 1.4876, The California data has a 
total of 7,988 accidents while the simulated data has a total of 7,865. 

binomial. As shown in Table 2, a negative binomial is a reason- 
able fit to this data. 41 The overall mean is the mean of  the gamma 
distribution. The total variance minus the mean is the variance 
of  the gamma distribution. Thus one can use the method of  mo- 
ments to determine the parameters o f  the gamma distribution; 
for this data, the mean of  the gamma would be .0372 and the 
variance of  the gamma would be .0386 - .0372 = .0014. 

For a gamma distribution with shape parameter c~ and (in- 
verse) scale parameter A, this would lead to two equations: 

c~/)~ = 0.372, and 

c~/.~ 2 = .0014. 

41As discussed in reviews of  Dropkin [1], this does not imply that the gamma-Poisson 
model  is appropriate. 
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FIGURE 9 

COVARIANCES VERSUS YEARS OF SEPARATION 
CALIFORNIA FEMALE DRIVER DATA 
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This would give values of  A = 26.6 and c~ = .988. If  the 
shape parameter c~ = 1, one would get an exponential distri- 
bution. As a first approximation, assume the frequencies are 
given by an exponential density function with parameter 26.9: 
f(O) = 26.9e -269° with mean 1/26.9 = .03717. 

4.2. Shifting Parameters 

As stated above, the data for California female drivers shows 
evidence of  shifting risk parameters over time. The covariances 
between years of  data with given separations is shown in Fig- 
ure 9. The covariances appear to decrease for larger separations. 
The observed covariances were fit to an exponential regres- 
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sion: C o v [ X i ,  Xi+g ] -- .00120e -066g, where g is the years of  sep- 
aration. 

This is the same general type of  behavior one would expect 
from a Markov chain model of  shifting parameters over time. In 
order for a Markov chain model to fit the observed covariances, 
the variance of  hypothetical means should be about .0012, since 
setting g = 0 in the Markov model gives the variance of  hypo- 
thetical means. 42 The factor in the exponent, - .066 ,  should ap- 
proximate the log of  the dominant eigenvalue (other than unity) 
of  the transition matrix, since this is the approximate rate of  de- 
cline of  the log of  the covariances in the model. Thus, in order 
to match the observed decline, the dominant eigenvalue(s) (other 
than unity) must be about e - ' 066  -~ .94. 

4.3. Markov Chain Model 

In order to apply the Markov chain model, one has to convert 
the assumed continuous distribution of  frequency parameters into 
a discrete approximation. For example, take mean frequencies 
of: 

0 i = .0025,.0075,.0125 . . . . . .  3975 i = 1,2 . . . . .  80. 

Take the (initial) probabilities of  being in each of  these 80 states 
as c~ i proportional t o  e -26 '90i ,  such that the sum of  the ai is 
unity. 43 Then, as shown in Appendix D, one can construct an 
(80 x 80) transition matrix that has these c~ as a stationary dis- 
tribution. For illustrative purposes, assume about ~- chance of  
shifting up or down a state per year. 44 For this transition matrix, 

42Given the random fluctuation in the data, this estimate o f  .0012 is not inconsistent with 
the previous estimate of  .0014. 
43This is a discrete approximation to the selected exponential distribution, The technique 
will work exactly the same for a gamma distribution with a shape parameter other than 
unity (which is an exponential). 
44In order to match the observed covariance structure, this transition matrix will be taken 
to an appropriate power. 
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the first ten elements of  ff and X are: 45 

i (i Ai 

1 .00139 1 
2 .00059 .9980 
3 .00042 .9964 
4 .00019 .9939 
5 .00008 .9903 
6 .00OO4 .9857 
7 .00002 .9801 
8 .00001 .9735 
9 .00001 .9659 

10 .00000 .9574 

with all the remaining elements of ~ < .0001. Since only the first 
few terms contribute significantly to the sum that calculates the 
model covariances, 

Cov[X1,Xl+g ] = ~ ( i A ~  ~ .0013(.997 g) g > 0. 
i>1 

As discussed previously, in order to approximate the observed 
covariance structure for California female drivers, one would 
want a decline in the log covariances of about - .066g .  The above 
transition matrix has a decline of  the log covariances of  about 
-.O03g. Raising the above transition matrix to the 20th power 46 
will multiply the decline in log covariances by about a factor of  
20, producing a decline of  about - .060g ,  and so should roughly 
approximate the observed decline. 

The model covariances for such a transition matrix are shown 
in Figure 10. The model covariances are a reasonable fit to the 

45See the previous discussion and Equation 2.5 for the definition of  ~. ,X is the set of 
eigenvalues of the transpose of the transition matrix. 
46Taking the transition matrix to the 20th power gives a matrix whose eigenvalues are 
all taken to the 20th power. Thus the logs of all the eigenvalues are multiplied by 20. 
Since the log covariances decline approximately proportionally to the log of the dominant 
eigenvalue (other than one), they will decline about 20 times as fast for the new transition 
matrix as for the original. 
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FIGURE 10 
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observed data. 47 While the observations extend out to a 13 year 
separation, one can calculate the model covariances for any num- 
ber of  years of  separation. 48 

4.4. Simulation 

A simulation of  this Markov chain model was performed. The 
first step is to simulate the movement o f  the Poisson parameters 

47The limited amount of data would allow other models to fit reasonably well. The 
observed fit indicates that the form of the proposed model might be useful. It falls well 
short of demonstrating that it is superior to some other form of model. However, it is 
clearly superior to a static model without shifting risk parameters. 
4SBeyond 13 years, the model covariances follow a power curve, declining slowly towards 
z e r o .  
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FIGURE 11 
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from year to year, using the probabilities in the transition ma- 
trix. 49 Figure 1 1 shows the result for five risks, each of which 
started out in State 30, in Year 0. Over the course of 14 years, 
these risks randomly moved up and down from state to state, 
with corresponding changes in their assumed expected claim fre- 
quency. 5° 

The initial configuration of 23,872 drivers by state in Year 0 
was chosen to match the selected probability distribution. Then 

49The selected 80 × 80 transition matrix was the constructed transition matrix to the 20th 
power. The constructed transition matrix had an average chance of shifting of about 
per year and had the selected discrete exponential distribution as a stationary distribution. 
5°State 30 corresponds to a Poisson frequency of.1475. 
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each of the risks moved randomly each year from state to state 
via the Markov chain. The five risks shown in Figure 11 for 
illustrative purposes ended up in vastly different states at the end 
of the 14 year period. They each started with the same assumed 
annual Poisson frequency of  14.75% in Year 0. Over the course 
of the 14 year period, they had Poisson parameters ranging from 
.25% to 22.25%. 

There were 61 risks initially in State 30. Over the course of  
time, their expected claim frequency declined towards the aver- 
age of  3.7% for the portfolio: 

Risks in State 30 in Year 0 

Average Poisson 
Year Parameter 

0 14.75 
1 13.87 
2 13.29 
3 13.27 
4 12.89 
5 12.84 
6 12.24 
7 11.98 
8 11.66 
9 11.33 

10 11.76 
11 10.39 
12 9.84 
13 9.25 
14 9.15 

After 14 years, the average frequency for these risks moved 
reasonably towards the overall average. 51 Given enough time, the 

51The speed at which this occurred was dependent on the particular speed of the shifting 
parameters over time selected for this example. 
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FIGURE 12 

HAVING STARTED IN STATE 60, CHANCE OF 
BEING IN A CERTAIN STATE 
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average frequency would have become virtually indistinguish- 
able from the overall average. Figure 12 shows how the distri- 
bution evolves over time for risks that start in State 60, (with 
an initial expected claim frequency of  29.75%). Over time, the 
distribution approaches the assumed stationary exponential dis- 
tribution. 

This illustrates a general feature of Markov chains: initial in- 
formation fades over time. For each risk, we have n o t  modeled 
a very long term expected risk propensity that is different than 
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FIGURE 13 

AVERAGE CLAIM FREQUENCY OVER TIME OF DRIVERS 
STARTING IN VARIOUS STATES 
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average. Rather, the very long term expected risk propensity is 
the same for each risk. This is again illustrated in Figure 13, 
which shows how the expected claim frequency approaches the 
overall average of 3.7% regardless of which Markov chain state 
the insured started in. In some applications, this may prevent the 
model from being useful. 

Looking at all 23,782 risks, the simulation resulted in a gen- 
erally similar mix of Poisson parameters each year. So while 
individual risks' Poisson parameters changed, the portfolio as 
a whole was approximately "stationary" over time. For exam- 
ple, the mean frequencies and variances of the portfolio for this 
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s i m u l a t i o n  w e r e :  

Variance of  Number of  
Mean Poisson Poisson Risks in State 

Year Parameter Parameters 30 

I .03724 .001384 72 
2 .03715 .001390 72 
3 .03697 .001393 63 
4 .03701 .001388 69 
5 .03707 .001386 62 
6 .03706 .001386 64 
7 .03691 .001376 58 
8 .03712 .001391 60 
9 .03703 .001371 65 

10 .03707 .001366 51 
11 .03684 .001361 47 
12 .03687 .001356 51 
13 .03684 .001360 53 
14 .03689 .001364 47 

Also shown for illustrative purposes is the number of  risks 
in State 30 in each (simulated) year. It fluctuates considerably 
around its expected value of  61. When looked at in this level 
of  detail, the simulation of  Poisson parameters results in some 
differences in the portfolio composition from year to year. In 
this case, the states are only .5% apart in annual claim frequen- 
cy, so exactly how many risks are in any single state is of  no 
practical importance, as well as being unobservable in the real 
world. 

The covariances between the Poisson parameters for the sim- 
ulation decrease approximately in the manner expected by the 
model (see Table 3). Thus the simulation of  the Poisson parame- 
ters in this example does not introduce much random fluctuation 
into the covariances between years. 52 

52With a different number of  drivers or different transition matrix, the result could differ. 
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TABLE 3 

COVARIANCES (.00001) 

Years of  
Separation Model Simulated Poisson Parameters 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
13 

125 126,126,127,126,126,125,126,125,124,123,123,123,123,124 
115 116, 116,116, 116, 115, 116,115,115,114,113,113,113 
106 107,107,107,107,106,106,106,105,105,105 
99 I00, 100,99, t00,99,99,98,98,98,98 
92 93,92,93,92,92,92,92,92,91 
86 86,87,86,87,86,86,86,86 
81 81,81,81,81,81,81,81 
76 75,76,76,76,76 
71 71,71,71,71,72 
67 67,67,67,67 
63 63,63,63 
59 60,60 
56 56 

Unfortunately, the second step of  the simulation does intro- 
duce considerable fluctuation into this example. Once one has a 
set of  Poisson parameters (one for each driver), one can simu- 
late the number of  accidents that each driver had in a year. In 
the particular example, since the annual accident frequencies are 
so low, there is a lot of  noise relative to the information. Any 
one simulation of  a year of  accident data does not provide much 
information. In particular, the covariances between simulated 
years of  accident data are subject to considerable random fluc- 
tuation. 

For example, for two years of  Poisson parameters 53 with a 
covariance of  .00086 between the two years, the covariances be- 
tween years for seven simulated sets of  accident data were: 

. 0 0 1 1 5 , . 0 0 0 9 1 , . 0 0 1 1 3 , . 0 0 0 4 0 , . 0 0 1 2 1 , . 0 0 1 1 8 ,  and .00050. 

53Of 23,872 drivers distributed as per the model of  female drivers in California. 
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This large amount of random fluctuation implies that one should 
not draw very precise conclusions from the limited available data. 

Figure 10 compares the observed covariances for the Cali- 
fornia female driving data and those for a set of data simulated 
using the Markov chain model. Within the context of the large 
amount of random fluctuation, the actual and simulated data sets 
look generally similar. 

Table 2 compares the numbers of insureds with various num- 
bers of accidents over nine years. The simulated data seems to 
have a somewhat lighter tail than the observed data, although the 
overall fit is not unreasonable. 54 One could revise the particular 
inputs used here to attempt to get a somewhat heavier tail. One 
could increase the variance of hypothetical means 55 and/or have 
relatively less shifting over time for high frequency drivers. 56 
However, these details are beyond the scope of this paper. 

One should note that adding shifting risk parameters in the 
manner done here reduces the probability of an extremely large 
number of accidents for an insured over an extended period, since 
the Poisson parameter for an insured tends towards the overall 
average over time. The most likely insureds to have extremely 
large numbers of accidents are those whose Poisson parameters 
are high for all the observed years. 

Overall, the Markov chain model presented here does a rea- 
sonable job of fitting the female driver data from California. On 
the other hand, due to the limited amount of data, one should 
be cautious in drawing any definitive conclusions. There are un- 

54The negative binomial fit to the data also seems to have a slightly light tail compared 
to the data, indicating that perhaps a gamma-Poisson model might be improved upon. 
55For the gamma  distribution, the variance of  hypothetical means  is the overall mean 
divided by the shape parameter of  the gamma. Thus  for a fixed overall mean, the smaller 
the shape parameter, the larger the variance of  hypothetical means. 
56The particular transition matrix (which was raised to the 20th power) assumed approx- 
imately 2 chance of  shifting per year regardless of  the state. One could have had the 
amount  of  shifting depend on the accident frequency. 
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TABLE 4 

CREDIBILITY 

F E M A L E  C A L I F O R N I A  A C C I D E N T  DATA 

M A R K O V  C H A I N  M O D E L  

(No Delay in Receiving Data) 

Years Between 
Data and 
Estimate 

Number of Years of Data Used 

1 2 3 4 5 10 

1 (Most Recent) 3.2% 3.1% 3.1% 3.0% 3.0% 2.8% 
2 2.9% 2.8% 2.7% 2.7% 2.5% 
3 2.6% 2.5% 2.4% 2.3% 
4 2.3% 2.2% 2.1% 
5 2.1% 1.9% 
6 1.7% 
7 1.6% 
8 1.5% 
8 1.4% 
10 1.3% 

Total Credibility 3.2% 6.0% 8.5% 10.5 % 12.4% 19.1% 

doubtedly refinements that would allow a somewhat better fit to 
the observed data. 

4.5. Credibilities 

The covariance-variance structure for the Markov chain model 
fit to the data for the female drivers from California can be used 
together with Equations 2.8 to solve for the credibilities of differ- 
ent numbers of years of data. These credibilities have the same 
pattern as in Mahler [7] although the magnitudes are different. 
The latter appears to be due to a mistake in Mahler [7] in comput- 
ing the credibilities. 57 In any case, note that the current method 
has the advantage that it does not require the dividing of the 

57Unfortunately, it appears that a mistake was made in Mahler [7] in adopting the work 
in Mahler [10]. The step in Mahler [10] of dividing the variance into three pieces: within 
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covariances (or variances) into separate pieces, some of  which 
must be inferred rather than observed. The current method relies 
on the observable total variances and covariances. 58 

Table 4 displays the credibilities assigned to individual years 
as well as the sum of  the credibilities. Figure 14 compares the 
sum of  the credibilities for the Markov chain model  to those 

variance, between variance, and the variance due to shifting parameters over time, was 
not performed in Mahler [7]. This led to an inappropriate total covariance between years 
being used in the equations for credibility; these covariances were too big by an amount 
equal to the between variance. 
58This difference from Mahler [10] is, to a large extent, a matter of  presentation and 
emphasis. (See for example, PCAS LXXV[I 1990, p. 297.) 
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FIGURE 15 
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that would result from ignoring shifting risk parameters. 59 With 
shifting risk parameters, the credibilities are lower. 6° As the num- 
ber of years approaches infinity, the sum of the credibilities ap- 
proaches 31.7% rather than 100%. 61 Also shown are credibil- 

591n the absence of shifting risk parameters over time, one has the gamma-Poisson  situ- 
ation summarized in Exhibit 9. The credibility assigned to each of Y years is I /(Y + A) 
where A is the scale parameter of  the gamma  distribution. In the present example A was 
taken equal to 26.9. However, the discrete approximation in Section 4.1 produces an 
expected value of  process variance of  .037222, and variance of  hypothetical mean fre- 
quencies of  .0013765. Their ratio is a credibility parameter of  27.04. Therefore, in the 
absence of  shifting risk parameters, each of  Y years of  data would be given a credibility 
of  1/(Y + 27.04) for a sum of  credibilities of  Y / ( Y  + 27.04). 
6°The effect of  shifting risk parameters in this case starts to have a significant impact 
after 10 or 15 years. 
61 While the model can be run for more than 50 years of  data, it is unclear what the 
connection to reality is in this case. 
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FIGURE 16 

CREDIBILITIES ASSIGNED TO EACH OF TWENTY YEARS OF DATA 
MARKOV CHAIN MODEL OF CALIFORNIA FEMALE DRIVER DATA 
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Year No gap between data and year to be estimated. Year 

ities for half this rate of shifting as well as twice this rate of 
shifting. 

Figure 15 displays the individual credibilities for ten years of 
data. Figure 16 is similar, but for 20 years of data. In each case, 
the credibilities assigned to older years of data are significantly 
lower than those for more recent years of data. While the total 
credibility is less than in the absence of shifting risk parameters, 
the most recent year actually receives more credibility. 62 

Figure 17 displays the effect of delays in receiving data. Even 
in this situation with a relatively slow shifting of risk parameters, 
the effects of delays are noticeable. 

62This is the same pattern as was displayed in the simple Poisson example. 
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FIGURE 17 

EFFECTS OF DELAYS IN COLLECTING DATA ON SUM OF 
CREDIBILITIES, MARKOV CHAIN MODEL OF CALIFORNIA 

FEMALE DRIVER DATA 
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5.  B A S E B A L L  DATA 

Mahler [ 10] examines the won-lost records of baseball teams. 
The Markov chain model developed here can be fit to this data. 

There are two data sets, American League (AL) and National 
League (NL), each covering a 60 year period. As in Mahler [ 10], 
we will assume for simplicity 150 games per team per year, and 
convert the losing percentages to numbers of games lost. Table 
5 displays the covariances between years of data separated by 
different amounts. 63 It is evident that the covariances decline as 

63The separate observations of  covariances were averaged. For example, there are 59 pairs 
of years separated by one year. There is considerable random fluctuation. For example, 
the covariances for the 59 pairs of years separated by one year for the AL data average 
to 1387 with a standard deviation of 78.7. 



T A B L E  5 

C O V A R I A N C E S  V E R S U S  Y E A R S  O F  S E P A R A T I O N ,  B A S E B A L L  D A T A *  

kJo 

Number of Years 
Separation American League National League 

0 213.6 205.2 
1 1387 139.3 
2 109.8 106.2 
3 928 99.4 

4 77.7 86.2 
5 55.0 70.5 
6 45.3 65.2 
7 33.5 53.1 

8 23.5 40.7 
9 12.1 30.7 

10 15.4 23.8 
I 1 12 1 20.9 

12 9.9 25.2 
13 18.4 34.7 
14 17.6 37.1 
15 26.0 42.9 

16 36.1 52.2 36 32.6 -8 .6  
17 34.5 57.4 37 40.8 - 16.6 
18 42.9 47.2 38 53.4 -16.4  
19 43.5 40.6 39 33.2 -7 .9  

40 21.4 -33.2 

"Cuwtnance,~ between number of game~ lust per team, ba~,ed on observed h~sing percentage and a,~suming 150 game'~ per team per year. 

Number of Years 
Separation American League National League :> 

K 
20 45.8 33.2 > 
21 33.4 26.9 

O 
22 27.4 19.1 < 
23 14.1 19.9 

> 

24 3.2 15.7 
25 -2 .7  4.7 K 

O 
26 4.0 1.2 
27 3.6 -12.9  r'- 

© 
28 0.4 - 18.4 
29 -5 .4  - 11.4 =: 
30 3.4 -3.7 -q 
31 5.5 -6 .8  

32 9.4 -3.1 
33 9.7 -8 .9  
34 28.3 -12.4 > 
35 37.7 -2.3 > K 



TABLE 6 

CORRELATIONS VERSUS Y E A R S  OF SEPARATION, B A S E B A L L  DATA 

Number of Years Number of Years 
Separation American League National League Separation American League National League 

0 1.000 1.000 20 0.225 0.136 
1 0.633 0.651 21 0.159 0.090 < 
2 0.513 0.498 22 0.125 0.065 
3 0.438 0.448 23 0.093 0.055 > 

4 0.360 0.386 24 0.048 0.004 
5 0.265 0.312 25 0.006 -0.024 
6 0.228 0.269 26 0.010 -0.028 © 
7 0.157 0.221 27 -0.002 -0.095 

8 0.124 0.190 28 -0.013 -0.128 
9 0.078 0.135 29 -0.032 -0.107 q 

10 0.090 0.100 30 0.006 -0.062 
11 0.058 0.083 31 -0.019 -0.061 

12 0.063 0.103 32 0.027 -0.028 
13 0.101 0.154 33 0.002 -0.015 
14 0.104 0.176 34 0.088 0.017 
15 0.141 0.180 35 0.143 0.038 

16 0.178 0.246 36 0.156 -0.014 
17 0.166 0.278 37 0.214 -0.024 
18 0.198 0.219 38 0.238 -0.012 
19 0.219 0.176 39 0.138 -0.017 

40 0.093 -0.095 
ta.a 
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the years get further apart. As discussed in Mahler  [10], these 
data display a relatively large impact of  shifting risk parameters 
over time. Table 6 shows the similar pattern for the correlations. 

Fitting an exponential regression to the covariances for sepa- 
rations of  one to ten years, one obtains: 

N L :  Cov[Xi,Xl÷g] = exp (5 .156 - .185g) ,  

A L :  Cov[X1,Xl+g ] = exp (5 .317 - .272g) .  

5.1. Markov Chain Model 

To fit a Markov chain model to this data, one would want the 
log of  the covariances to decline at a slope of  about .23. 

The first step in modeling the baseball data is to assume for 
simplicity that each team's  number of  games lost in a year  is 
approximately binomial with parameters p and 150. The mean 
number  of  games lost, p150, will be assumed to have the fol- 
lowing discrete distribution: 64 

Expected Number of Games Lost (#) 

50 55 60 65 70 75 80 85 90 95 100 

Probability (c~) 

4% 6% 10% 11% 12% 14% 12% 11% 10% 6% 4% 

Then using the technique of  Appendix D, one can construct 
an 11 × 11 transition matrix that has the above o~ as a stationary 
distribution: 65 

64This simple distribution was chosen for illustrative purposes and is intended to approx- 
imate the observed spread of results. The chosen distribution has the desired mean of 75 
and together with a binomial risk process would produce a total variance of about 207 
compared to the observed total variance of about 209 
65The particular matrix was constructed in order to have about a ½ chance of shifting 
either up or down one state per year. 
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t.7000 .3000 0 

.2000 .4875 .3125 

0 .1875 .5506 

0 0 .2381 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

,0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

.2619 0 0 0 0 0 0 0 

.5010 .2609 0 0 0 0 0 0 

.2391 .4916 .2692 0 0 0 0 0 

0 .2308 .5385 .2308 0 0 0 0 

0 0 .2692 .4916 .2391 0 0 0 

0 0 0 .2609 .5010 .2381 0 0 

0 0 0 0 .2619 .5506 .1875 0 

0 0 0 0 0 .3125 .4875 .2000 

0 0 0 0 0 0 .3000 .7000~ 

The eigenvalues and ~" vector are: 

i (i Ai i (i Ai 

1 5625 1 7 0 .4292 
2 169.6 .9670 8 .004 .2846 
3 0 .9034 9 0 .1881 
4 1.36 .8119 10 .007 .0966 
5 0 .7154 11 0 .0330 
6 .069 .5708 

Cov[XI,XI+u] = ~-'~ ~'iA/g ~, 170(.967g). 
i>1 

Therefore, the log of  the covariances would decline at a slope 
of  about .033. To match the baseball data, we desire a decline at a 
slope of  about .23 or about 6 or 7 times as much. Therefore, this 
transition matrix raised to the 6th power should roughly match 
the baseball data. 66 

66This will correspond to about a 1 in 2,000 chance of a team moving up or down 6 
states (+.2 in expected losing percentage) in a single year. 
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FIGURE 18 

C O V A R I A N C E S  V E R S U S  Y E A R S  O F  S E P A R A T I O N ,  B A S E B A L L  

D A T A  VS.  M A R K O V  S H I F T I N G  P A R A M E T E R S  O V E R  T I M E  
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Figure 18 compares the covariances observed for the baseball 
data and those for the Markov chain model. There is an overall 
reasonable fit. There are higher covariances than would be pre- 
dicted by the model for separations of about 15 to 23 years. This 
may be due to some long term cycle in the data, but in any case 
is beyond the scope of this paper. 67 

67Some factors which remained relatively stable over this 60 year period of  time might 
lead to a tendency for an individual t eam's  expected losing percentage to revert to a 
long term average different than the overall average of .5. The Markov chain model 
does not capture any such behavior. Rather, it assumes that given sufficiently long time 
periods, the average for each risk will be the same. Yet in Section 4.1 of  Mahler [10], it is 
demonstrated that over the 60 year data period, the teams are significantly different. Thus  
while, as will be shown below, the estimated credibilities are reasonable, the Markov 
chain model is far from a complete description of the risk process that produced this 
baseball data. 
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TABLE 7 

CREDIBILITY 

B A S E B A L L  DATA M A R K O V  C H A I N  M O D E L  

(No Delay in Receiving Data) 

Years Between 
Data and 
Estimate 

Number of Years of Data Used 

1 2 3 4 5 10 

1 (Most Recent) 67.0% 55.1% 54.3% 54.2% 54.2% 54,2% 
2 17.7% 15.0% 14.8% 14.8% 14.8% 
3 4.9% :4.2% 4.1% 4.1% 
4 1.4% 1,2% 1.2% 
5 .4% .3% 
6 .1% 
7 0 
8 0 
8 0 
10 0 

Total Credibility 67.0% 72,8% 74.2% 74.6% 74.7% 74.7% 

5.2. Credibilities 

The covariances calculated in the Markov chain model can 
be used to calculate the credibilities to be assigned to individual 
years of data. Table 7 displays these credibilities, assuming no 
delay in receiving the information. 

The sum of the credibilities 68 quickly reaches a limit of 74.7% 
as the number of years of data is increased. Due to the quickly 
shifting risk parameters over time, the amount of credibility as- 
signed to more distant years of data is small. The credibilities 
in Table 6 are generally similar to those in Table 16 of Mahler 
[ 10]. However, due to the structure imposed by the Markov chain 
model, the credibilities in Table 6 have a more reasonable pattern 
when looked at in detail. The credibilities are all between 0 and 

68The complement of credibility is given to the grand mean. 
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FIGURE 19 

CREDIBILITIES ASSIGNED TO EACH OF FIVE YEARS OF DATA 
MARKOV CHAIN MODEL OF BASEBALL DATA 
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1. They decrease for years more distant in time. The credibility 
assigned to any individual year of data declines as more years are 
added. The sum of the credibilities increases smoothly as years 
of data are added. 

Figure 19 displays the credibilities assigned to five separate 
years of data for various delays in obtaining information. Due to 
the quickly changing risk parameters, the effect of any delay in 
obtaining data is significant. As the delay increases, the credibil- 
ity assigned to any individual year decreases. The smooth pattern 
shown in Figure 19 demonstrates the effect of the structure im- 
posed by the Markov chain model. 
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FIGURE 20 

CREDIBILITIES ASSIGNED TO EACH OF TEN YEARS OF DATA 
VARYING THE RATE OF SHIFTING PARAMETERS IN THE 

MARKOV CHAIN MODEL OF BASEBALL DATA 
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Figure 20 compares the credibilities one would assign to ten 
individual years of data with either more or less quickly shifting 
risk parameters than in the baseball data. If a major change in 
circumstances leads one to believe there has been a significant 
change in the rate at which parameters shift, 69 then the Markov 
chain model can be easily adjusted to incorporate one's estimate 
of the rate at which parameters will shift in the future. 

69In the baseball example, many changes have occurred since 1960, the last year used to 
calibrate the model. For example, free agency might allow a more frequent movement  o f  
players between teams leading to a somewhat quicker rate of  shifting of risk parameters. 
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FIGURE 21 

SUM OF CREDIBILITIES, VARYING THE RATE OF SHIFTING 
PARAMETERS IN THE MARKOV CHAIN MODEL OF BASEBALL 
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In the absence of  shifting risk parameters, the same credibility 
is assigned to each of  the ten years of  data. As more and more 
shifting is introduced, the credibilities for the older years decline. 
(The curve on Figure 20 gets further and further from a vertical 
line.) This illustrates the effect of  fine tuning the rate of  shifting 
in the Markov chain model. 

Figure 21 compares the sums of  the credibilities for various 
numbers of  years of  data for various amounts of  shifting. In 
the absence of  shifting risk parameters, the sum of  the credibil- 
ities approaches unity as the number of  years increases. As the 
amount of  shifting increases, the limit of  the sum of  the credi- 
bilities decreases. 
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If parameters are shifted at one-hundredth of the rate at which 
parameters shifted in the baseball example, the maximum sum of  
the credibilities is 98.4%. For the baseball example, it is 74.7%. 
For twice the shifting, it is 59.8%. The greater the rate of shifting 
of risk parameters, the lower the limit and the faster the conver- 
gence. 

6. A R E A S  F O R  P O S S I B L E  F U T U R E  R E H N E M E N T S  

The model presented here was applied to claim frequency sit- 
uations. It would probably be valuable to extend this to situations 
involving claim severity or pure premiums. 

The model presented here did not fully explore the impact of 
size of risk. In order to properly explore the impact of size of  risk 
on insurance situations, one would probably have to incorporate 
the effects of  parameter uncertainty and risk heterogeneity as 
well as shifting risk parameters over time. 7° 

The model presented here does not allow for an expected long 
term difference between risks. Averaged over a sufficiently long 
period of  time, every risk's average frequency is the same. This 
is undoubtedly a poor model of certain situations. 

There is no specific treatment of the entry of new insureds 
or the exit of current insureds from the database. Venezian [15] 
specifically models the change in accident propensity of  new 
drivers entering the system as they gain experience and get older. 
The model as presented here would not accommodate this phe- 
nomenon. 

Thus while the model presented here is practical and flexible, 
it would require further work to adapt it to many situations of  
potential interest. 

7°See for example, Mahler [8]. 
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7. SUMMARY 

The effects of shifts over time in the risk process of an insured 
can be quantified in the covariances between years of data. For 
this Markov chain model, in most cases the covariances can be 
approximated by 71 : 

C o v [ X i , X j ]  = 7-2)~1i-j[ + 6ij17 2 

where 6ij=[ 0 i~ j  (7.1) 
t l  i~ j  

~7 2 is the expected value of the process variance, 

7-2 is the variance of the hypothetical means, 

and A is the dominant eigenvalue (other than unity) of the trans- 
pose of the transition matrix of the Markov chain. 

One has Var[X] = Cov[X,X] = 7 -2 + ~2. This is the usual re- 
lationship that the total variance can be split into the expected 
value of the process variance and the variance of the hypothetical 
means. 

As the separation between years of data increases, the (ex- 
pected) covariance and correlation between years decline. 

It is not vital to understand the precise derivation of A; rather 
it is important to understand that A quantifies the rate at which 
the parameters shift. The smaller A is, the faster the parameters 
shift. The closer A is to unity, the slower the parameters shift. In 
the limit for A = 1, there is no shifting of parameters. 

Four examples have been considered, involving dice, a 
mixture of four Poisson distributions, California driving data 
(modeled by a gamma-Poisson), and baseball data (modeled 
by a mixture of binomials). The Markov chain model was 
applied to each of these situations. The resulting values of 

71This is Equation 3.5. 
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w e r e :  

Example A "Half-Life" 

Dice 72 .769 2.6 trials 
Mixture of  4 Poissons 73 .855 4.4 years 
Female California Drivers TM .961 17.3 years 
Baseball Team Results 75 .818 3.4 years 

where the "half-life" is the length of  time for the correlations 
between years to decline by a factor of  one-half: 

~half-life = .5  

In .5 - . 693  (7.2) 
half-life - - - -  

In A In A " 

The longer the half-life, the slower the rate of  shifting param- 
eters over time. Thus, the impact of  shifting parameters was most 
significant in the dice example, followed by the baseball data and 
the mixture o f  four Poissons example. 76 The female California 
drivers data with a half-life of  about 17 years has much less 
impact from shifting risk parameters. 77 

If the Markov chain model holds, the correlations between 
different years of  data should decline approximately exponen- 
tially. For i # j, Equation 7.1 gives C o v [ X i , X j ]  = T2)~ li-jl. 

72See Section 2.7. 
73See Section 3.2. 
74The dominant  eigenvalue shown in Section 4.3 is .998. This transition matrix is then 
taken to the 20th power, therefore so are the eigenvalues. (.998) 20 = .961. 
75The dominant  eigenvalue shown in Section 5.1 is .967. However, this transition matrix 
is taken to the 6th power, therefore so are all the eigenvalues. (.967) 6 = .818. 
76The dice example and mixture of  four Poissons example were specifically designed 
to have a significant effect o f  shifting risk parameters for illustrative purposes. One of  
the reasons the baseball data was selected for presentation was because it showed a 
significant impact. 
77The male driving data displayed even less impact from shifting risk parameters than 
female driving data. See Mahler [7]. 
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Also, Var[Xi] = Var[Xj] = 112 + 7-2. Therefore,  

J 

(7.3) 

lnCorr[Xi,Xj] = In 7-2+112 + l i - j l l n ~  i # j .  

Therefore,  if the Markov chain model  holds, the log-correla- 
tions for years separated by a given amount  should decline ap- 
proximately linearly. The slope of  this line is (approximately)  
ln~. The  intercept is approximately 1n(7-2/7- 2 +112). Note that 
7-2/(7-2 + 112) = VHM/total  variance = credibility in the absence 
of  shifting risk parameters.  

Thus  given a data set, one can determine whether  this (sim- 
ple) Markov chain model  might  be appropriate. One determines 
whether  the log correlations as a function of  the separation be- 
tween years (not including zero separation) can be approximated 
by a straight line. 78 Then one can estimate the parameter  ~ and 
the r a t i o  7-2/(7-2+ 112) f rom the slope and intercept of  the fitted 
straight line. 

These estimates can be used in turn to estimate credibilities. If  
one has data f rom years 1,2 . . . . .  Y and is estimating year Y + A, 
then the least squares credibilities are given by solving the Y 
linear equations in Y unknowns:  79 

Y 

ZCov[X ,XjlZ  = Cov[X ,Xv,a], 
j=l (7.4) 

i = 1,2 . . . . .  Y. 

7Sln many cases there is a large amount  of  random fluctuation so even if the expected 
log correlations are precisely along a straight line, the log correlations estimated from 
the data will vary widely around a straight line. See Figure 10. 
79See Equations 2.8. 
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8. CONCLUSIONS 

A Markov chain model has been developed and applied to 
a number of  different examples in which risk parameters shift 
over time. The model is sufficiently flexible to be applied to 
other situations. 

In each case, the Markov chain model was used to explore 
the effects of  shifting risk parameters over time. Covariances are 
calculated. Based on the Markov chain model, when shifting risk 
parameters over time are significant, the logs of the covariances 
between years of data are expected to decline linearly as the 
separation between years increases. 

Credibilities are calculated from the variances and covari- 
ances. When shifting risk parameters are significant, older years 
receive less credibility and as more years of data are added, the 
sum of the credibilities goes to a limit less than one. The longer 
the delay in collecting data, the lower the credibilities. 

The Markov chain model can be used to simulate the claims 
process when there are shifting risk parameters over time in the 
same manner as the gamma-Poisson and similar models can be 
used in the absence of  shifting parameters. The Markov chain 
model should aid the actuary's understanding of  situations in 
which shifting risk parameters are significant. It is both practi- 
cal and sufficiently flexible to be applied in a wide variety of  
circumstances. 



6 4 4  A MARKOV CHAIN MODEL OF SHIFTING RISK PARAMETERS 

REFERENCES 

[1] Dropkin, Lester B., "Some Considerations on Automo- 
bile Rating Systems Utilizing Individual Driving Records," 
PCAS LXXIV, 1987, p. 391. (Reprinted from PCAS XLVI, 
1959.) Note discussions by Robert A. Bailey, Sholom Feld- 
blum, Stephen W. Philbrick, and Chris Svendsgaard. 

[2] Feller, William, An Introduction to Probability Theory and 
Its Applications, New York, Wiley, 1968. 

[3] Herzog, Thomas N., An Introduction to Credibility, ACTEX, 
1994. 

[4] Hewitt, Charles C., Jr., "Credibility for Severity," PCAS 
LVII, 1970, p. 148. 

[5] Hewitt, Charles C., Jr., Discussion of Mayerson: "A 
Bayesian View of Credibility," PCAS LII, 1965, p. 121. 

[6] Hossack, I. B., J. H. Pollard, and B. Zehnwirth, Introductory 
Statistics with Applications to General Insurance, New York, 
Cambridge University Press, 1983. 

[7] Mahler, Howard C., "The Credibility of a Single Private 
Passenger Driver," PCAS LXXVIII, 1991, p. 146. 

[8] Mahler, Howard C., Discussion of Gillam: "Parametriz- 
ing the Workers' Compensation Experience Rating Plan," 
PCAS LXXX, 1993, p. 148. 

[9] Mahler, Howard C., Discussion of Meyers: "An Analysis 
of Experience Rating," PCAS LXXIV, 1987, p. 119. 

[10] Mahler, Howard C., "An Example of Credibility and Shift- 
ing Risk Parameters," PCAS LXXVII, 1990, p. 225. 

[11] Mayerson, Allen L., "A Bayesian View of Credibility," 
PCAS LI, 1964, p. 85. 

[12] Philbrick, Stephen W., "An Examination of Credibility 
Concepts," PCAS LXVIII, 1981, p. 195. 

[13] Resnick, Sidney I., Adventures in Stochastic Processes, 
Boston, Birkhauser, 1992. 



A MARKOV CHAIN MODEL OF SHIFTING RISK PARAMETERS 6 4 5  

[14] Venezian, Emilio C., "The Distribution of Automobile 
Accidents--Are Relativities Stable Over Time?" PCAS 
LXXVII, 1990, p. 309. 

[15] Venezian, Emilio C., "Good and Bad Drivers--A Markov 
Model of Accident Proneness," PCAS LXVIII, 1981, p. 65. 



646 A MARKOV CHAIN MODEL OF SHIFTING RISK PARAMETERS 

A P P E N D I X  A 

M A R K O V  C H A I N S  80 

Assume each year 81 an individual is in a "state." In this paper, 
each state corresponds to a different average claim frequency. In 
this paper, there are a finite number of different states. 

Assume with each new year  that an individual in state i has 
a chance P/j of  going tO state j .  This chance is independent of  
which individual we have picked, what his past history was, or 
what year  it is. The transition probability from state i to state j ,  
P/j, is dependent  on only the two states, i and j .  

Arrange these transition probabilities P/j into a matrix P. This 
transition matrix P, together with the definition of  the states, 
defines a (finite dimensional) Markov chain. 

If an individual is in state i, P/i is the probability that he re- 
mains in state i. 1 -  Pii is the probability that he changes his 
state. 

E~= 1 P/j is the sum of  the probability of  this individual chang- 
ing to each of  the possible states (including remaining in state 
i). Since all the possibilities are exhausted, Z~=I P/j = 1. Each of  
the rows of  the transition matrix P for a Markov chain must sum 
to unity. 

A vector containing the probability of  finding an individual 
in each of  the possible states is called a "distribution." If the dis- 
tribution in year 1 is/3, then the expected distribution in year 2 
is/3P, where /~P  is the matrix product of  the (row vector) distri- 
bution 13 and the transition matrix P. The expected distribution 
in year  3 is (tSP)P = O(PP) = 0p2. The expected distribution in 
year 1 + g is Opu. 

A stationary distribution is a vector c~ such that c~P = c~. On 
an expected basis, the portfolio of  risks stays in the stationary 

S°See Feller [2] and Resnick [13]. 
SlAlthough in this paper the time interval is a year, in general, it can be anything. 
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distribution over time. Note that, from its definition, a stationary 
distribution (if it exists) is an eigenvector corresponding to an 
eigenvalue of  unity. When it exists, the quickest way to compute  
a ,  the stationary distribution of  P, is via: 

= (1, 1 . . . . .  1)(I - P + ONE) -1 

where I is the identity matrix and ONE is the n by n matrix, all 
of  whose entries are one. 82 

All of  the Markov chains in this paper have been specifically 
constructed to have a stationary distribution using the techniques 
in Appendix D. 

For a finite dimensional Markov chain such that each state 
can be reached from every other state and such that no states 
are periodic, 83 a unique stationary distribution c~ exists and for 
any initial dis t r ibut ion/3, /3ps ___, oz as g ~ oo. Thus eventually 
the distribution of  risks in the portfolio is a (for all practical 
purposes) regardless of  the initial distribution/3. 

Taking /3 = (1 ,0 ,0 . . . ) ,  /3 = (0 ,1 ,0 . - . ) ,  etc., implies that the 
rows of  Pg ---, o~ as g ~ oo. If  A is a matrix all of  whose rows 
are the stationary distribution c,, Pg ~ A as g ~ oo. 

Let pT be the matrix transpose of  P. Let A be the diagonal 
matrix with entries equal to the eigenvalues of  pT. Let V T be the 
matrix, each of  whose columns are the eigenvectors o f P  T. (V has 
as its rows the eigenvectors of  pT.) Then, as stated in Appendix 
B, ( V r ) - I p T v r  = A. Taking the transpose of  both sides o f  this 
equation and noting that A r = A, since A is symmetric: V P V  -1 

= A. So the matrix V can be used to diagonalize the transition 
matrix P: 

V - 1 A  2V = V-I (VPV-1)2V = V-I VPV-I VPV-I v = p2. 

82See Section 2.14 of  Resnick [13]. 
83See Section 2.13 of Resnick [13]. 



648 A MARKOV CHAIN MODEL OF SHIFTING RISK PARAMETERS 

In general, Pg = V - I ( V P V - 1 ) s V  = V - 1 A u V .  So powers of  P 
can be computed by taking powers of  the diagonal matrix A and 
using the eigenvector matrix V to transform back. The elements 
of  the diagonal matrix A g are A~. 

If A is matrix whose rows are the stationary distribution ~ ,  
then: 

Pg ---~ A.  

• . A g = V P g V  - I ~ V A V  - j .  

But Ag has diagonal element A~. These only converge to a limit 
as g --~ oo if A i = 1 or [A~I < 1. Let A 1 = 1, since the order of  
eigenvalues is arbitrary. Then [A1] < 1 for i > 1 (ignoring the very 
unusual situation where A = 1 is a multiple root of  the charac- 
teristic equation). 

Let the limit of  Ag as g ~  be denoted by A ~ .  Then 
(A°°)/j = 0 for i ~ 1 or j ~ I, and (A~)l , l  = 1. 

Therefore V - 1 A ~ ° V  = limu_,~P~ = A. 

ThUS (V-1)il V l j  : Aij = o~(j), since the rows of  A are the sta- 
tionary distribution, and ( A ~ ) i j  = 0 for i # 1 or j ¢ 1. 

Thus ( V - l ) i l  = o ~ ( j ) /V  U. 

Note that the left hand side is independent of  j ,  while the 
right hand is independent  of  i. Since the equation holds for all i 
and j ,  both sides must be independent of  i and j .  Therefore,  the 
elements of  the first column of  V- l are all equal. The elements of  
the first row of  V are proportional to the stationary distribution ~.  

Since V V  -1 = I, where I is the identity matrix, the product of  
the first column of  V-1 with any row of  V other than the first is 
zero. But the product of  the first column of  V -1 with any row 
is proportional to the sum of  that row since all the elements of  
the first column of  V -1 are equal. Therefore, the sum of  any 
row of  V other than the first is zero. Therefore,  the sum of  any 
eigenvector other than the first is zero, since the rows of  V are 
the eigenvectors of  P~. 
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A P P E N D I X  B 

EIGEN V A L U E S A N D  E I G E N V E C T O R S  

Given a square matrix P, if for a vector, v, Pv = Av, then v 
is called an eigenvector of  P with eigenvalue A. Note that if 
v is an eigenvector of  P, so is v times any non-zero constant. 
So eigenvectors can be determined only up to a proportionality 
constant. 

One can find the eigenvalues and thus the corresponding 
eigenvectors by solving the characteristic equation: 84 

Determinant ( P -  ,Mr) = 0, where I is the identity matrix. 

If  V is a matrix whose columns are the eigenvectors o f  P, 
then V - 1 P V  is a diagonal matrix A whose elements are the 
eigenvalues of  P. ( V - I P V  = A follows from the matrix equa- 
tion P V  = VA, which when we take each column reduces to the 
eigenvalue equation: Pv i = I~i~i. ) 

If v is an eigenvector of  P with eigenvalue A, then Pv = Av. 
Therefore, 

e2v = P(Pv) = P(Av) = APv = A2v. 

Thus v is also an eigenvector o f P  2 with eigenvalue A 2. In general, 
v is an eigenvector of  Pg with eigenvalue A g. Raising a matrix to 
a power  does not alter the eigenvectors and raises the eigenvalues 
to the same power. 

S4Eigenvalues and eigenvectors are calculated by many computer software packages. The 
author used the APL program EIG provided by Manugistics (formerly STSC). 
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APPENDIX C 

MATRIX EQUATIONS FOR LEAST SQUARES CREDIBILITY 85 

In this Appendix,  Equations 2.8 in the main text are derived 
by minimizing the squared error. The result is N linear equations 
for the credibilities to be assigned to each of  N years of  data. 
Thus, the credibilities can be solved for in terms of  the covariance 
structure. 

Let 

Cij = Cov[Xi ,X j]  

= Covariance of  year X i and year Xj ,  

Cii  = Variance of  year X i. 

and 

Let Z i be the credibility assigned to year X i. We wish to predict 
year XN+A using N years of  data X 1 , X  2 . . . . .  X u and the grand 
mean M. Let Z 0 = 1 - E~=j Zi = complement  of  credibility. 

Then the estimate is: 

Let 

N 

F = Z Z i X i  + ZoM.  
i=1 

N 

X 0 = M, then F : ~ Z i X  i 
i=0 

F - XN+ ~ = Z iX  i --  X N +  A = Z i ( X  i - X N + A ) ,  

N Z =  since ~ i = 0  i 1. 

SSThe derivation is adopted from that in Mahler [10]. 
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Therefore,  

N N 

= F_, ~ z , z / x ,  - x ~ + A ) c x j  - x,,,+A). 
i = 0 j = 0  

Then the expected value of  the squared difference between 
the estimate F and XN+6 is, as a function of  the credibilities Z: 

Now 

VCZ) = E[(F - XN+A) 2] 

N N 

= ~ ~_ ,Z iZ jE[ (X i -  XN+A)(Xj - XN+A) ]. 
i = 0 j = 0  

E[(Xi - XN+A)(X j -- XN+A)] = E[XiXj] - E[XiXN+A] 

-- E[XjXN +A] - E[X2+A] 

E[XiX j] = Cov[Xi, X j] + E[Xi]E[X j] 

= Ci j  + M 2, 

Coj = Cov[M,Xj]  = O. 

where 

Thus 

E[(Xi - -  X N + A ) ( X  j - X N + A )  ] 

= c~ s - c~v+~  - CS,N+~ + CN+Z~,N+A, and 
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N N 
v(z)  = Z Z Z ,  ZAC, j-C,.~+A-Cj,N+A + CN+A~+A}. 

i=oj=o 

v ( z ) =  ~ } 2 z ~ z j c i  i - c , :+Az ,  
i = 0 j = 0  

-- C j, N +AZj Zi 

q- CN +A,N+ A Z i Zj  . 

The last three terms all simplify, since 

N N 

Z z ,  = Zo + Z z ,  
i=0 i= l  

N N 

= l - ~ - ~ Z i + ~ - ~ Z i =  l. 
i=1 i=1 

Therefore, 

N N N 

V(Z)  = ~ ~ Z i Z j f i j  - ~ Ci, N +AZi 
i = 0 j = 0  i=o 

N 
-- F_,Cj~.,,Zj + CN+A:.A. 

j--o 

Also,  since Coj = 0 = C i o  , the elements involving i = 0 or j = 
0 drop out, leaving 

N N N 

V(Z)  -- Z Z ZiZjCij -- 2 ~ Ci,N +AZ i -t- CN+A,N+ A. 
i=1 j = l  i=1 
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Taking the partial derivative o f  V(Z) with respect to Z k and 
setting it equal to zero: 

N 

2 ~ ZiCik - 2Ck, N + A = 0 
i=1 

N 

Zi Cik -- Ck,N + A.  
i=1 

This results in N equations in N unknowns for k = 1,2 . . . . .  N.  
These are Equations 2.8 in the main text. 
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A P P E N D I X  D 

C O N S T R U C T I N G  A T R A N S I T I O N  MATRIX 

Assume we are given a set of  probabilities corresponding to 
a set of  n states: 

&i, i = 1,2 . . . . .  n ~-"~&i = 1. 

There are many transition matrixes, P, such that c~ is a sta- 
tionary state, aP = a .  A method of  constructing one such matrix 
from a will be shown. 

The constructed transition matrix will be such that most of  
its elements are zero. The only non-zero elements will be on 
the main diagonal, just above the main diagonal or just below 
the main diagonal. Such a matrix is sometimes referred to as 
"tri-diagonal." 

Such a transition matrix corresponds to each year, an insured 
either staying in the same state or possibly moving up or down 
by a single state in a single year. 86 

As a concrete example, take the simple Poisson example in 
the main text, with four states and a = (.4,.3,.2,. 1). 

The equation a P  = a becomes 

(.4 .3 .2 

( o 
.1 ) ] e21 P22 P23 

~ P32 P33 

0 P43 

0 

0 
= ( .4 

P34 

P44 

.3 .2 .1). 

861f this transition matrix were raised to a power, then one could move more than a single 
state per year. Also, the overall speed of parameter shifting would be increased. 
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, S o ,  

.4Pll + .3P21 = .4 

.4P12 + .3P22 + .2,°32 = .3 

.3P23 + .2P33 + .1P43 = .2 

.2P34 + .1P44 = .1. 

In addition, each row o f  any transit ion matr ix  sums to unity. 
(Every  risk ends  up in some  state.) 

Pll +PI2 = 1 

P21 + P 2 2  -t-P23 ---- 1 

P32 + P33 + P34 = 1 

P43 + P44 = 1. 

Thus  

Similarly 

P21 - .4(1 - e l l )  4 
.3 -  el2. 

.3( 1 - 11922) --  -4P12 
P32 = .2 

= 3(P21 - P23) - 2P12 

= 23--e23 + 2P12-  2P,2 = 3P23. 

Similarly,  one  gets 

In general ,  we  need: 

P43 = ( 12- )P34- 

o<iPii,i+l = o~i+IP/+I, i. 

The left hand side o f  this equat ion is the probabil i ty o f  being 
in state i t imes the probabil i ty o f  going f rom state i to state 
i + 1. Thus,  this is the expected  number  o f  transitions f rom state 
i to state i + 1. Similarly, the right hand side is the expec ted  
n u m b e r  o f  transitions f rom state i + 1 to state i. In this case, 
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these expected numbers of  transitions will cancel and on average 
will result in no net change. 

There are still arbitrary scale factors. (Within large bounds one 
can pick P12 and then P21 follows.) For purposes of  illustration, 87 
let Pi,i+l + P/+l,i = v < 1 for all i, where v is a parameter that 
controls the amount  of  shifting. It represents the approximate 
probability of  shifting either up or down one state; 1 - v is the 
approximate probability of  remaining in the same state. 

Then once 0 < v < 1 is chosen, one constructs the transition 
matrix: 

P/,i + 1 - 0~i+1 v ,  
O~ i + OQ+ 1 

e / +  1,i °~i - -  1 ) ,  

O~ i -t- OQ+ 1 

P/i = 1 - ~,i- t - -  e/,i+ 1, and 

P/j  = 0 for l i -  j[ > 1. 

This results in a transition matrix with the given c~ as a sta- 
tionary distribution and with about a (1 - v) chance of  remaining 
in the same state per year. 

This construction algorithm is relatively simple and easily 
programmable.  

In the particular example with a = (.4,.3,.2,.1), taking v = 
.42, the algorithm produces a transition matrix of: 

.820 .180 0 0 

.240 .592 .168 o 

J 0 .252 .608 .140 

0 0 .280 •720,/ 

This is the transition matrix shown in the main text, which has 
a stationary distribution of  (.4, .3, .2,. 1). 

S7For certain applications, one may  choose to vary the probability of  remaining in a state 
among  the different states. 
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A P P E N D I X  E 

C O V A R I A N C E S  

Let ~i be the mean for state i. Let X and U be two different 
years of  data separated by g years, g > 0. Let X have probability 
vector/3 for the probability of  being in a given state• Then/3Pg 
is the probability vector for year U. Then 

E[XU] = ~ Pr(X in state i and U in state j )  
i,j 

× E[XU IX in state i and U in state j] .  

If  X is in state i and U is in state j ,  then 

E[XU] = E[X IX in state i]E[U ]U in state j]  = #i#j, 

since the die rolls in year X and U are independent• 

Pr(X in state i and U in state j )  

= Pr(X in state i)Pr(U in state j IX in state i) 

= t~i (Pg)i j '  

since the transition matrix from X to U which are g years apart 
is Pg. Thus 

E[XU] = ~# i# j /3 i (Pg) i  j 
ij 

= (# x/3)Tpg#, 

where # x /3  is the vector whose ith element is ~it~i and we have 
taken the matrix product of  the transpose of  this vector with the 
matrix Pg and then with the (column) vector #, so, 

Pg -- V - l  A g V ,  a n d  

• . E[XU] = (# x/3)TV-IAgVI.t. 
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Now assume that we are in the stationary distribution a ;  i.e., 
either the process has been going on long enough that the ini- 
tial state no longer has any practical importance or the initial 
distribution was chosen to be equal to c,. I f /3  = c,, then 

E[XU] = (/.t x a)TV-IAgV#. 

Let C b e  the vector given by (tz x c , ) rV -I and le tD be the vec- 
tor given by V/z, then since g is diagonal with A g = Aig; E[XU] = 
E CkOk f . 

Thus we have written E[XU] as a sum of coefficients (inde- 
pendent of  g) times the eigenvalues raised to the power g. 

In the dice example in Section 2: 

/z = (2.5,3.5,4.5) = means 

c~ = (.25,.50,.25) = stationary distribution 

V = 

V - l =  

1 2 1 / 

1 - . 3 1 4  - . 6 8 6  = 

1 -3 .186  2 .186 /  

.250 .658 .092)  

.250 - . 103  - . 147  

.250 - .451 .201 

C = (2.5 x .25,3.5 x .5,4.5 x .25) 

= ( .875, - .277, .027)  

D = 

1 2 

1 - . 3 1 4  

1 -3 .186  

matrix whose rows are 
eigenvectors of  the 
transpose of  the transition 
matrix 

.250 .658 .092)  

.250 - . 103  - . 1 4 7 J  

.250 - .451 .201 /  

1  (25)/140o0  
- . 6 8 6  3.5 = - 1 . 6 8 6 ]  

2 .186 /  4.5 1 .186/  

C × D -- (12.25, .468,.032). 
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Thus 

E[XU] = 

E[X] = 

. .  E[X]E[U] = 

Cov[X,U] = 

12.25(1 g) + .468(.769 g) + (.032)(.481 g) 

12.25 + (.468)(.769 g) + (.032)(.481 g) 

E[U] = Sum(c~ ×/z)  = 3.5 

3.52 = 12.25 

E[XU] - E[X]E[U] 

(.468)(.769 g) + (.032)(~48 lg). 

Note how the first term of  E[XU].cancels  with E[X]E[U];  
this will happen if the eigenvalue of  umty is placed first. In 
general, the covariance of  X and U is a sum of  coefficients times 
eigenvalues (other than unity) raised to the power g. 

Since IAil < 1 for i > 1, the covariance will converge to zero 
as g --, ~ ,  because it is limited by a constant times the largest '~i 

in magnitude (other than unity) raised to the power g. 

Let ~ be the vector such that: 

~i = C i D i  = ( ( I  -L × ° t ) T v - l ) i ( V ~ ) i  • 

This is Equation 2.5 in the main text. 

Then we have, for g > 0, Equation 2.6 in the main text: 

C o v [ X , U ]  = Z (i '~g" 
i>1 

Note that "~i and ~i which determine the behavior of  the covari- 
ance are each directly and easily calculable 88 f rom the assumed 
transition matrix and the means of  the states. 

SSAssuming the calculations will be performed on a computer. 


