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Abstract 

The modeling of parameter uncertainty due to sample 
size in normal and lognormal distributions with diffuse 
Bayesian priors is solved exactly and compared to the 
large-sample approximation. Large-scale simulation re- 
sults are presented. The results suggest that (1) the large- 
sample approximation is not very good in this case; and 
(2) estimates of reserve uncertainty may be considerably 
understated. A consequence is that intrinsic risk loads 
and reinsurance premiums may also be considerably un- 
derstated. An example is given from Best's Homeown- 
ers paid data, where the mean estimate of IBNR hardly 
changes: it is $9.96B without parameter uncertainty and 
$10.01B with it, but the corresponding distribution stan- 
dard deviations are 6.9% and 24.9% of the respective 
means. 

1. INTRODUCTION 

One of  the most ubiquitous sources of parameter uncertainty 
is the fact that samples in real life are never infinite. Thus, when 
using a sample to estimate parameters of a presumed underlying 
distribution, the size of the sample must play a role in the un- 
certainty in the derived values of the parameters. In general, this 
uncertainty goes to zero as the sample size gets large. The con- 
verse, that the uncertainty can be large and even infinite when 
the sample size is small, is generally unappreciated. 

For large samples the parameter distributions can be approxi- 
mated by normal distributions, using the inverse of  the matrix of 
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second derivatives of  the negative log-likelihood as the covari- 
ance matrix 1. This is what is usually done for all sample sizes. 
What is not often understood is how wrong this approximation 
can be for small samples, say less than 10 data points. 

The present paper is an attempt to give both an exact the- 
oretical underpinning 2 and the practical cumulative distribution 
functions for use with these distributions. Section 2 is the the- 
ory; Section 3 is a numerical description of the actual distri- 
butions; and Section 4 is a reserving application to stable paid 
data. Of course, these results apply to any use of normal or log- 
normal distributions on empirical data. Claim severity distribu- 
tions would be one example, and especially for reinsurance data 
the claim volume can be very small. 

The general approach here will be to assume that we know the 
form of the distribution, thus ignoring what is in practice a very 
real source of parameter uncertainty. What is treated here is only 
the effect of  finite sample size. What is desired is the probability 
of the parameters, given the observed sample. Given that, the 
predictive distribution of the variable itself may be obtained by 
summing over different parameter probabilities. In the present 
case, this is done using simulation. 

The method of  treatment is to use a Bayesian approach. The 
likelihood function gives the probability of the sample actually 
seen, given the parameters of the underlying distribution. Bayes' 
theorem says that the desired parameter probability distribution 
is, up to a normalization, the product of the likelihood func- 
tion and an assumed prior distribution of the parameters. The 
assumed prior is here taken to be "diffuse," meaning that it con- 
tains as little information as possible in some sense. 

I This results essentially from taking just  a second-order Taylor expansion of  the negative 
log-likelihood in the neighborhood of  the minimum, as will be done in the special case 
below. See [1, Section 18.26, page 675]. 
2This particular case is simple enough that it must  have been solved many times. How- 
ever, I am not aware o f  an actuarial application, and the derivation is instructive. 
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2. THEORY 

We will do the lognormal case, as the normal case is essen- 
tially the same with the substitution of x for In(x). We are given 
a sample of  data x i with i = 1,2 . . . . .  n. The probability density 
function is 

1 { ( I n ( x ) - # )  2} 
f ( x )  - v ' ~ x a  exp ~-a~- . (2.1) 

The corresponding negative log-likelihood ( N L L )  is, up to con- 
stant terms, 

1 ~L, ( ln(xi)-  #)2 n 
N L L  = ~ ~_~ ~-~ + ~ In(x/) + n ln(0.) + cst. (2.2) 

i=1 i=1 

The analysis begins by constructing the partial derivatives 

O N L L  

Olz 
0.2 Z ( # -  In(x/)) = ~-~ n # -  In(x/) 

i=l  i= l  ) 

(2.3) 

and 

O N L L  

00. 

1 n n 
0 .3 Z ( # -  ln(xi) )2  + --'a ( 2 . 4 )  

i=1 

The maximum likelihood estimators are obtained by finding #0 
and 0.o such that these partial derivatives are both zero: 

1 ~ ln(xi), and 
/'tO = t l i =  1 

0.o = - [In(x/) --/.Z0] 2. 

(2.5) 

(2.6) 
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The usual large sample approximation continues by creating the 
second partial derivatives: 

02NLL 
0# 2 

02NLL 

0#00. 

n 

0-2' 

2{ 1 0.3 nl_t - ln(xi) 
i=l ) 

- - 2 n  
- 0-3 (# - #0), and 

n 
OZNLL _ 3 ~ ( # _  ln(xi))2 n 

00.2  0" 4 0- 2 (2.10) 
i=1 

3n n 
= ~-~ {(/.t, - - / ~ 0 )  2 + 0 .2 } 0" 2 . (2.1 1) 

at the m a x i m u m  likelihood (min imum of  the Evaluating them 
NLL), 

(2.7) 

(2.8) 

(2.9) 

02NLL n 
01~2 (t-t0' 0-0) 0.2 

02NLL 
0#00- (#0,%) = 0, 

OZNLL 2n 
( m , 0 . o )  : 

(2.12) 

and (2.13) 

(2.14) 

We note in passing that the mixed partial derivative is zero only 
on the line # = #0. This means (as will shortly be made  explicit) 
that in general the variables # and 0. are correlated. 

The  matrix of  second-order  partial derivatives evaluated at the 
m i n i m u m  is 

0#  2 0#00- = n 1 (2.15) 
OZ N LL 02 N LL 0-2 0 " 

0~00. 00- 2 
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The inverse of  this matrix is the covariance matrix for /.z and 
cr around the minimum when they are expressed as a bivariate 
normal distribution: 

cov(#,o-) var(cr) n 1 • 

A simulation consists of  drawing three deviates z, Zl, and z2 from 
a standard normal distribution and setting 

with 

and 

Equivalently, 

ln(x) = t.~ + a Z  (2.17) 

% (2.18) /z = #0 + Zl v/- ~ 

or° (2.19) 
O = O" 0 + Z2 V / ~ .  

In(x) = #0 + cr0Zapp (2.20) 

where the effective z in the large sample approximation, Zapp, is 
given by 

z, 
Zap p = V/~ + Z 1 + . (2.21) 

We note that the distribution for Zap p is symmetric about the 
origin, which implies a mean of  zero, and that the variance is 
given by 

3 
var (Zapp)  = 1 + - - .  (2.22) 

2n 

It has been pointed out to the author 3 that another approach 
to a large sample approximation is to use ln(a) as a variable in 
place of  cr in the N L L .  Following the same procedure through, 4 

3By the reviewer, to whom thanks are given for this remark. 
4Although the derivation is straightforward, it is somewhat tedious and not relevant for 
the rest of  the paper. Interested readers are invited to contact the author. 
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Equation 2.20 remains the same but Equations 2.21 and 2.22 
become 

Zap p =- V ~  + z e x p  (2.23) 

and 
 ar,za.   = - + exp . (2.24) 

?/ 

The variable Zapp has zero mean, but is no longer symmetric. The 
lack of symmetry is disturbing to the author. However, the vari- 
ance is larger than before [Equation 2.22] at any n. The increased 
dispersion of this large sample approximation will be closer to 
reality. 

The underlying technique for the large sample approximation 
is to approximate the N L L  by its Taylor series to second order 
around the min imum and to take the Bayesian prior to be one 
(i.e., not dependent on the parameters). However, the resulting 
simple quadratic form for the N L L  is exactly what one gets from 
a normal (Gaussian) distribution. Hence the remark that, for large 
samples, the parameter distribution is taken to be normal. The 
hope is that by the time the N L L  deviates significantly from the 
approximation, its value is sufficiently large that it represents a 
very small probability. 5 

However, in the present instance this hope is not fulfilled. 
Returning to the exact problem, the N L L  may be rewritten as 

~g + (# - #o) 2 
N L L  = n 2cr2 +/~o + ln(~) . (2.25) 

Rescale the problem by defining normalized variables v and y 
such that 

# =/~o + Wro (2.26) 

and 
o- = ya  0. (2.27) 

5The justification for this technique is essentially the same as for the central limit theorem. 
For a heuristic approach, see the discussion after Equation 2.28. 
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Then the N L L  becomes 

N L L  = n - -  + ln(y) + #0 + ln(~0) (2.28) 2y2 • 

The range of  v and y is the same as that for # and o: - o e  < v < ec 
and 0 _< y < oe. It is perhaps not quite obvious, but easy to prove, 
that the minimum N L L  is at v = 0 and y = 1. 

Although the N L L  is exactly quadratic in v, it is not so in 
y. In fact, it is the rather extreme asymmetry in y around the 
minimum which results in the inadequacies of  the large sam- 
ple approximation. The large sample approximation results f rom 
noticing that, as n gets large, only values of  v and y which get 
nearer to the minimum will give N L L  values near its minimum. 
Specifically, one could take N L L  of, say, 20 plus the minimum 
to be the largest value of  interest. This corresponds to assuming 
a probability for the parameters involved of  e x p ( - 2 0 )  to be ef- 
fectively zero. Then as n gets larger the values of  v and y which 
give N L L  = minimum + 20 get closer and closer to their mini- 
mum values, approximately inversely with the square root of  n. 
This approximation gets better as n increases. In this approxima- 
tion, terms in the Taylor series expansion of  order higher than 
the second all have contributions to the N L L  which decrease as 
n increases, and the N L L  is better and better represented by just 
the second order term. 

We take a Bayesian approach and use diffuse prior distribu- 
tions for v and y. Since v runs along the full axis from minus 
infinity to infinity, the prior used is just 1. Since y runs along 
the semi-axis, the suggested prior is proportional to 1 / y  ° where 
0 is either 0 or 1, depending on one 's  preference 6. The choice 
0 = 1 emphasizes small values of  y and corresponds to the as- 
sumption that the prior distribution of  ln(y) is flat; the choice 
0 = 0 assumes that the prior distribution of  y is flat. Venter 7 has 

611, Section 8.28 p. 304]. A reference is made to an article by Jeffries, advocating 0 = 1. 
7Gary Venter, private communication. He points out that on a semi-axis a flat prior 
corresponds to assuming that it is as likely for the variable to lie between a million and 
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emphasized that any choice of prior has strong implications. Ide- 
ally, the nature of  the data being fitted would give some clues as 
to proper  priors. 

The joint  distribution of  v and y is, up to normalization factors 
(we use the symbol  ,-~), given by the product  of  the Bayesian 
priors and the likelihood: 

f ( v , y )  ~ yn+O (2.29) 

We now change variables f rom y to w by 

~/n(1 + v 2) 
Y =  W 

(2.30) 

so that 
Oy _ 1 / n ( l  + v2), 
Ow 2 V w -g (2.31) 

and for the variables v and w, the joint distribution behaves as 

(2.32) 

This transformation does several nice things. First, since the joint  
distribution is a product,  the variables are independent  (and there- 
fore uncorrelated) and may be simulated separately. A corollary 
of  this is that v and y, and hence ~ and a, are correlated. Second,  
we can recognize the variable distributions as well known.  

The  variable w is chi-squared distributed s with parameter  
(n + 0 - 1). Equivalently, w/2 is gamma distributed [2, p. 104] 
with parameter  (n + 0 - 1)/2. Both of  the inverse functions exist 

a mi l l ion  and one as it is for the var iable  to l ie be tween zero and one,  and that it is 
inf ini te ly  more  l ikely  to be excess  of  any finite amoun t  than to be less than that amount .  

8Almos t  any text  on s tat is t ics  has  the chi -squared  and t -d is t r ibut ions ,  e.g., [2, p. 107]. 
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in Excel, 9 and can be used in simulations. The mean value of  w is 
(n + 0 - 1), and its variance is 2(n + 0 - 1). Thus w/n has a mean 
of  (1 + (0 - 1)/n) and a standard deviation of  ~/2(n + 0 -  1)/n. 
As n, the sample size, becomes large these go respectively to 1 
and 0. 

The variable vx/n + 0 - 2 is t-distributed [2, p. 145] with pa- 
rameter (n + 0 - 2). Therefore the mean value of  v is zero, and 
its standard deviation l° is 1/x/n + 0 -  4. The standard deviation 
does not exist if n + 0 _< 4, but goes to zero as the sample size 
increases. 

In simulation situations if the underlying distribution does not 
have a finite variance then the mean of  the simulation will not 
converge, because the mean of  the simulation itself will have an 
infinite standard deviation. In practice, this shows up as occa- 
sional large jumps in the mean, even with millions of  simula- 
tions (in fact, no matter how many simulations are done). If  the 
simulation is being done in a situation where the upper end is 
l imi ted-- for  example in a ceded layer of reinsurance-- then the 
variance will always be finite. However, "finite" does not mean 
the same as "of  reasonable size." In some numerical modeling 
the author has come across cases where a distribution with finite 
variance and a theoretical mean of  a million dollars was produc- 
ing an occasional value of  a trillion dollars. Clearly, very many 
millions of  simulations would be necessary to get a reasonable 
amount of  convergence. It is recommended that actuaries should 
try to avoid small sample sizes and/or at least work with lognor- 
mal distributions which are truncated at the upper end. 

Equation 2.32 shows that as far as v and w are concerned 
taking 0 = 1 is the same as assuming that there is one more data 
point than actually exists and taking 0 = 0. The results in Sections 
3 and 4 and Appendix A are all done with 0 = 0. If  one can 
convince oneself that an appropriate value of  0 is 4, then all 

9Microsoft Excel 5.0. These functions may also be found elsewhere. 
l°The variance of the Student's t distribution with parameter n is n/(n -2). 
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worries of  convergence are over and as little as one data value 
can be used. Trying to justify this may take some do ing - -no t  to 
mention getting both a mean and standard deviation from one 
value! 

Another representation for v can be obtained by changing to 

~,2 

u - 1 + v 2" (2.33) 

Clearly, the support of  this variable runs from 0 to 1, rather than 
from - c o  to ~ ,  but 

~f u (2.34) v = +  1 - u  

can be obtained from a u deviate by another random choice to 
get the sign. Since 

dv 1 
- (2.35) 

du 2v/u(1 - u)3 

then 
f (u) ~ u-t/2(1 - u) ~'+°-2)/2 (2.36) 

which is recognizable as the beta distribution with parameters 
1/2 and (n + 0 - 2)/2. Random deviates for the beta distribution 
can be obtained either from the inverse function in Excel or as 
a ratio of  gamma deviates. Specifically, a beta(c~,fl) deviate can 
be obtained [2, p. 139] as x / ( x  + y) where x is gamma distrib- 
uted with parameter c~ and y is gamma distributed with param- 
eter/3. 

Returning to the simulation methodology, if we let z be a de- 
viate from the standard normal distribution, then in parallel with 
Equations 2.17, 2.18, and 2.19 for the large sample approxima- 
tion we have the exact results 

In(x) = # + ~rz (2.37) 

with 
/z = #o + wr0, (2.38) 
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and 

~/n(1 + v z) 
(2.39) O" = O" 0 W 

Combin ing  Equations 2.37, 2.38, and 2.39 

In(x) = #o + crozeff (2.40) 

where the effective deviate zaf, is given by 

~/n(1 + v 2) 
zeff = v + z (2.41 ) 

w 

Equation 2.41 for z~ff is the exact result for which Zapp of  Equa- 
tion 2.21 is an approximation.  Like Zapp, Zeff is symmetr ic  about 
the origin and has mean zero. This effective deviate generally 
has a much  broader tail than the large sample approximation.  
However,  in the limit of  large n (as ment ioned earlier) v goes to 
zero and w goes to n, so that zeff goes to z. In fact, zeff goes to 
Zap p t o  order 1/n  and they both go to z. 

In order to get the variance of  zeff, the expectation of  1/w is 
needed. To obtain this, use the fact that for any variable x which 
is gamm a  distributed with parameter  a ,  the expectation of  any 
power  p of  x is 

E(xP ) _ 1" (a  + p) (2.42) 
r(c0 

SO (1) , 
E - F ( ~ )  a -  1" (2.43) 

Since w/2 is gamma  distributed with parameter  (n + 0 - 1)/2,  

n+O-3" 

Since the mean of  zeff is zero, its variance is just  the expectation 
of  its square 

var(zeff) = E([zeff]2). (2.45) 
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Because of  the independence of  the variables, this implies 

var(zefO=var(v)+var(z)nE ( 1 ) [ 1  + var(v)] (2.46) 

1 , )  
- + 1 + (2.47) 

n + O - 4  n + O - 3  n + O - 4  

n + l  
- (2.48) 

n + O - 4 "  

In the end, this is a remarkably simple result. Although this vari- 
ance clearly goes to 1 as n becomes  large, for n = 5 and 0 = 0 
its value is 6! Of  course, for n + 0 _< 4 it is infinite. This formula 
also tempts one to choose 0 = 5 so that var(zeff) = 1 for all n. 

3. PRACTICE 

All o f  the results for Zeff were done using Equation 2.41 with 
0 = 0 and different values of  n. The tables and graphs are useful 
for getting a feel for how the distributions change with n. If one 
is uncomfortable  with the diffuse prior used, then it is recom- 
mended to generate one ' s  own values. It may in the course of  
simulations be faster to look up values in tables rather than gen- 
erate them on the fly, but as a matter of  general preference the 
author would rather generate than look up, especially in someone 
else 's  tables. 

For various values of  n, the density function of  Zeff was simu- 
lated in two stages. In the first, 10,000,000 simulations were run 
to get the range from 50% to 90% on the cumulative distribution 
function (CDF). Then for values of  n < 10, 50,000,000 simu- 
lations were run to get 5,000,000 simulations of  values greater 
than the 90% level 11 in order to get the tails of  the distributions. 

Let us look first at the general shape of  the density functions. 
As usual, the effect of  parameter uncertainty is to push probabil- 
ity away from the mean out into the tail, and the effect is more 

l I T h i s  was  not  d o n e  in a sp readshee t ,  but  in a C + +  p r o g r a m .  
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FIGURE 1 

PROBABILITY DENSITY FUNCTIONS FOR DIFFERENT SAMPLE 
SIZES 

infinite O. 8 
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pronounced with increasing parameter uncertainty (i.e., decreas- 
ing sample size). See Figure 1. 

The differences begin to show up dramatically when we look 
at the Cumulative Distribution Function (CDF) for various sam- 
ple sizes. Because of the symmetry, only the portion from 50% 
to 100% is shown in Figure 2. 

The extension to even larger zeff is shown in Figure 3. The 
conclusion from these graphs is at least that the effect of sample 
size can be substantial even for what might be thought to be 
relatively large samples. 

It is also of interest to compare for a fixed sample size the 
normal distribution (infinite sample size, no parameter variation), 
the large sample approximation, and the exact result. Figure 4 
displays this comparison for sample size N = 3. 

Clearly, the large sample approximation is not very good. On 
the other hand, we didn' t  expect it to be. However, sample size 
N = 8 shows a similar pattern. See Figure 5. 
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FIGURE 2 

CUMULATIVE DISTRIBUTION FUNCTION FOR VARIOUS SAMPLE 
SIZES 
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FIGURE 3 

CUMULATIVE DISTRIBUTION FUNCTION FOR VARIOUS SAMPLE 
SIZES 
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E 

F I G U R E  4 

n = 3 CUMULATIVE DISTRIBUTION FUNCTION FOR VARIOUS 
TECHNIQUES 
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TABLE 1 

E F F E C T I V E  Z BY S A M P L E  S I Z E  FOR S O M E  K E Y  C D F  V A L U E S  

Sample 
Size 3 4 5 6 8 12 20 Infinite 

CDF 
50% 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0000 
60% 0.650 0.456 0.391 0.358 0.325 0.297 0.278 0.253 
70% 1.454 0.976 0.826 0.752 0.677 0.618 0.576 0.524 
80% 2.752 1.677 1.384 1.245 1.109 1.002 0.931 0.842 
90% 6.159 2.981 2.315 2.028 1.762 1.564 1.436 1.282 

95.0% 12.62 4.617 3.327 2.819 2.380 2.067 1.873 1.645 
97.5% 25.41 6.802 4.501 3.672 2.998 2.541 2.269 1.960 
98.0% 31.81 7.666 4.923 3.965 3.200 2.691 2.391 2.054 
99.0% 63.71 11.02 6.422 4.956 3.850 3.151 2.757 2.326 
99.5% 127.5 15.71 8.260 6.089 4.542 3.614 3.108 2.576 
99.9% 639.3 35.35 14.47 9.526 6.392 4.726 3.897 3.090 
99.95% 1,308 50.13 18.46 11.49 7.328 5.247 4.232 3.290 
99.99% 6,476 130.4 32.58 17.53 9.822 6.513 5.023 3719 

99.995% 12,470 164.1 42.64 20.75 11.18 7.108 5.371 3.891 
99.999% 57,550 345.4 67.41 31.11 14.73 9.353 6.158 4265 

Even here, the large sample approximation is much closer to 
the pure normal than it is to the exact result, especially in the 
region of  high cumulative probability. The approximation has es- 
sentially the same tail behavior as a normal, while the exact result 
has a much fatter tail. This suggests that the approximation does 
not hold well for these sample sizes, which are, unfortunately, 
typical of  those usable in chain-ladder reserving. 

A complete set of  appropriate effective deviates for various 
CDF values and various sample sizes all at 0 = 0 is given in Ap- 
pendix A. That set is intended for use in simulations if the reader 
does not want to generate directly the underlying distributions. 
A subset for some key values of  the CDF is given in Table 1. 

If we look, for example, at the 99.9% level (in bold type), 
then for n infinite we recognize Zeft" = 3.090 as a familiar friend 
from the normal distribution. As the sample size decreases, the 
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location of  the 99.9% level increases from 3.09. For n = 8 it has 
more than doubled to 6.4; for n = 5 it has almost quintupled to 
14.5; and for n = 3 it is up to 639! In general, in order to reach 
any CDF level one must go to increasingly higher multiples of  
the sigma estimator as the sample size decreases, and the effect 
is more pronounced as the CDF level increases. 

All of the above indicates that the tails are much fatter than 
one might have thought when using either the large sample ap- 
proximation to the parameter uncertainty or no parameter uncer- 
tainty at all. 

4. RESERVING 

Typically in chain-ladder reserving, the age-to-age factors are 
implicitly or explicitly taken to be normal or lognormal. For ex- 
ample, the not atypical procedure which we will use here starts 
by taking the most recent five calendar years of  data and aver- 
ages the logs of  the appropriate age-to-age factors in the data to 
get the log of  the projected age-to-age factor. This gives point 
estimates of the age-to-age factors, which generate the age-to- 
ultimate factors, which give the IBNR. 

Five years is chosen as an intuitive compromise between want- 
ing to stabilize the results by having lots of data and wanting to 
use only data which is close enough to the current business to 
be relevant. Clearly there will always be judgment  calls of  some 
sort. 

In order to go beyond a point estimate of IBNR, the next 
step is to explicitly assume that the age-to-age factors are log- 
normally distributed independently at each age. Then we have a 
sample of  five for each age-to-age factor and can calculate the 
maximum likelihood estimators for both # and o. Since the prod- 
uct of lognormal variables is also lognormal, the age-to-ultimate 
factors are lognormal and their parameters can be easily calcu- 
lated. This allows the representation of IBNR as a distribution, 
rather than just a single value. 
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FIGURE 6 
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However, this procedure corresponds to using the infinite 
sample size approximation for the parameter variation--i.e., as- 
suming that there isn't  any. Given the above discussion, it will be 
no surprise that we recommend that the zeff for n = 5 be used. It 
does mean that the distributions for the age-to-age factors must 
be numerically rather than analytically generated, but this is a 
relatively minor difficulty. 

For a concrete example, we use industry data from Best 's 
1995 Aggregates and Averages. The original data is Home- 
owners-Farmowners Schedule P paid data from accident years 
1985 to 1994 inclusive, which is displayed in Appendix B. 
The CDFs are shown in Figure 6, and the labels "infinite," 
"approximation," and "exact" refer as before to the situations 
with no parameter variation (infinite sample), the large sample 
approximation, and the exact result. 

An expansion of the dangerous half of the distribution is 
shown in Figure 7. A line has been put in at $11.5 billion to 
guide the eye. The probability of exceeding that value is 1.39% 
for the "infinite" calculation, which would seem a conservative 
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reserving level. However,  for the approximation the probabili ty 
is 2.81%, and for the exact result it is 12.78%. To get to the 
exact 1.39% level, it is necessary to reserve $14.1 billion! These 
differences are clearly important for a reinsurer. Even for an 
insurer who reserves at the mean value, the unexpectedly large 
variability will show up either as an increased risk load c o s t - -  
probably as cost of  l iquid i ty- -or  as a nasty surprise. 

The main simulation results 12 are summarized in Table 2. 

It should be noted that even these results are somewhat  opti- 
mistic (in the sense of  providing a small coefficient of  variation) 
in that all factors were taken to have n = 5 and in reality the tail 
of  the triangle did not have that much data. 

Since this is industry data on a relatively stable line, the 24.9% 
coefficient o f  variation for the exact result may be indicative of  
the minimum reserve variation to be expected. 

12For 1,000,000 simulations in each case. Run times were 10 minutes, 20 minutes, and 
40 minutes. 
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TABLE 2 

SIMULATION RESULTS 

CDF Infinite Approximation Exact 

20% $9,377,999 $9 ,323 ,378  $8,889,821 
40% $9,775,408 $9 ,762 ,350  $9,638,914 
60% $10,121,909 $10,137,497 $10,267,019 
80% $10,530,213 $10,586,319 $11,050,725 
90% $10,839,277 $10,944,285 $11,743,068 
95% $11,097,636 $11,257,818 $12,453,300 
98% $11,393,344 $11,637,681 $13,550,822 

99.0% $11,590,893 $11,912,637 $14,599,413 
99.5% $11,769,344 $12,172,122 $16,014,574 
99.9% $12,144,913 $12,745,661 $21,581,916 
mean $9,956,034 $9,959,629 $10,007,938 

standard deviation $685,580 $782,023 $2,489,269 
coefficient of variation 6.9% 7.9% 24.9% 
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APPENDIX A 

T A B L E  OF E F F E C T I V E  Z FOR 0 = 0 

BY C D F  V A L U E  BY S A M P L E  SIZE 
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Size 3 4 5 6 7 8 10 12 20 Infinite 

CDF 
50% 0.0000 0.0000 0.0000 0.0000 0.0000 
51% 0.0628 0.0448 0.0384 0.0354 0.0335 
52% 0.1259 0.0895 0.0769 0.0706 0.0668 
53% 0.1892 0.1344 0.1155 0.1060 0.1002 
54% 0.2531 0.1795 0.1542 0.1414 0.1336 
55% 0.3173 0.2247 0.1931 0.1770 0.1673 
56% 0.3821 0.2702 0.2322 0.2129 0.2010 
57% 0.4476 0.3161 0.2715 0.2488 0.2349 
58% 0.5143 0.3624 0.3109 0.2848 0.2689 
59% 0.5816 0.4089 0.3507 0.3212 0.3032 
60% 0.6503 0.4560 0.3909 0.3579 0.3378 
61% 0.7207 0.5038 0.4315 0.3950 0.3727 
62% 0,7925 0.5525 0.4728 0.4324 0.4079 
63% 0.8665 0.6018 0.5143 0.4703 0.4435 
64% 0.9422 0.6519 0.5566 0.5087 0.4794 
65% 1.0198 0.7030 0.5996 0.5477 0.5161 
66% 1.1003 0.7549 0.6433 0.5873 0.5532 
67% 1.1835 0.8079 0.6876 0.6274 0.5908 
68% 1.2703 0.8623 0.7328 0.6683 0.6290 
69% 1.3598 0.9182 0.7791 0.7100 0.6678 
70% 1.4535 0.9755 0.8262 0.7524 0.7074 
71% 1.5518 1.0345 0.8747 0.7959 0.7476 
72% 1.6547 1.0953 0.9244 0.8402 0.7889 
73% 1.7634 1.1579 0.9754 0.8855 0.8310 
74% 1.8784 1.2229 1.0280 0.9321 0.8743 
75% 2.0002 t.2902 1.0821 0.9800 0.9186 
76% 2.1291 1.3607 1.1379 1.0292 0.9642 
77% 2.2681 1.4341 1.1957 1.0804 1.0112 
78% 2.4171 1.5110 1.2557 1.1331 1.0598 
79% 2.5778 1.5918 1.3184 t.1878 1.1101 
80% 2.7521 1.6767 1.3838 1.2448 1.1623 
81% 2.9420 1.7666 1.4524 1.3042 1.2165 
82% 3.1509 1.8623 1.5245 1.3667 1.2734 
83% 3.3808 1.9642 1.6004 1.4318 1.3329 
84% 3.6372 2.0735 1.6809 1.5008 1.3954 
85% 3.9250 2.1914 1.7669 1.5736 1.4611 
86% 4.2498 2.3191 1.8592 1.6515 1.5313 
87% 4.6222 2.4593 1.9582 1.7343 1.6056 
88% 5.0524 2.6146 2.0665 1.8240 1.6853 

0.0000 0.0000 0.0000 0.0000 0.0000 
0.0320 0.0304 0.0292 0.0274 0.0251 
0.0641 0.0608 0.0585 0.0550 0.0502 
0.0962 0.0911 0.0879 0.0825 0.0753 
0.1283 0.1216 0.1175 0. I I00 0.1004 
0.1606 0.1523 0.1470 0.1376 0.1257 
0.1929 0.1830 0.1766 0.1652 0.1510 
0.2255 0.2138 0.2062 0.1931 0.1764 
0.2583 0.2448 0.2361 0.2210 0.2019 
0.2913 0.2760 0.2662 0.2492 0.2275 
0.3245 0.3074 0.2966 0.2776 0.2533 
0.3580 0.3391 0.3271 0.3061 0.2793 
0.3918 0.3711 0.3579 0.3348 0.3055 
0.4259 0.4034 0.3891 0.3637 0.3319 
0.4603 0.4360 0.4203 0.3929 0.3585 
0.4952 0.4691 0.4522 0.4226 0.3853 
0.5307 0.5023 0.4844 0.4525 0.4125 
0.5664 0.5360 0.5170 0.4829 0.4399 
0.6028 0.5703 0.5501 0.5136 0.4677 
0.6399 0.6053 0.5837 0.5446 0.4958 
0.6775 0.6407 0.6176 0.5762 0.5244 
0.7159 0.6768 0.6522 0.6082 0.5534 
0.7553 0.7135 0.6875 0.6409 0.5828 
0.7953 0.7510 0.7235 0.6742 0.6128 
0.8365 0.7893 0.7602 0.7082 0.6433 
0.8787 0.8285 0.7980 0.7431 0.6745 
0.9221 0.8689 0.8365 0.7788 0.7063 
0.9666 0.9103 0.8762 0.8152 0.7388 
1.0125 0.9530 0.9169 0.8526 0.7722 
1.060t 0.9971 0.9588 0.8911 0.8064 
1.1092 1.0429 1.0021 0.9306 0.8416 
1.1603 1.0901 1.0470 0.9716 0.8779 
1.2136 1.1390 1.0937 1.0140 0.9154 
1.2691 1.1900 1.1422 1.0580 0.9542 
1.3275 1.2433 1.1929 1.1039 0.9945 
1.3888 1.2993 1.2461 1.1519 1.0364 
1.4537 1.3586 1.3021 1.2023 1.0803 
1.5228 1.4210 1.3613 1.2556 1,1264 
1.5967 1.4881 1.4243 1.3121 1,1750 

89% 5.5561 2.7866 2.1844 1.9217 1.7717 1.6764 1.5597 1.4915 1.3721 1,2265 
90% 6.1588 2.9813 2.3153 2.0283 1.8658 1.7624 1.6376 1.5640 1.4362 1.2816 
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TABLE OF EFFECTIVE Z FOR 0 = 0 

BY C D F  VALUE BY SAMPLE SIZE 
(Continued) 

Size 3 4 5 6 7 8 10 12 20 Infinite 

CDF 
90.1% 6.2199 3.(×124 2,3297 2.0389 1.8757 1.7727 1.6456 1.5720 1.4435 1.2873 

90,2% 6.2876 3.0234 2.3437 2.0503 1.8858 1,7819 1.6538 1.5797 1.4503 1.2930 

90.3% 6.3568 3.0448 2.3579 2.0618 1.8959 [.7911 1.6621 1.5875 1.4571 1.2988 
90.4% 6.4270 3.(1665 2.3722 2.0734 1.9t161 1.8005 1.6704 1.5953 1.4639 1.3047 
90.5% 6.4988 3.(1885 2.3867 2.0852 1.9164 1.8099 1.6788 1.6032 1.4709 1.3106 

9(1.6% 6.5723 3.1108 2.4(114 2.0970 1.9269 1.8194 1.6873 1.6111 1.4779 1.3165 
90.7% 6.6473 3.1336 2.4163 2.1090 1.9374 1.8291 1.6959 1.6191 1.4849 1.3225 
90.8% 6.7235 3.1567 2.4313 2.1212 1.9481 1.8388 1,7046 1.6272 1.4920 1.3285 

90.9~ 6.8017 3.18(X1 2.4466 2.1335 1.9588 1.8486 1.7134 1.6354 1.4992 1.3346 
91.0% 6.8814 3.2037 2.4621 2,1458 1.9696 1.8585 1.7222 1.6436 1.5065 1.3408 
91.1% 6.9627 3.2277 2.4777 2.1583 1.9806 1.8686 1.7311 1.6520 1.5138 1.3469 
91.2% 7.(1456 3.2520 2.4935 2.1710 1.9918 1.8787 1.7401 1,6604 1.5212 1.3532 

91.3% 7.1312 3.2768 2.5096 2.1838 2.0031 1.8889 1.7492 1.6688 1.5286 1.3595 

91.4% 7.2189 3,3018 2.5258 2.1969 2.0144 1.8994 1.7584 1.6774 1.5361 1.3658 

91.5% 7.3084 3,3272 2.5423 2.2101 2.0259 1.9098 1.7678 1,6861 1.5436 1.3722 
91.6% 7.3998 3.3531 2.5590 2.2235 2.0375 1.9204 1.7772 1.6948 1.5513 1.3787 

91.7% 7.4930 3.3795 2.5759 2.2369 2.0493 1.9311 1,7867 1.7037 1.5590 1.3852 
91.8% 7.5892 3.4063 2.5931 2.2506 2.0613 1.9419 1.7964 1.7126 1,5669 1.3917 
91.9% 7.6873 3.4335 2.6106 2.2644 2.0734 1.9528 1.8061 1.7217 1.5749 1.3984 
92.0% 7.7878 3.4612 2.6284 2.2785 2.(1856 1.9639 1.8159 1.7307 1.5828 1.4I)51 
92.1% 7.8913 3.4895 2.6464 2.2926 2.0980 1.9752 1.8258 1.7399 1.5908 1.4118 
92.2% 7.9968 3.5182 2.6646 2.3071 2.1106 1.9865 1.8359 1.7492 1,5990 1.4187 
92.3% 8.1049 3.5476 2,6831 2.3216 2.1233 1.9980 1.846(I 1.7587 1.6072 1,4255 

92.4% 8.2158 3.5772 2.70211 2,3364 2.1360 2.0096 1.8563 1.7682 1.6155 1.4325 
92.5% 8.3294 3.6076 2.7211 2.3514 2.1490 2.0213 1.8667 [.7778 1.6240 1.4395 
92.6% 8.4467 3.6385 2.7404 2.3666 2.1621 2.0331 1.8773 1.7876 1.6325 1.4466 
92.7% 8,5661 3.67(1(/ 2.76(X) 2.3821 2.1754 2.(1452 1.8879 1.7975 1.6411 1.4538 
92.8% 8.6892 3.7020 2,7799 2.3978 2.1888 2.0575 1.8987 1,81175 1.6498 1.4611 

92.9% 8.8153 3.7347 2.80113 2.4137 2.2026 2.0699 1.9096 1,8176 1.6586 1.4684 

93.(1% 8.9453 3.7680 2.8210 2.4299 2.2164 2.0825 1.9207 1,8279 1.6675 1.4758 
93.1% 9.¢)797 3.8019 2.8420 2.4463 2.23{14 2.0952 1.932(I 1,8384 1.6764 1,4833 

93.2% 9.2163 3.8365 2.8634 2,4630 2.2447 2.1082 1.9434 1.8489 1.6855 1.4909 
93.3% 9.3579 3.8720 2.8852 2.48(X) 2,2593 2.1214 1.9549 1,8596 1.6948 1.4985 
93.4% 9.5033 3.9(181 2.9072 2.4972 2.2740 2.1347 1.9666 1,8704 1.7041 1.5063 
93.5% 9.6537 3,9449 2.9295 2.5148 2.2890 2.1482 1.9784 1.8813 1.7136 1.5141 

93.6% 9.8088 3,9825 2.9524 2.5326 2.3043 2.1619 1.9904 1.8925 1.7232 1.5220 

93.7% 9.9690 4.(/211 2.9759 2.55{)6 2.3198 2.1759 2.(1026 1.9037 1,7329 1.5301 
93.8% 10.134 4.0605 2.9997 2.569(I 2.3356 2.190[ 2.0150 1.9152 1.7427 .5382 
93.9% 10.305 4.1007 3.024(1 2,5877 2.3516 2.2045 2.(t275 [.9267 1.7527 .5464 
94.0% 10.481 4.1420 3.0488 2,6068 2.3678 2.2191 2.0402 1.9386 1.7628 .5548 
94.1% 10.663 4.1843 3.0741 2.6262 2.3842 2.2340 2.0532 1.95(14 1.7731 .5632 

94.2% 1{).852 4.2276 3,0999 2.6460 2.4(X19 2.249(1 2.0664 1,9624 1.7835 .5718 
94.3% 11.{147 4.2721 3.1262 2.6661 2,4179 2.2643 2.0797 1,9748 1.79411 .5805 
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TABLE OF EFFECTIVE Z FOR 0 = 0 
BY C D F  VALUE BY SAMPLE SIZE 

(Continued) 

Size 3 4 5 6 7 8 l0 12 20 Infinite 

CDF 
94.4% 11.247 4.3174 3.1530 2.6867 2.4354 2.2800 2.0933 1.9872 1.8048 1.5893 
94.5ck 11.455 4.3643 3.1803 2,7076 2.4533 2.2960 2.1071 2.0000 1.8158 1.5982 
94.6% 11.670 4.4121 3.2085 2,7289 2.4713 2.3123 2.1212 2.0129 1.8269 1.6072 
94.7% 11.895 4.4614 3.2372 2,7507 2.4898 2.3288 2.1355 2.0260 1.8381 1,6164 
94.8% 12.127 4.5119 3.2667 2,7729 2.5087 2.3456 2.1501 2.0394 1.8495 1.6258 
94.9% 12.369 4.5636 3.2966 2,7957 2.5279 2.3627 2.1650 2.0530 1.8610 1.6352 
95.0% 12.621 4.6168 3.3275 2,8189 2.5477 2.3802 2.1800 2.0668 1.8728 1.6449 
95.1% 12.883 4.6718 3.3593 2.8428 2.5684 2.3981 2.1955 2.0809 1.8849 1.6546 
95.2% 13.155 4.7282 3.3915 2.8671 2.5889 2.4163 2.2112 2.0953 1.8972 1.6646 
95.3% 13.439 4.7863 3.4247 2.8920 2.6098 2.4348 2.2272 2.1100 1.9096 1.6747 
95.4% 13.736 4.8458 3.4587 2.9176 2.6313 2.4539 2.2436 2.1250 1.9224 1.6849 
95.5% 14.045 4.9072 3.4938 2.9437 2.6532 2.4734 2.2603 2.1402 1.9354 1.6954 
95.6% 14.371 4.9711 3.5297 2.9706 2.6758 2.4933 2.2774 2.1558 1.9486 1.7060 
95.7% 14.708 5.0372 3.5669 2.9980 2.6988 2.5136 2.2949 2.1717 1.9619 1.7169 
95.8% 15.064 5.1054 3.6047 3.0263 2.7224 2.5343 2.3128 2.1880 1.9756 1.7279 
95.9% 15.438 5.1759 3.6438 3.0554 2.7464 2.5556 2.3310 2.2046 1.9897 1.7392 
96.0% 16.830 5.2490 3.6843 3.0851 2.7710 2.5775 2.3497 2.2217 2.0040 1.7507 
96.1% 16.241 5.3246 3.7260 3.1158 2.7964 2.60(,ud 2.3689 2.2390 2.0188 1.7624 
96.2% 16.673 5.4032 3.7688 3.1474 2.8226 2.6229 2.3886 2.2570 2.0337 1.7744 
96.3% 17.131 5.4848 3.8130 3.1800 2.8494 2.6465 2.4088 2.2752 2.0489 1.7866 
96.4% 17.611 5.5698 3.8589 3.2134 2.8771 2.6709 2.4295 2.2940 2.0647 1.7991 
96.5% 18.117 5.6577 3.9065 3.2480 2.9055 2.6960 2.4507 2.3133 2.0807 1.8119 
96.6% 18.652 5.7498 3.9556 3.2836 2.9348 2.7219 2.4726 2.3332 2.0971 1.8250 
96.7% 19.219 5.8455 4.(X)63 3.3205 2.9652 2.7484 2.4951 2.3536 2.1140 1.8384 
96.8% 19.824 5.9463 4.0595 3.3588 2.9967 2.7760 2.5183 2.3744 2.1315 1.8522 
96.9% 20.472 6.0513 4.1146 3.3983 3.0290 2.8044 2.5422 2.3958 2.1495 1.8663 
97.0% 21.160 6.1607 4.1723 3.4394 3.0626 2.8338 2.5669 2.4180 2.1679 1.8808 
97.1% 21.892 6.2756 4.2322 3.4822 3.0974 2.8645 2.5924 2.4409 2.1868 1.8957 
97.2% 22.674 6.3965 4.2945 3.5268 3.1336 2.8960 2.6187 2.4647 2.2064 1.9110 
97.3% 23.518 6.5244 4.3603 3.5732 3.1711 2.9286 2.6461 2.4892 2.2263 1.9268 
97.4% 24.431 6.6590 4.4286 3.6216 3.2101 2.9624 2.6743 2.5147 2.2474 1.9431 
97.5% 25.414 6.8024 4.5006 3.6721 3.2507 2.9977 2.7037 2.5410 2.2691 1.9600 
97.6% 26.481 6.9538 4.5760 3.7251 3.2934 3.0345 2.7343 2.5686 2.2916 1.9774 
97.7% 27.640 7.1139 4.6558 3.7805 3.3379 3.0730 2.7661 2.5972 2.3149 1.9954 
97.8% 28.902 7.2850 4.7399 3.8388 3.3848 3.1136 2.7997 2.6272 2.3394 2.0141 
97.9% 30.284 7.4690 4.8287 3.9003 3.4342 3.1560 2.8347 2.6583 2.3648 2.0335 
98.0ch 31.809 7.6656 4.9230 3.9655 3.4863 3.2(X)4 2.8714 2.6908 2.3912 2.0537 
98.1% 33.482 7.8775 5.0239 4.0344 3.5411 3.2472 2.9102 2.7251 2.4191 2.0748 
98.2% 35.355 8.1065 5.1315 4.1081 3.5996 3.2969 2.9507 2.7612 2.4482 2.0969 
98.3% 37.446 8.3553 5.2479 4.1868 3.6613 3.3497 2.9936 2.7993 2.4788 2.1201 
98.4% 39.785 8.6267 5.3734 4.2710 3.7274 3,4059 3.0392 2.8396 2.5113 2.1444 
98.5% 42.451 8.9249 5.5087 4.3615 3.7983 3,4660 3.0881 2.8826 2.5454 2.1701 
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TABLE OF EFFECTIVE Z FOR 0 = 0 
BY C D F  VALUE BY SAMPLE SIZE 

(Continued) 

Size 3 4 5 6 7 8 10 12 20 Infinite 

CDF 

98.6% 45,492 9.2531 5.6560 4.4599 3.8742 3.5306 3,1400 2.9282 2.5816 2.1973 
98.7% 48.998 9.6177 5,8178 4.5669 3.9573 3.6007 3.1960 2.9771 2.6209 2.2262 
98.8% 53,097 10.027 5.9985 4.6837 4.0473 3.6765 3.2571 3.0302 2.6626 2.2571 
98.9% 57.907 10.489 6.1984 4,8125 4.1458 3.7592 3.3235 3,(/877 2.7077 2.2904 
99.0% 63.707 11.019 6.4222 4.9558 4.2560 3.8501 3.3963 3,1507 2.7573 2.3263 
99.1% 70.795 11.635 6.6779 5.1181 4.3794 3.9518 3.4770 3.2210 2.8114 2.3656 
99.2% 79.707 12.356 6.9732 5.3036 4.5194 4.(/677 3.5679 3.2993 2.8716 2.4089 
99.3% 91.036 13.230 7.3215 5.5182 4.6799 4.2011 3.6714 3.3882 2.9391 2.4573 
99.4% 106,30 14.315 7.7411 5.7747 4.8698 4.3566 3.7915 3A911 3.0164 2.5121 
99.5% 127,54 15.709 8.26(X1 6.0891 5.1006 4.5425 3.9348 3.6137 3.1(/85 2.5758 
99.6% 159,43 17.595 8.9434 6.4912 5.3913 4.7766 4.1131 3.7633 3.2206 2.6521 
99.7% 21Z56 20,367 9.8927 7.0398 5.7817 5.0854 4,346(/ 3.9576 3,3629 2.7478 
99.8% 318,87 25,001 11,384 7.8785 6.3601 5.5437 4.6817 4.2374 3,5614 2.8782 
99.9% 639,32 35.346 14.466 9.5264 7.4639 6.3924 5.2836 4.7261 3,8973 3.0902 

99.91% 710,10 37.358 15.013 9,7723 7.6388 6.5205 5.3910 4.8041 3,9464 3.1214 
99.92% 802,48 39,704 15.607 10.091 7.8452 6.6830 5.5026 4.8898 4.0060 3.1560 
99.93% 924,73 42.935 16.388 10.453 8.0855 6.8630 5.6142 4.9882 4,0662 3.1947 
99.94% 1071.4 46.165 17.200 10.871 8.3560 7.0571 5.7557 5.(1962 4.1476 3.2390 
99.95% 1308.2 50.132 18.463 11.487 8.6942 7.3285 5.9347 5.2472 4,2324 3.2905 
99.96% 1603.7 55.886 19.756 12,104 9.2022 7.6146 6.1392 5.4053 4~3366 3.3528 
99.97% 2129.8 64.578 21.719 13.037 9.7135 8.0344 6.4159 5.6194 4A780 3.4319 
99.98% 3195.1 79.327 24.905 14.473 10.582 8.6579 6.8130 5.9433 4~6819 3.54(/2 
99.99% 6476.5 130.35 32.577 17.533 12.262 9.8218 7.5466 6.5133 5,0235 3.7195 

99.991% 7155.0 137.10 34.590 17.863 12.547 10.020 7.6674 6.6017 5,11765 3.7462 
99.992% 8105.2 143.86 36,603 18.424 13.066 10.219 7.7953 6.7262 5.1366 3.7742 
99.993% 9463.0 15(/.6t 38.617 19.038 13.677 10,539 7.9589 6.8534 5.1956 3,8091 
99.994% 10820. 157.36 40.630 19.774 14.288 1(/.861 8,1225 6.9806 5.2681 3.8464 
99.995% 12470. 164.12 42.644 20.754 14.899 11.182 8.3533 7.1077 5.3707 3.8906 
99.996% 15513. 177.26 44.657 22.133 15,510 11.558 8.6325 7.3289 5.4865 3.9442 
99.997% 20567. 204.65 47.133 23.752 16.122 12.166 8.9968 7.5696 5.6387 4.0140 
99.998% 30128. 249.52 53.817 26.086 17.333 13.066 9.5083 8.02411 5.8325 4.1071 
99.999% 57549. 345.39 67.4(/5 31.115 20,156 14.730 11.495 9.3525 6.1575 4.2655 

99.9991% 123124 528.79 89.391 38.011 23.330 16.773 13.385 11.975 6.5736 4.2841 
99,9992% 139934 558.35 93.151 39.277 23.970 17.150 13.557 12.113 6.6238 4.3213 
99.9993% 152587 606.4l 99.113 40.437 24,688 17.528 13.729 12330 6.6901 4.3400 
99.9994% 174499 652.78 104.17 42.1(/5 25,339 17.931 13.901 12.396 6.8068 4.3772 
99.9995% 2(10226 703.32 109.14 43.939 26,214 18.529 14.072 12.651 69205  4.4145 
99.9996% 237470 771.56 118.18 46.238 27.656 19.410 14.244 12.824 7.(t653 4.4703 
99.9997% 281976 856.72 128.12 49.570 28,945 2(I.215 14.416 13.351 7.2843 4.5449 
99.9998% 3549(16 1079.4 145.55 56462  31.573 21.9(17 14.588 13.818 7.5316 4.6194 
99.9999% 566663 1407.4 176.46 67,100 36.220 24.042 15,525 14.616 8.0696 4.7684 

l(X)% 487(1750 82606  958(X) 15691 121,20 57.244 27.447 19,958 10~705 #NUM! 
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The last line of the table may seem surprising, as the values 
should all be infinite, as indicated in the last column. However, 
in doing simulations it is necessary to have some way of creating 
very large values. The best way is simply to generate deviates 
as one needs them. If one is going to use a table such as the 
above, then a theoretically correct possibility is to create a tail 
distribution, and simulate off that. A possibility which also works 
is to have explored the high end in enough detail and to include 
a value for 100%, in order to interpolate. The values shown here 
are the largest obtained during the 50,000,000 simulations. Here, 
the table is reasonably accurate to the one chance in a million 
level at the high end. If this is not good enough for the problem 
at hand, then other procedures must be used. This could happen, 
for example, if many million simulations are to be used, or if 
results are sensitive to the very high end of the distribution. 
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APPENDIX B 

SCHEDULE P PART 3 HOMEOWNERS-FARMOWNERS PAID DATA 
FROM BEST'S 1995 AGGREGATES AND AVERAGES 

Years in 
Which 

Losses Were 1 2 3 4 5 
Incurred 12 Months 24 Months 36 Months 48 Months 60 Months 

I. Prior 0 961,195 
2. t985 7,122,424 9,387,076 
3. 1986 6,540,125 8,549,792 
4. 1 9 8 7  6,549,833 9,431,522 
5. 1 9 8 8  7,387,876 9,934,924 
6. 1 9 8 9  9,159,289 12,691,762 
7. 1 9 9 0  9,204,653 12,321,906 
8. 1 9 9 1  10,631,838 13,987,066 
9. 1992 17,421,697 22,112,982 

10. 1 9 9 3  11,304,871 14,537,267 
11. 1 9 9 4  13,181,700 

Years in 
Which 

Losses Were 6 7 
Incu~ed 72 Months 84 Months 

1,539,215 1.853,854 2,162,283 
9,733,306 9,975,586 10,142,891 
8,959,180 9,210,201 9,363,385 
9,348,973 9,606,804 9,757,094 

10,367,041 10,614,036 10,736,491 
13,200,544 13,558,787 13,670,011 
12,859,522 13,155,938 13,337,299 
14,667,645 15,022,004 
22,871,006 

8 9 10 
96 Months 108 Months 120 Months 

1. Prior 
2. 1985 
3. 1986 
4. 1987 
5. 1988 
6. 1989 
7. 1990 
8. 1991 
9. 1992 

10. 1993 
11. 1994 

2,275,182 2,340,769 2,390,115 2,415,395 2,432,657 
10,226,434 10,270,069 10,301,410 10,327,519 10,339,393 
9,456,400 9,505,716 9,530,693 9,546,517 
9,858,142 9,914,405 9,943,700 

10,832,847 10,889,518 
13,778,348 
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SCHEDULE P PART3 HOMEOWNERS-FARMOWNERS PAID DATA 
F R O M  B E S T ' S  1 9 9 5  A G G R E G A T E S  A N D  A V E R A G E S  

(Continued) 

Years in 
Which 

Losses Were LN (Age-to-Age Factors) 
Incurred 1-2 2-3 3-4 4-5- 5-6  

2. 1985 

3 .  1986 

4. 1987 

5. 1988 

6. 1989 

7. 1990 

8. 1991 

9. 1992 

i0. 1993 

Years in 
Which 

Losses Were 
Incurred 

LN (Age-to-Age Factors) 
6-7 7-8 8-9 9-10 

2. 1985 

3. 1986 

4. 1987 

5. 1988 

6. 1989 

7. 1990 

8. 1991 

9. 1992 

10. 1993 
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Taking the last five calendar years, which are shaded in the pre- 
vious table, the results for the maximum likelihood estimators 
are: 

Period PO Cro 

1 to 2 0.27641 0.03091 
2 to 3 0.04116 0.00456 
3 to 4 0.02484 0.00180 
4 to 5 0.01307 0.00299 
5 to 6 0.00904 0.00093 
6 to 7 0.00509 0.00052 
7 to 8 0.00287 0.00018 
8 to 9 0.00210 0.00044 
9 to ultimate 0.00115 0.00100 

The sigma estimator for 9 to ultimate is, of course, a guess. In the 
actual calculation, all estimators were taken to have come from 
a sample of size five calendar years, whereas the last four really 
have less than that. In reserving practice, since there is always 
judgment involved in the tail factor and its standard deviation, it 
seems a good idea to use only estimators which are from at least 
five calendar years. At least this way the assumptions are made 
explicit, rather than hidden in factors whose standard deviation 
is actually infinite due to parameter variation. 


