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Abstract 

The most common loss reserving procedures empha- 
size development-based projections, with implied trends 
examined for reasonableness and considered on an ad- 
hoc basis. This paper presents relatively simple meth- 
ods for reflecting development and trend simultaneously, 
with weights that reasonably reflect the relative accuracy 
of the two types of projections. The Stanard-Biihlmann 
or "Cape Cod" method is a special case of these meth- 
ods, which are denoted "Generalized Cape Cod" meth- 
ods. The Appendices present underlying variance struc- 
tures under which the weights used in the Generalized 
Cape Cod methods are optimal. 

1. INTRODUCTION AND OVERVIEW 

Commonly  applied actuarial procedures involve projec- 
tions in two "directions" of the traditional loss development tri- 
angle: 

1. The development direction 

We use the term "development" to refer to the emergence of 
information for a single year of origin. Development projections 
involve the measurement, selection, and application of develop- 
ment patterns. While the measurement and selection of develop- 
ment patterns often involve data from multiple years of origin, 
the application of the development pattern is made to each year 
of origin independently. 

482 
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2. The trend direction 

We use the term "trend" to refer to projections made using re- 
lationships among amounts for different years of origin. Trends, 
as used herein, refer to expected changes in the ratio of a pro- 
jected amount to an exposure base. For simplicity, we will gen- 
erally refer to the projected amount as "losses," the exposure 
base as "exposures" and the ratio of losses to exposures as "pure 
premiums." 

In fact, the methods presented are more general, and have 
much wider potential application. For example, if the projected 
amount is losses, potential exposure bases include ultimate claim 
counts and premiums, in which case the quantity denoted "pure 
premium" herein would really be severity or loss ratio, respec- 
tively. Other examples of  potential combinations of projected 
amounts and exposure bases are listed in Section 9. 

In reserving methodology, primary emphasis is often given to 
development projections, with implied trends perhaps examined 
for reasonableness and ad hoc modifications sometimes made 
to development projections, particularly for recent years of  ori- 
gin. 

The Bornhuetter-Ferguson method is commonly used to 
blend a development projection with an "a priori" result. While 
that a priori result may well be based on a trend projection of 
some kind, the basis for the a priori result is, in general, un- 
specified [1]. The Stanard-Bfihlmann or "Cape Cod" method is 
an application of the Bornhuetter-Ferguson method in which the 
a priori result comes from a specified, trend-based calculation. 1 
Regression-based or dynamic stochastic models can be used to 
reflect the development and trend directions simultaneously, but 
these models are not in widespread use. 2 

ISee Stanard [2], Biihlmann [3] and Patrik [4]. 
2See, for example, DeJong and Zehnwirth [5], Taylor [6] and Wright [7]. 
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The goal of this paper is to present methods that simulta- 
neously reflect development and trend in a unified approach, 
reasonably reflecting the relative accuracy of the two types of 
projections. Additional goals are that the methods be practical, 
accessible to most practicing actuaries, and easily integrated with 
the most common actuarial procedures and the types of  data that 
are readily available. 

The methods discussed all estimate ultimate losses in a two 
step process; first, the expected losses for each year of origin are 
estimated based on a weighted average of the results from all 
years, developed and trended as appropriate; then the expected 
losses and actual losses for each year of origin are weighted 
together using the Bornhuetter-Ferguson (or similar) method. 
The Stanard-Bi.ihlmann or Cape Cod method is a special case 
of this general approach, and we refer to the broader family of 
methods as Generalized Cape Cod Methods. 

After introducing preliminary notation in Section 2, the paper 
proceeds as follows: 

Section 3: The Bornhuetter-Ferguson method is presented 
along with a statistical justification for the Born- 
huetter-Ferguson weights. 

Section 4: The general framework for calculating expected 
losses as a weighted average of all years' results is 
presented, along with a discussion of variance re- 
lationships that should be reflected in the weights. 

Section 5: The Stanard-B/ihlmann or Cape Cod Method is 
presented and is shown to fit the general framework 
of Section 4. Two potentially significant shortcom- 
ings of  the method are identified. 

Sections 
6 and 7: 

Two generalizations of the Cape Cod method are 
presented, designed to overcome the shortcomings 
identified in Section 5. 
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Section 8: The Bornhuetter-Ferguson calculation is revisited 
in conjunction with the expected loss estimates pre- 
sented in Section 5 through 7. 

Section 9: A number of potential applications of the method- 
ology are listed. 

Section 10: Conclusion 

A glossary of notation is provided at the end of the paper 
including preliminary notation from Section 2, plus additional 
notation introduced in other Sections and Appendices. 

The Appendices provide additional details of simple variance 
models consistent with the methods presented. Using these mod- 
els, calculations are presented that use the data triangle to assist 
in the selection of parameters for Section 6 and Section 7 models. 

The paper is organized with mathematics of any length or 
complexity consigned to the Appendices, and it is intended that 
the body of the paper can be read without the Appendices. Fur- 
thermore, while the Appendices provide calculations for estimat- 
ing certain model parameters, the procedures of the paper will 
provide reasonable and useful results with judgmentally selected 
values for these parameters. 

2. AVAILABLE DATA AND NOTATION 

The following are presumed to be available (with i = 1. . .N):  

Notation 
• The current evaluation of losses for each L T D  i 

year of origin i 

• Cumulative development factors D F  i 

appropriate to project losses to their 
ultimate value (note that the subscript 
refers to year of origin rather than 
maturity) 
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• A measurement of  the relative 
exposure per year of origin 

• Trend factors to adjust for the change 
in expected losses per exposure from 
year of  origin i to year of  origin j 

Additional Notation: 
• Ultimate losses for year of origin i 
• Thus, L T D  i × D F  i is an estimate of U L T  i 

• U L T  i + E  i (i.e. pure premium) 
• Expected Value 
• Variance 

U L T  i 

PP~ 

E( ) 
Var( ) 

The carat (^) is used to denote estimation; i.e., a quantity with a 
hat over it is an estimate of the quantity beneath the hat. 

The derivation of the factors D F  i a n d  TFi j  is not addressed in 
this paper. It is presumed that the actuary has applied appropriate 
calculations, adjustments, and judgments  in selecting the factors 
so that L T D  i × D F  i is the best available development estimate of 
U L T  i, and TFi j  is the best available estimate of E ( P P j )  - E ( P P i ) .  3 

For the most part, the above information is presumed to con- 
stitute all of the available information. In addition, calculations 
are presented in the Appendices that use the underlying data tri- 
angle to estimate certain model parameters. 

Additional notation is introduced at later points in the paper. 
For convenience, a glossary containing all notation is included 
at the end of  the paper. 

3. T H E  B O R N H U E T T E R - F E R G U S O N  M E T H O D  

The Bornhuetter-Ferguson method is the most commonly 
used approach to blending development and trend projections if 

3Some of  the types o f  adjustments that may be necessary are discussed in Berquist and 
Sherman [8]. 



BALANCING DEVELOPMENT AND TREND IN LOSS RESERVE ANALYSIS 487  

trended values from other years of origin are the basis for the es- 
timate of  expected ultimate losses. In the Bornhuetter-Ferguson 
method, ultimate losses are estimated as follows: 

U[,Ti=LTDi  + (1-D-D~i)  xE(ULTi )  (3.1) 

where the source of the estimate E(ULTi) is unspecified. Expand- 
ing the first term, we have: 

x LTD i x D F  i + 1 - x f~(ULTi) 

(3.2) 

and the Bornhuetter-Ferguson estimate is seen to be a weighted 
average of  the development based estimate of ULT i and E(ULTi). 
The weights are optimal 4 under the following constraints: 

1. Expected losses are known (i.e. fE(ULTi) = E(ULTi)); 

2. Unemerged losses are independent from the emerged 
losses; 

3. The DFis are known; and 

4. For a given year of origin i, the variance of  the 
development-based estimate of ultimate losses (i.e. LTD i 
x DFi) is proportional to the development factor D F  i. 

Proof of  the above statement is provided in Appendix A. 

In practice, Constraint 1 is obviously not met; the majority of  
this paper concentrates on producing the best possible estimate 
of  E(ULT i) using all of the available information per Section 2. 
Section 8 and Appendix E deal with the implications of  eliminat- 
ing this constraint, and it is demonstrated that the same weights 

4Optimal weights are defined as those that produce the best (i.e. the min imum variance) 
linear unbiased estimate, given that the individual estimates being weighted together are 
themselves considered to be unbiased. 
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remain optimal if the estimate E(ULTi) is determined using the 
techniques of  this paper. 

Constraint 2 is assumed to hold in both the Bornhuetter-  
Ferguson method and in underlying variance models developed 
in Appendix B. The independence assumption is modified for 
the model in Section 7 and Appendix C. 

Constraint 3 is assumed to hold throughout. 5 Given the imper- 
fection of this assumption, results described as optimal should 
be considered only approximately optimal. 

Constraint 4 will subsequently be denoted as the "Cape Cod 
variance assumption." This assumption, along with several other 
assumptions, and the "Cape Cod variance model" is presented in 
Appendix B. Relaxation of this constraint and the use of  an alter- 
native variance model is addressed in Section 7 and Appendix C. 

4. A F R A M E W O R K  F O R  E S T I M A T I N G  E X P E C T E D  L O S S E S  

F O R  A G I V E N  Y E A R  

Using the available information and notation per Section 2, 
the expected pure premium for year i can be estimated based on 
the data from year j as follows: 

jE(PPi) LTDj × DFj - x TFji (4.1) Ej 
where the subscript on the left denotes that the estimate is based 
on data from year of  origin j.  Although we usually think of  trend 
factors moving forward in time, note that j can also equal i or 
be greater than i. 

Thus, the data from each year of  origin j provide a differ- 
^ 

ent estimate jE(PPi). If these estimates were independent, then 

5Constraint 3 may be violated in practice. The DFis are usually themselves random 
variables, which makes the mathematical properties of development estimates less than 
ideal. Stanard concluded that development estimates are not generally unbiased. See 
Appendix A of  [2]. On the other hand, in Mack's  model, development estimates can be 
unbiased [ 10]. 
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the optimal estimate of E(PPi) would be a weighted average of 
the estimates jf~(PPi) with the weights inversely proportional to 
the variances of the estimation errors. 6'7 If the DFis were known, 
such an independence assumption would be plausible. Given the 
methods normally used to estimate the DFis, independence is un- 
likely. Nevertheless, we will attempt to develop weights roughly 
in inverse proportion to the relative variances of  the estimation 
errors associated with the individual projections. 

Differences among the variances of  the estimation errors as- 
sociated with the estimates jf~(PPi) are generally related to the 
volume of the data and to the development and trending calcu- 
lations as follows: 

1. Volume 

All other things being equal, we normally expect that 
a larger volume of data produces a lower variance esti- 
mate of pure premium than a smaller volume of  data. If 
we consider the loss data itself as the result of a random 
sample of size Ej, then the variance of the pure premium 
projection would be inversely proportional to Ej, and the 
indicated weight directly proportional to Ej. All models 
discussed herein assume that variance is inversely pro- 
portional to Ej and all weighting systems include Ej as 
an element of  the weights. 

2. Development 

All other things being equal, we normally expect that 
less mature data will produce higher variance estimates 

6A common statistics result. See Rohatgi [9, p. 352]. 
7When the amount being estimated is an expected value, the variance of the estimation 
errors equals the variance of the estimate, and the two terms may be used interchangeably. 
When the amount being estimated is an actual value (i.e., the realization of a random vari- 
able), then the distinction between the variance of the estimation error and the variance 
of the estimate is important. 
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than more mature data. Thus, in a reasonable weighting 
system, the relative weight will increase with the matu- 
rity of the data. 

3. Trending 

Given the imperfections in exposure measurement 
and trend estimation, the use of one year's data to esti- 
mate pure premium for another year would be expected 
to increase the variance of the estimation error as com- 
pared to using the data from the year itself. The rela- 
tive variance would be expected to increase as the length 
of  time between the years increases. This effect, which 
could be described as the deterioration in the value of 
information with time, is dealt with in many areas of 
actuarial practice. 

While the general variance relationships discussed above will 
usually hold, they should not be considered absolute nor is the 
list necessarily exhaustive. There may be specific cases when one 
or more of the above relationships do not hold. Furthermore, the 
variances associated with the estimates jE(PPi) may come from 
sources that are not reflected in the above relationships, with 
some complex interactions among them. Limited to the practical 
goal of a reasonable and useful weighting system, this paper 
presents simple, practical models of the variance structure that 
reasonably account for the variance relationships listed above. 

5. THE S TANARD-B~IHLMANN OR CAPE COD METHOD 

The Stanard-Bfihlmann or Cape Cod method compared favor- 
ably with other loss reserving techniques in a study by Stanard 
[2]. Stanard also cites unpublished work by Biihlmann [3], who 
coined the name "Cape Cod." Patrik presents the method as a 
reinsurance reserving technique in the Foundations of  Casualty 
Actuarial Science textbook, using the name Stanard-Biihlmann 
[4, pp. 352-354]. 
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Stanard's presentation of the method assumed that exposures 
were equal for all years. The presentation below allows for vary- 
ing levels of exposure, using the notation from Section 2. For 
clarity of presentation, we will omit the trend factor from the 
formulas in the remainder of the paper; it is assumed that losses 
and/or exposures have been adjusted for trend so that the pure 
premiums are expected to be equal for all years. 

The expected pure premium is estimated as follows: 

2 LTDi 
~(pp) _ i (5.1) 

~[Eg/DFi]" 
i 

Note that F.(PP) is written without subscript, since the value is 
presumed to be equal for all years of origin. The expected pure 
premium thus calculated using the data from all available years is 
then used to calculate a priori expected losses in the Bornhuetter- 
Ferguson procedure. 

Table i includes the trend adjustment and displays the calcu- 
lation of the expected pure premium. 

In Table 2, the expected pure premium is used in the 
Bornhuetter-Ferguson calculation. 

It is instructive to expand Equation 5.1. Rewriting the numer- 
ator, we have: 

~-~[(LTD i x DFi/Ei) x (Ei/DFi) ] 
~(pp) = i (5.2) 

~-~.[EjDF i] 
i 

In this form, the value of E(PP) can be seen to be the weighted 
average of the developed projected pure premiums for each year 
(LTD i × DF i + Ei) with the weights equal to the values Ei/DF i. 
Thus, the method falls into the general framework discussed in 
Section 4. 
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TABLE 1 

COMPANY XYZ 
WORKERS COMPENSATION STUDY 

DATA AS OF 12/31/92 

CAPE COD METHOD 
CALCULATION OF EXPECTED PURE PREMIUM 

(1) 

Accident 
Year 

(2) (3) (4) (5) (6) (7) 
E i L T D  i TFi,1992 D F  i wLi/DF i 

Trended 
Paid Trend Paid Losses Cumulative 

Losses Factor to @ 12/31/92 Paid Loss 
@ 12/31/92 1992 (3) × (4) Development 

Exposures (000's) @ 11% (000's) Factor (2)/(6) 

1979 914 491 3.8833 1,907 1.1200 816 
1980 1,203 385 3.4985 1,347 1.1312 1,063 
1981 1,264 949 3.1518 2,991 1.1538 1,096 
1982 1,372 769 2.8394 2384 1.1769 1,166 
1983 1,422 944 2.5580 2,415 1.2122 1,173 
1984 1,502 909 2.3045 2,095 1.2624 1,190 
1985 2,090 1,345 2.0762 2,792 1.3239 1,579 
1986 2,338 1,298 1.8704 2,428 1.4175 1,649 
1987 2,456 1,375 1.6851 2,317 1.5531 1,581 
1988 2,617 2,086 1.5181 3,167 1.7053 1,535 
1989 2,774 2,153 1.3676 2,945 1.9171 1,447 
1990 3,021 2,265 1.2321 2,791 2.4865 1,215 
1991 3,067 2,345 1.1100 2,603 3.4906 879 
1992 3,428 1,186 1.0000 1,186 6.6569 515 

Total 29,468 18,500 33,166 16,903 

(8) Expected Pure Premium (at accident year 1992 level): 1.9621 
(8) = (total Col. 5)/(total Col. 7) 

The Cape Cod weights reflect two of  the three variance rela- 
tionships identified in Section 4. Volume is reflected by having 
the weights proportional to E i. Development is reflected by hav- 
ing the weights inversely proportional to D F  i. Variance related 
to trending is not reflected. 
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TABLE 2 

COMPANY XYZ 
WORKERS COMPENSATION STUDY 

DATA AS OF 12/31/92 

CAPE COD METHOD 
ESTIMATION OF ULTIMATE LOSSES 

(BORNHUETTER-FERGUSON METHOD) 

(1) (9) (10) (11) (12) 
Expected 

Expected Unpaid Estimated 
Expected Ultimate Losses Ultimate 

Pure Losses/1,000 [ 1 - 1/(6)] Losses 
Accident Premium (2) x (9) x (10) (3) + ( I I ) 

Year (8)/(4) (000's) (000's) (000's) 

1979 0.5053 462 49 540 
1980 0.5608 675 78 463 
1981 0.6225 787 105 1,054 
1982 0.6910 948 143 912 
1983 0.7670 1,091 191 1,135 
1984 0.8514 1,279 266 1,175 
1985 0.9451 1,975 483 1,828 
1986 1.0490 2,453 722 2,020 
1987 1.1644 2,860 1,018 2,393 
1988 1.2925 3,382 1,399 3,485 
1989 1.4347 3,980 1,904 4,057 
1990 1.5925 4,811 2,876 5,141 
1991 1.7677 5,421 3,868 6,213 
1992 1.9621 6,726 5,716 6,902 

Total 36,849 18,819 37,319 

Using weights inversely proportional to the DFis makes the 
implicit assumption that the relative variance of  the development- 
based pure premium estimates are proportional to the DFi s8 (the 
Cape Cod variance assumption). This same assumption was pre- 
viously listed as underlying the Bornhuetter-Ferguson method. 

SThis result is developed in Appendix B of [2]. 
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This very simple variance model is often adequate to account for 
the decreasing reliability of projections as development factors 
increase--but  not always. For example, incurred loss develop- 
ment factors will often approach unity well before all the losses 
are settled and all variance is eliminated. Incurred loss devel- 
opment  factors less than unity provide an example where the 
Cape Cod variance assumption is clearly unreasonable. 9 Note 
that the Bornhuetter-Ferguson method also produces  unreason- 
able results in this case. I° This potential problem is addressed in 
Section 7. 

The failure to reflect variance related to trending can be a 
serious shortcoming in practice. Practitioners have sometimes 
found that the Cape Cod method gives excessive weight to out 
of date results. The problem can be severe when a very long data 
base is used, as is often the case in reinsurance applications. The 
problem can be addressed to some degree by limiting the num- 
ber of years entering the Cape Cod calculation. A less arbitrary 
approach is to specifically account for the relationship between 
variance and trending in the weighting scheme, as is presented 
in the following section. 

6. ACCOUNTING FOR Y E A R - T O - Y E A R  VARIANCE 

We present two approaches for accounting for variance related 
to trending. The first uses an exponential decay factor, which is 
simple to apply and has proven practical in applications, although 
it is not based directly on a mathematical model. The decay factor 
approach is the one cited in most other sections of  this paper. The 
second approach, using an additive "adaptive variance" term, is 
based on a specific mathematical model and is directly analogous 
to techniques used in dynamic stochastic modeling. With suitably 

9The implication would be that the immature projected pure premium is more reliable 
(i.e., has lower variance) than the actual ultimate pure premium. 
lOUsed with a development factor less than unity, the Bornhuetter-Ferguson method 
produces a projection outside of the range of the development result and the expected 
result, 
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chosen parameters, the two approaches produce similar results. 
The adaptive variance section can be skipped without substan- 
tial loss of continuity. The mathematical model underlying the 
adaptive variance approach is used in Appendix D to develop in- 
dicated values of the adaptive variance and of the approximately 
equivalent decay factor. 

The Decay Factor Approach II 

We account for the variance related to trending by introducing 
an exponential decay factor to the original Cape Cod weighting 
scheme. Equation 5.2 becomes: 

L L [ ( LrDj_eT ×OF1) 
E(PPi) = 

where 0_<D_<I. (6.1) 

The weights (Ej/DFj) × Dli-jl now reflect volume (via Ej), de- 
velopment using the Cape Cod variance assumption (via 1/DFj), 
and trending via the exponentially decaying weight D li-jl. The 
exponentially decaying weight has the required property that the 
relative weight decreases as the length of the trending period, 

^ 

I i - J l ,  increases. Note that the value E(PPi) now contains a sub- 
script denoting the year of origin, since the weights will now 
shift for each year of origin, causing the values of f~(PPi) to 
"drift." 12 

In Table 3, the example from Table 1 is re-worked with 
an annual exponential decay factor of 0.75. The calculation of 

I I Used for many years in various consulting reports [1 1]. 

12The drifting value o f  E(PPi) is roughly analogous to the techniques of  dynamic stochas- 
tic modeling, where the various model parameters may be allowed to drift over time. See, 
for example DeJong and Zehnwirth [5] and Wright  [7]. 
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TABLE 3 

COMPANY XYZ 
WORKERS COMPENSATION STUDY 

DATA AS OF 12/31/92 

GENERALIZED CAPE COD METHOD WITH DECAY 
CALCULATION OF EXPECTED PURE PREMIUM FOR ACCIDENT 

YEAR 1990 
(USING A DECAY RATE OF 75%) 

(1) (2) (3) (4) (5) (6) (7) (8) 
E i LTD i TFi,1992 D F  D bi-t99°l 

Indicated 
Ultimate 

Cumu- Trended 
Paid lative Pure 

Losses Trend Paid Loss Premium 
@ Factor Devel (3) × 

Accident Expo- 12/31/92 to 1992 -opment (4) × Decay 
Year sures (000's) @ 11% Factor (5)/(2) @ 75% 

Total 
Weight 

Assigned 
to 

Indicated 
Ult. Pure 
Premium 

(2) x 

(7)/(5) 

1979 914 491 3.8833 1.1200 2.3364 0.0422 34.467 
1980 1,203 385 3.4985 1.1312 1 . 2 6 6 5  0.0563 59.888 
1981 1,264 949 3.1518 1.1538 2.7303 0.0751 82.256 
1982 1,372 769 2.8394 1.1769 1.8730 0.1001 116.709 
1983 1,422 944 2.5580 1.2122 2.0585 0.1335 156.586 
1984 1,502 909 2.3045 1.2624 1 . 7 6 0 7  0.1780 211.758 
1985 2,090 1,345 2.0762 1.3239 1.7689 0.2373 374.626 
1986 2,338 1,298 1.8704 1 .4175  1.4719 0.3164 521.875 
1987 2,456 1,375 1 .6851  1 .5531  1 . 4 6 5 2  0.4219 667.133 
1988 2,617 2,086 1 .5181  1.7053 2.0635 0.5625 863.228 
1989 2,774 2,153 1.3676 1 .9171 2.0349 0.7500 1,085.233 
1990 3,021 2,265 1 .2321  2.4865 2.2970 1.0000 1,214.961 
1991 3,067 2,345 1.1100 3.4906 2.9625 0.7500 658.984 
1992 3,428 1,186 1.0000 6.6569 2.3031 0.5625 289.662 

Total 29,468 18,500 6,337.366 

(10) Expected Pure Premium for Accident Year 1990 (at 1992 AY level): 2.0675 
(10) = Average of Col. 6 weighted by Col. 8 
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TABLE 4 

COMPANY XYZ 
WORKERS COMPENSATION COMPANY 

DATA AS OF 12/31/92 

GENERALIZED CAPE COD METHOD WITH DECAY 
ESTIMATION OF ULTIMATE LOSSES 

(B ORN HUETI'ER-FERGUS ON METHOD) 

(1) (11) (12) (13) (14) (15) 
Expected 

Expected Expected Unpaid Estimated 
Pure Expected Ultimate Losses Ultimate 

Premium Pure Losses [ 1 - 1/(5)] Losses 
Accident @ AY 1992 Premium (2) x (12) x (13) (3) + (14) 

Year Level (11)/(4) (000's) (000's) (000's) 

1979 1.9586 0.5044 461 49 540 
1980 1.9246 0.5501 662 77 462 
1981 1.9676 0.6243 789 105 1,054 
1982 1.9290 0.6794 932 140 909 
1983 1.9019 0.7435 1,057 185 1,129 
1984 1.8644 0.8090 1,215 253 1,162 
1985 1.8397 0.8861 1,852 453 1,798 
1986 1.8246 0.9755 2,281 672 1,970 
1987 1.8511 1.0985 2,698 961 2,336 
1988 1.9250 1.2680 3,318 1,372 3,458 
1989 1.9915 1.4562 4,039 1,932 4,085 
1990 2.0675 1.6781 5,069 3,031 5,296 
1991 2.1399 1.9278 5,913 4,219 6,564 
1992 2.1486 2.1486 7,365 6,259 7,445 

Total 37,652 19,708 38,208 

the expected pure premium for accident year 1990 is shown in 
Table 3. 

The analogous calculation is then performed for other acci- 
dent years, and the results are recorded in Column 11 of Table 4. 
Note the drifting values of  the expected pure premium in Col- 
umn 11. (The single value 1.9617 was used for all years in the 
Table 1 and Table 2 calculation). 
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This structure, using a decay factor between zero and unity, 
conveniently collapses to the original Cape Cod method when 
D = 1 and to the development method when D = 0. Thus, adding 
the decay factor produces a compromise between the Cape Cod 
method and the development method, with the degree of com- 
promise controlled by the decay factor. The value of the decay 
factor should be a function of the variance associated with devel- 
opment projections compared with the variance associated with 
trend projections. In general, lower decay factors are appropriate 
for large data bases exhibiting stable development with higher 
decay factors for smaller data bases with more erratic develop- 
ment. 

Given that using the decay factor produces a compromise be- 
tween the Cape Cod and development methods, and that both 
the Cape Cod and development methods represent documented 
methodology, use of the decay factor will fall within the frame- 
work of documented methodology with any value of the decay 
factor between zero and unity, and it is reasonable that the decay 
factor may be judgmentally selected. Alternatively, the relative 
variances in the development and trend directions can be mea- 
sured from the data triangle and used to aid in the selection of 
the decay factor. 

Appendix B presents a variance model for data in a devel- 
opment triangle array, consistent with the Cape Cod variance 
assumption. Using that model, a method for using the data tri- 
angle to determine the indicated decay factor is developed in 
Appendix D. 

In judgmentally selecting decay factors over many years in 
practice, we have generally used values ranging from 50% to 
100%, with 75% as a "default" value. Estimates using the Ap- 
pendix D methodology appear to confirm that this range is rea- 
sonable. 
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The Adaptive Variance Approach 

This approach is justified by assuming that the unknown val- 
ues E(PPi) observe a simple random walk, i.e., 

E(PPi) = E(PPi_I) + d (6.2) 

where d is a random "disturbance" with mean zero and variance 
acr 2. We refer to the value of acr 2 as the adaptive variance. 

Denote the variance of the development-based estimate of  PPj 
as er 2, i.e. 

Var(LTDj x DFj - Ej) = ~r 2. 

Then, it can be shown that the variance of the estimation error 
associated with using the development-based estimate of PPj as 
an estimate of exp(PPi) is as follows: 

Var(E(PPi)-LTDj x DFj +Ej) = cr y -I- dcr  2 X [ i - j [ .  (6.3) 

The Cape Cod weights in Equation 5.2 assume that cry is directly 
proportional to DFj and inversely proportional to E j, i.e. 

o 2 = k x D F j / E j  (6.4) 

for some proportionality constant k. Substituting in Equation 6.3, 
we have: 

k x OFj + dcr2li _ Jl Var(E(PPi) - LTDj x DFj - Ej) - Ej 

(6.5) 

and the indicated weights would be in inverse proportion to the 
variances in Equation 6.5. To calculate these weights requires es- 
timates of both the adaptive variance do -2 and the proportionality 
constant k. 

The adaptive variance approach collapses to the original Cape 
Cod method when aa2= 0 and approaches the development 
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method as dCr 2 approaches infinity. Methods for estimating k and 
d ~2 are provided in Appendices B and D. 

Selecting an Approach 

Although the adaptive variance approach is more directly tied 
to a mathematical model, we generally prefer the decay factor 
approach since: 

• the two approaches produce similar results; 

• it is simpler to apply; 

• it directly reflects the degree of compromise between the Cape 
Cod and development methods; and 

• it is unitless, and thus is more amenable to judgmental  se- 
lection, evaluation of reasonableness, and comparisons among 
different data bases. 

7. GENERALIZING THE DEVELOPMENT VARIANCE ASSUMPTION 

In each method presented thus far, the relative variances aris- 
ing from development have been modeled using the Cape Cod 
variance assumption. While this simple assumption is often ade- 
quate, it is rather crude and is sometimes sufficiently inaccurate 
that the methods (including the Bornhuetter-Ferguson method in 
general) are unusable or of limited effectiveness. 

Rather than specify a relationship between the development- 
related variance and the development factors, we address the is- 
sue more generally by introducing an additional "variance fac- 
tor," VF i, defined as follows: 

Var[LTD i × DFi] 
VF i = (7.1) 

Var( ULTi) 

The Cape Cod variance assumption is the special case when 
VF i = D F  i. 
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In each previously presented formula for estimating expected 
pure premiums, the VFis replace the DFis as an element of the 
weights. Thus, the original Cape Cod weighting scheme (Equa- 
tion 5.2) becomes: 

[ ( LTDi x DFi 

E ( p p )  = ' (7.2) 

l 

Using the decay factor, Equation 6.1 becomes: 

r(LTDj ×Orj Ol _jl 1 

) 

After the expected pure premium is estimated, the final step 
of the reserving procedure has been the application of the 
Bornhuetter-Ferguson method; however, with the alternative as- 
sumption, an "alternative Bornhuetter-Ferguson" calculation is 
indicated. We modify Equation 3.2, replacing the weights based 
on D F  i with weights based on VF i, as follows: 

ULT i = (1 /VFi )  × LTD i × D F  i + (1 - 1/VFi)  × E(ULTi).  

(7.4) 

In Table 5 the expected pure premium for accident year 1990 
is calculated using a decay factor of 0.75 and variance factors 
in Column 8 different from the development factors in Col- 
umn 5. 

After performing the analogous calculation for other acci- 
dent years, the remainder of the methodology is shown in Ta- 
ble 6. 

Appendix C presents an alternative variance model consis- 
tent with using variance factors different from the development 
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TABLE 5 

COMPANY XYZ 
WORKERS COMPENSATION STUDY 

DATA AS OF 12/31/92 

GENERALIZED CAPE COD METHOD WITH 
DECAY AND ALTERNATIVE VARIANCE FACTORS 

CALCULATION OF EXPECTED PURE PREMIUM 
FOR ACCIDENT YEAR 1990 

(USING A DECAY RATE OF 75%) 

( l)  (2) 
Ei 

Accident Expo- 
Year sures 

(3) (4) (5) (6) (7) (8) (9) 
L T D  i TFi,1992 D F  i D li 19901 VF i 

Total 
Indicated Weight 

Cumu° Ultimate Assigned 
lative Trended to 

Incurred Incurred Pure Indicated 
Losses Trend Loss Premium Ult. Pure 

@ Factor to Devel- (3) × Decay Premium 
12/31/92 1992 @ opment (4)x Rate Variance (2)× 
(000's) 11% Factor (5)/(2) @ 75% Factors (7)/(8) 

1979 914 684 
1980 1,203 490 
1981 1,264 1,068 
1982 1,372 817 
1983 1 , 4 2 2  1,022 
1984 1,502 913 
1985 2,090 1,597 
1986 2,338 1,485 
1987 2,456 1,554 
1988 2,617 2,538 
1989 2,774 2,705 
1990 3 , 0 2 1  3,181 
1991 3,067 3,345 
1992 3,428 2,109 

3.8833 
3.4985 
3.1518 
2.8394 
2.5580 
2.3045 
2.0762 
1.8704 
.6851 
.5181 
.3676 
.2321 
.1100 
.0000 

1.0000 2.9061 0.0422 1.t200 34.467 
1.0050 1 .4321 0.0563 1.1312 59.888 
1.0100 2.6897 0.0751 1.1538 82.256 
1.0151 1.7164 0.1001 1.1769 116.709 
1.0252 1.8848 0.1335 1.2122 156.586 
1.0406 1.4577 0.1780 1.2624 2tl.758 
1.0614 1 .6838  0.2373 1.3239 374.626 
1.0880 1.2926 0.3164 1.4175 521.875 
1.1206 1.1948 0.4219 1 .5531 667.133 
1.1830 1.7417 0.5625 1.7053 863.228 
1.2715 1.6957 0.7500 1.9171 1,085.233 
1.4253 1 .8491 1.0000 2.4865 1,214.961 
1.7462 2.1140 0.7500 3.4906 658.984 
2.2026 1 .3551 0.5625 6.6569 289.662 

Total 29,468 23,508 6,337.366 

(11) Expected Pure Premium for Accident Year 1990 (at AY 1992 level): 1.6868 
(11 ) = Average of Col. 6 weighted by Col. 9 
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TABLE 6 

COMPANY XYZ 
WORKERS COMPENSATION STUDY 

DATA AS OF 12/31/92 

GENERALIZED CAPE COD METHOD 
WITH DECAY AND ALTERNATIVE VARIANCE FACTORS 

ESTIMATION OF ULTIMATE LOSSES 

(1) (I I) (12) (13) (14) (15) 
Estimated 

Development Ultimate 
Expected Expected Basis Losses 

Pure Expected Ultimate Ultimate (13) × 
Premium Pure Losses Losses [ 1 - 1/(8)] + 

Accident @ AY 1992 Premium (2) × (12) (3) × (5) (14)/(8) 
Year Level (11)/(4) (000's) (000's) (000's) 

1979 1.9586 0.5044 461 684 660 
1980 1.9025 0.5438 654 492 511 
1981 1.8916 0.6002 759 1,079 1,036 
1982 1.8072 0.6365 873 829 836 
1983 1.7450 0.6822 970 1,048 1,034 
1984 1.6784 0.7283 1,094 950 980 
1985 1.6377 0.7888 1,649 1,695 1,684 
1986 1.5946 0.8525 1,993 1,616 1,727 
1987 1.5873 0.9420 2,314 1,741 1,945 
1988 1.6261 1.0712 2,803 3,002 2,920 
1989 1.6557 1.2106 3,358 3,439 3,401 
1990 1.6868 1.3690 4,136 4,534 4,296 
1991 1.7071 1.5380 4,717 5,841 5,039 
1992 1.6883 1.6883 5,787 4,645 5,616 

Total 31,568 31,597 31,685 

factors. Using that model, Equation 7.4 is demonstrated to 
be the indicated alternative to the Bornhuetter-Ferguson meth- 
od. 

It is beyond the scope of this paper to develop specific mod- 
els of the relationship between variance and development. In 
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practice, any reasonable variance factors will produce reasonable 
weights. 

Measurement of  the variance factors based on the actual data 
triangle is possible, but the available data may frequently be too 
limited to parameterize a model of any complexity. As a prac- 
tical alternative, a "reference pattern" can be used, or a simple 
modification to a reference pattern can be made. 

For the reference pattern to be useful, the values should be 
greater than unity as long as there is any significant remaining 
uncertainty in the development projection of ultimate losses. For 
example, if the Cape Cod variance assumption has been rejected 
for incurred development because the development factors de- 
crease to unity (or less) faster than the uncertainty is eliminated, 
the paid development factors for the same business may provide 
a logical reference pattern (in the example of  Table 5, the alter- 
native variance factors are the paid development factors for the 
same business). A compromise between the paid and incurred 
development factors is another possible choice. 

8. USING EXPECTED VALUE ESTIMATES IN THE 

BORN H U E T F E R - F E R G U S O N  CALCULATIONS 

The methodologies described in this paper estimate ulti- 
mate losses with a two step process: first, estimating expected 
ultimate losses by optimally combining information from all 
years; then using the estimated expected ultimate losses in 
the Bornhuetter-Ferguson or alternative Bornhuetter-Ferguson 
calculation. Proofs are provided in Appendices A and C that 
the Bornhuetter-Ferguson and alternative Bornhuetter-Ferguson 
weights are optimal, but the proofs are dependent on the con- 
straint that the expected ultimate losses are assumed known. 

In fact, the expected ultimate losses are not known. Rather, 
we are using an estimate of  the expected ultimate losses. Fur- 
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thermore, that estimate is not independent from the development 
result, since the development result from each year is part of  the 
expected ultimate loss estimate. 

In each of  the estimates of expected ultimate losses presented 
in this paper, the expected ultimate loss estimate can be expressed 
as a weighted average of the development estimate from the year 
itself and other estimates independent of the data from the year 
itself (i.e., data from other years). 

Thus: 

fE(ULT) = W' × LTD x DF + (1 - W') x (Other) 

where Other is an estimate of E(ULT), independent of LTD and 
ULT. 

Additionally, the weights W' and (1 - W ' )  are inversely pro- 
portional to the variances of the estimates LTD x DF and Other, 
under the assumed variance models. 

Appendix E addresses the issue of  optimal Bornhuetter-  
Ferguson or alternative Bornhuetter-Ferguson weights, replac- 
ing the original assumption that E(ULT) is known with an as- 
sumption that the estimate (2(ULT) has the properties listed 
above. The result is that the exact same weights continue to be 
optimal. 

9. APPLICATION 

For convenience, we have referred to the quantity being pro- 
jected by development methods as "losses," the exposure base as 
"exposures" and the ratio of the two as "pure premiums." How- 
ever, there are many other potential applications. The methods 
described herein are useful any time we make a development- 
based projection and compare the result to some other predictive 
quantity. The following chart gives some examples: 
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QUANTITY 
BEING "EXPOSURE" TREND 

PROJECTED BASE ADJUSTMENT 

Losses Ratemaking Exposures Pure Premium Trend 

Losses Ultimate Claim Severity Trend 
Counts 

Losses Earned Premiums Loss Ratio Index, or equivalently, 
Rate Adequacy Index 

Claim Counts Ratemaking Frequency Trend 
Exposures 

ALAE Ultimate Losses Expected Trend in ALAE/Loss 
Ratio (if any) 

Salvage Ultimate Losses Expected Trend in Salvage/Loss 
(if any) 

Excess Loss Ultimate Limited Expected Trend in Excess/ 
Losses Limited Losses (if any) 

10. CONCLUSION 

The techniques of  this paper are useful in a wide variety of 
applications, and provide an alternative to the somewhat arbitrary 
judgments that are required when trend projections are incorpo- 
rated only through reasonableness tests and ad hoc modifications 
to development projections. 

The weighting methods presented herein are based on simpli- 
fied variance structures designed to reasonably reflect the vari- 
ance relationships that we typically expect to see. There is un- 
doubtedly a good deal of room for improvement in this area, and 
the development of more rigorous variance models is an interest- 
ing and useful area for further research. However, the difference 
between reasonably good weights and optimal weights is often 
not significant, and the use of  these techniques need not wait for 
improved variance models. 
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G L O S S A R Y  O F  N O T A T I O N  

Section 2 

Notation 

N 

LTD i 

Ei 

TF U 

~Lr 

PPi 

E( ) 

'Car( 

Section 4 jE(PPi) 

Section 5 PP 

Definition 

Number  of years of  origin 

Cumulative losses for year 
of  origin i at current 
evaluation 

Cumulative development 
factor to ultimate 
applicable to losses for 
year of  origin i at current 
evaluation 

Measurement  of  relative 
exposure for year of  
origin i 

Pure premium trend factor 
from year of  origin i to 
year of  origin j 

Ultimate losses for year of  
origin i 

ULT i + E i 

Expectation 

Variance 

Denotes estimation; i.e. the 
value is an estimate of  the 
value under the "hat" 

Estimate of  E(PPi) based 
only on data from year of  
origin j .  Defined in 
Equation 4.1 

Single value of  PP 
assumed to apply to all 
years of  origin in the Cape 
Cod model 

Statistical Conceptiont 3 

Random variable 

Treated as a known 
constant 

Known constant 

Treated as a known 
constant 

Random variable 

Random variable 

Operator 

Operator 

Estimated parameter, 
therefore, random variable 

Random variable 

13A number  of random variables result from summarized data, and may be conceived of  
as sample sums or sample means  (which are still random variables). 
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Section 6 

Section 7 

Section 8 

Appendix A 

Appendix B 

Notation Definition 

D Usually used in the form 
D li-jl. First introduced in 
Equation 6.1. An 
exponential decay factor 
between zero and one, 
used to decrease relative 
weight as the length of the 
trend period increases 

d Random disturbance term, 
used to define a random 
walk in the values E(PPi).  
First introduced in 
Equation 6.2 

act" Variance of  d, called the 
"adaptive variance" 

k A proportionality constant. 
First introduced in 
Equation 6.4. Also refer to 
Equation B. 1. 

VF i "Variance factor" to reflect 
relative variances of  
development-based 
ultimate losses for different 
years of  origin. Defined in 
Equation 7. I. 

W ~ Weight assigned to 
LTD × D F  in an estimate of  
E(ULT) 

Other Estimate of  E(ULT) that is 
independent of  the values 
LTD and ULT (normally 
from other years of  origin) 

V 2 Var(ULT) 

W Weight assigned to 
LTD x D F  in 
Bornhuetter-Ferguson 
estimate of  ULT 

o¢ "Is proportional to" 

Xij Cumulative losses for year 
of  origin i through 
development period j 
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Statistical Conception 

Unknown parameter, 
mostly treated as a known 
constant. If estimated, it is 
then an estimated 
parameter, therefore a 
random variable 

Random variable 

Unknown parameter 

Unknown parameter 

Treated as a known 
constant 

Unknown parameter 

Random variable 
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Appendix C 

Notation Definition Statistical Conception 

xi) Non-cumulative losses for Random variable 
year of  origin i in 
development period j 

Cumulative development Treated as a known 
pattern through period j constant 

pj Non-cumulative Treated as a known 
development pattern in constant 
period j 

n Number of  points of  data 

PPi Development based Estimated parameter, 
estimate of  PPi" Also therefore, random variable 
serves as development 
based estimate of  E(PP i) 

PP Cape Cod estimate of  PP. Estimated parameter 
Also serves as Cape Cod therefore, random variable 
estimate of  E(PP). Defined 
in Equation B.5. 

wij Weight given to the value 
xij/EiP j in calculating PP. 
Defined in Equation B.6. 

I)PPi Estimate of E(PPi) using Estimated parameter 
the Cape Cod with decay therefore, random variable 
model, using decay factor 
D. 

Note a small inconsistency 
in the use of  the ..... in that 
the value is an estimate of  
E(PPi) rather than PPi 

DWij The weight applied to the 
value xjJEip ) in 

calculating DPPi. Defined 
in Equation B.8. 

/~t) Estimate of  k using decay Estimated parameter, 
factor D therefore, random variable 

LTD t LTD x DF/VF. Random variable 
Transformed value of LTD 
for use in the alternative 
variance model 
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Appendix D 

Notation Definition 

V Cumulative "variance J 
pattern" through 
development period j 

v j  Non-cumulative variance 
pattern in development 
period j (=  I,~ - Vj_ l) 

X~j X,j × Vj/Pj. Transformed 
value of  X i j  

x !  Non-cumulative t j  

transformed value 
(= X~. - ' ,~ X i j - l )  

e i Random error related to 
estimate o P P  i . Introduced 
in Equation D.I. 

A i  o P P i  - o P P I  - 1 

E Variance-covariance matrix 
of  the vector A 

~/2 Variance of 0P~i for year 
of  origin with average 
variance. Defined in 
Equation D.5. 

Statistical Conception 

Treated as known constant 

Treated as known constant 

Random variable 

Random variable 

Random variable 

Random variable 

Unknown parameter 
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APPENDIX A 

OPTIMALITY OF THE BORNHUE'Iq'ER-FERGUSON CALCULATION 

This Appendix provides a proof that the Bornhuet ter-Fergu- 
son weights are optimal (i.e., they produce the minimum variance 
estimate) under the constraints listed in Section 3. We will use 
the notation from Section 2, dropping the subscript denoting year 
of  origin. 

In addition, let V z = Var(ULT). 

By Constraint 2, LTD is independent from U L T - L T D .  

Therefore,  Cov(ULT, LTD) = Var(LTD). 

By Constraint 4, Var(LTD x DF) cx DF. 

Noting that DF = 1 when LTD = ULT, the proportionality 
constant is Var(ULT), or V2: 

Var(LTD x DF) = V 2 x DF 

Var(LTD) = V 2 / DF  

V a r ( U L T -  LTD) -- Var(ULT) + Var(ULT) - 2Cov(ULT,  LTD) 

= Var(ULT) - Var(LTD) 

= V2(1 - 1/DF). 

The Bornhuet ter-Ferguson method estimates ultimate losses as 
a weighted average of  a development-based estimate of  ultimate 
losses and expected ultimate losses, i.e.: 

A 

ULT = W x LTD x DF + (1 - W) × E(ULT); 0 < W < 1 

Since the two estimates, LTD x DF  and E(ULT), are clearly inde- 
pendent, optimal weights are inversely proportional to the vari- 
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ances of the estimation errors [9, p. 352]. Starting with the esti- 
mate L T D  × DF:  

V a r ( U L T -  L T D  × DF) = Var(ULT) + V a r ( L T D  × D F )  

- 2 C o v ( U L T ,  L T D  × D F )  

= V 2 + V 2 × D F -  2 x D F  x V a r ( L T D )  

= V 2 + V 2 x D F -  2V 2 

= V Z [ D F  - 1]. 

The variance of the estimation error associated with using 
E ( U L T )  as an estimate of  ULT: 

V a r [ U L T - E ( U L T ) ]  = Var(ULT) = V 2. 

Calculating W in inverse proportion to the variances: 

V 2 1 

V 2 [ D F - 1 ] + V  2 D F - I + I  

= 1 / D F  

which is the weight used in the Bornhuetter-Ferguson method. 
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APPENDIX B 

THE CAPE COD VARIANCE MODEL 

This Appendix provides a simple model for the variance struc- 
ture of the development triangle consistent with the Cape Cod 
variance assumption. 

We introduce additional notation to deal with the full data 
triangle. Also, note that whereas the DFss in the prior notation 
carry a subscript denoting year of origin, the development pat- 
terns included in this Appendix carry subscripts denoting de- 
velopment period. Capital letters are used to denote cumulative 
values with lower case letters denoting the corresponding non- 
cumulative values. 

All losses are presumed to have been trended to a common 
level. 

Notation: 

Cumulative Triangle Values: Xij, 1 < i < N, 1 < j <_ N 
Non-Cumulative Triangle Values: Xij (= Xij for j = 1; = Xij-  

Xi,j- 1 for j > 1 ) 

Cumulative Development Pattern: Pj, (= 1/DFN_j+ l) 
Non-Cumulative Development Pattern: pj (= Pj for j = 1; = Pj 

- P j - l  for j > 1) 

For year i, the number of points i n  Xij is N - i + 1. Denote 
the total number of points in Xij a s  n -- N(N + 1)/2. 

Additional Assumptions 

• The values Xij a r e  assumed to be mutually independent. Within 
a given year of origin, this is somewhat more restrictive than 
(although clearly consistent with) the previous assumption of 
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independence between the emerged and unemerged losses. In- 
dependence among values from different years of origin is an 
additional assumption briefly touched on in Section 4. 

The variance of PPi  is inversely proportional to E i, i.e. 

k 
Var (PPi )  = ~ .  (B. 1) 

This assumption was previously discussed in Section 4. 

These additional assumptions are sufficient to determine that: 

Var(x i j )  = k x E i × p j .  (B.2) 

P r o o f  
this Appendix): 

, Var\ ~ / o~ g .  

Noting that Pj = 1 when U L T  i = Xi j ,  we have: 

( x .  _ var\ pj / PJ 
Var(Xij) = Pj x Var (ULTi )  

V a r ( X i , j _  1 + x i j )  = Var(X i , j_ t )  + Var(x i j )  
(B.3) 

Var(x i j )  = Var(Xi j )  - Var(Xi , j_  1 ) 

Var (x i j )  = Pj x Var(ULTi)  - Pj-I  x Var(ULTi)  

Var(xi j )  = (Pj - Pj-1) x Var(ULTi)  

= p j  x Var (ULTi ) .  

Noting that U L T  i = E i × PPi  and using Equation B. 1, we have: 

Var (ULTi )  = EZi x Var (PPi )  = k x E i. (B.4) 

Substituting (B.4) in (B.3) produces Equation B.2. 

The Cape Cod variance assumption (using notation of 
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The value k may be interpreted as the variance associated with 
one unit of exposure, when losses are fully developed. Each 
p o i n t ,  xij provides an independent estimate of E(PPi), a s  xij/EiPj, 
with variance k/Eip j. 

Optimality of the Development Estimates 

Weighting all estimates of  E(PP i) from a given year of  origin 
in inverse proportion to variances: 

N-i+l 

E (xij/EiPj) X EiP j 

~(ppi) = j=l N-i+l 

Z EiPj 
j = l  

= Xi,u_i+ 1/EiPN-i+l 

which is the development estimate; call it PPi. 

Optimality of the Cape Code Estimate 

We next assume that E(PPi) is the same for all years i (we will 
write it as E(PP)). Weighting all estimates of E(PP) in inverse 
proportion to variances: 

N N-i+l 
(xi j /eipj)  x Eipj 

N N-i+l 

Z Eipj 
i=1 j = l  

N 

~-~Xi,N-i+ 1 
i=1 

= ( B . 5 )  
N 

E Ei × PN-i+ l 
i=1 
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which is the estimate of the original Cape Cod method; call it 
PP. 

Estimating the Proportionality Constant k 

Estimates of the proportionality constant k are used in quan- 
tifying the decay factor (in Appendix D). The remainder of  this 
Append ixdea l s  with making these estimates. Noting that the 
estimate PP is a weighted average of the individual estimates 
(xij /E i × pj), the value k can be estimated by averaging the sam- 
ple variance estimates at each point: 

ETPj E i P j  

~: = (pAp × EiPj _ Xij) 2 

EiPj 

The sample variance estimates are biased low due to degrees of 
freedom of the estimate p~.15 In a weighted average, the bias is 
different at each point. If a given point has weight wij such that 
~ w i j  = 1, then the bias correction at that point is 1/(1 - W i j  ). 

Define: 

EiPj - EiPj (B.6) 
Wij  = N N - l + l  N 

E, pj Z E, eN-,+I 
/=1 j = l  l=1 

Then the individual estimates of k, corrected for bias are: 

= (pAp × EiPj _ Xij) 2 

E i p  j × (1 - Wij  ) 

15In keeping with our previously stated simplifying assumptions,  we are treating the 
development pattern pj and any trend factors used as known values. Since in practice 
these values are likely to be estimated from the xij, the measurement  of  variances is 
improved if the number of  parameters in the development pattern is kept to the min imum 
necessary; thus, using a fitted curve for the development pattern is recommended.  
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Averaging all available estimates of k: 

= i=1 j=l EiPj (1 - wij ) 

N 
(B.7) 

Estimating k Under the Cape Cod with Decay Model 

The Cape Cod with Decay model allows that the value E(PPi) 
may vary among the years. Let DPPi represent the estimate of 
E(PPi) using decay factor D. Using the notation of this section: 

N N-l+ 1 
Z (Xlj/ElPj) × EIPj × oli-ll 

Dp---~pi = 1=1 j=l 
N N-l+ 1 

Z Z EIXPJ  × D  li-ll 
l=1 j=l 

N 
Z Xl, N-I+ 1 × Dli-II 
1=1 

N 
~'~ E l x PN-I+I × Dti-ll 
l = l  

Note that I PPi = PP for all i, and that oPPi represents the devel- 
opment estimate for year i (PPi). 

Two modifications to Equation B.7 are indicated. First, the 
value PP is replaced with the individual year values DPPi . Sec- 
ond, the degree of freedom correction is changed due to the 
change in weighting system. Denote the weight given to the point 
Xij in calculating the value DPPi a s  oWij. Then, 

EiPj EiPj 
DWij =- = N N J-l+ 1 N 

E, × × Oli-,I E, × PN-,+, × Ol'-'t 
1=1 j=l l=1 

(B.8) 
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Note that if D < 1, the values DWij are strictly greater than the 
values Wij. T h u s ,  the full set of  values owij does not make a single 
set of  weights, This is because when you change the subscript i, 
owij now refers to a weight in a different weighted average. 

The formula for k reflecting decay factors less than one is as 
follows: 

N N-i+l (Dfi"pi × EiPj _xij)2 
Z Z UipTi-- © 

~:o = i=1 j=l N (B.9) 

Note that in the special case when D = 0,/~o is based on observed 
within-year variance only. Also note that there will be no vari- 
ance estimate available at the point xN,l (there will be no degrees 
of  freedom). Thus, in the case of  D = 0, Equation B.9 is modi- 
fied by ending the first summation at i = N - 1 and changing the 
denominator  to N - 1. 
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APPENDIX C 

THE ALTERNATIVE VARIANCE MODEL 

This Appendix provides an alternative variance model corre- 
sponding to the use of variance factors different from the devel- 
opment factors. 

Justification for the Alternative Model 

Given that our method is to weight together individual year 
development estimates that are assumed to be mutually inde- 
pendent, and that relative variances of those estimates are those 
assumed in Section 7, the weights in Section 7 follow directly. 

However, in developing a consistent underlying model, we 
encounter the following difficulty: for the overall estimate to be 
optimal, each year's development estimate must be the optimal 
estimate based on the data from that year alone. In fact, it can be 
proven that the following three assumptions are irreconcilable: 

1. optimality of the individual development estimates; 

2. independence of the emerged and unemerged losses; and 

3. variance factors different from the development factors. 

We address the difficulty by changing the independence as- 
sumption. We will demonstrate that with the alternative assump- 
tion, the "alternative Bornhuetter-Ferguson" calculation (Equa- 
tion 7.4) is indicated, that the development estimate is opti- 
mal for each individual year, and that the Cape Cod method 
with alternate variance factors is optimal using data from all 
years. 

Note, however, that the alternative model was selected for 
mathematical convenience only. We will conclude this section 
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with a brief discussion of whether the alternative model is intu- 
itively reasonable. 

Changing the Independence Assumption 

We accomplish the alternative independence assumption by 
defining a transformation of the data. Independence assumptions 
are then assumed to hold for the transformed data, rather than 
the original data. 

First, we use the cumulative notation of Appendix A. 

Define LTD I = LTD x DF/VF.  

Thus LTD ~ × VF = LTD × DF. 

We assume that LTD ~ is independent from U L T -  LTD ~. 

Next, we present the alternative model in full triangle detail, 
using the notation of Appendix B. 

In addition, we introduce the following notation: 

Cumulative Variance Pattern: Vj (= 1/VFN_j+I) 

Non-Cumulative Variance Pattern: vj (= I~ for j = 1; 
= Vj - Vj_ l f o r j  > I) 

Let 

, 
x i j = X  for j =  1; 

= X i ) -  ' for j >  1 X i , j -  I 

The values ~ j  are now assumed to be mutually independent. 
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Revisiting the Bornhuetter-Ferguson Calculation 

We perform calculations analogous to those of  Appendix A, 
with some changes to the underlying constraints. As in Ap- 
pendix A, we drop the subscript denoting year of  origin. Re- 
viewing the underlying constraints: 

o 

2. 

. 

Expected losses are known (i.e. fE(ULT) = E(ULT)). 

Originally, unemerged losses ( U L T - L T D )  were as- 
sumed to be independent from emerged losses (LTD). As 
defined previously, we now assume that ( U L T -  LTD ~) is 
independent from (LTD'). 

Both development factors (DF) and variance factors (VF) 
are now assumed to be known. 

4. The variance of  LTD x DF is now assumed to be propor- 
tional to VF. 

Let V 2 = Var(ULT). Then Var(LTD x DF) = Var(LTD' x VF) 
= V  2 x VF 

Var(LTD') = V2 / V F  

V a r ( U L T -  LTD') = V2(1 - 1/VF). 

Expressing the estimate of ULT as a weighted average of the 
development result and the expected ultimate losses: 

ULT = W x LTD x DF + (1 - W)E(ULT) 

= W x LTD' x VF+ (1 - W)E(ULT). 

The remaining calculations, which are not shown here, exactly 
parallel those of  Appendix A, except that LTD is replaced with 
LTD' and DF is replaced with VF. The indicated value of  W is 
1/VF, which is the weight used in the alternative Bornhuet ter-  
Ferguson calculation. 
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Optimality of the Development Estimates 

We have previously defined mutually independent values ~j.  
An exactly analogous proof to that performed in Appendix B 
establishes that the variance of ~j  is k x E i x vj. 

Each v a l u e  X~/j now produces an independent estimate of 
E(PPi), as xlj/Eiv j with variance k/Eivj. 16 Weighting all esti- 
mates for a given year of origin in inverse proportion to vari- 
ances: 

N - i + l  

(~Ij/E,~j) x e vj 

I~(PP,) = j=' = Xf., + /EV.  = XiN i+,/EiPN i+, 
N - i + I  ¢ , - i  " N - i + l  , - -  

j = l  

or the development estimate. 

Optimality of the Cape Cod Estimates with Alternate Variance 
Factors 

If E(PPi) is assumed to be equal for all years i, then the 
weighted average of all estimates of E(PP) from all years of 
origin is as follows: 

N N - i + l  

~ (~iij/Eivj) X Eiv j 
~(pp)= i=l j=l 

N N- i+ l  

GZEivj 
i=I  j=l  

N N 

~--~X;.N_i+ 1 ~ - ~ ( X i . N _ i + l / P N _ i + l )  x VN_i+ 1 
i=1 i=1 
N N 

EiVN- i+I  ~ E iVN- i+ I 
i=1 i=1 

16A proof that x i,/v. is an estimate of  ULT i is provided later in this Appendix. 
J ) 
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which is the Cape Cod estimate with the alternate variance fac- 
tors. 

Estimating the Proportionality Constant k 

The estimate of the proportionality constant k exactly parallels 
the calculations presented in Appendix B, except that X:j and ~ j  
replace Xij and xij, and Vj and vj replace Pj and pj. 

Thus Equations B.6 through B.9 become: 

Eivj (C. 1) 
W i j -  N 

EYN-t+, 
l=l 

~ N~_~fl (p- 'p  x Eiv j -x~ij) 2 

= (C.2) 
n 

Eivj (C.3) 
D Wij = N 

Z EIVN-t+ 1Dli- 1F 
I=1 

(oFP_ i E vjj - 2 

~:/9 = i=1 j : l  Eivj (1 -- DWij ) 
N (C.4) 

Note the discussion in Appendix B regarding modifying Equa- 
tion C.4 for the special case when D = 0. 

We now provide a proof that ~ j / v j  is an unbiased estimate of 
ULT i, assuming that each development result is an unbiased esti- 
mate of ULT i, and that the values Vj are known (i.e. not random 
variables). 

Assume, for all Xij" 

ULT i = E(Xij/Pj) = E(X[j/Vj). 
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Then, 

\ v i / vj vj 

_ Vj(ULTi) - Vj_I(ULTi) 

vj 

_ (Vj - Vj_ )(ULT ) 
m = ULT~. 

Plausibility o f  the Alternative Model  

Having replaced the assumption of independence between the 
emerged and unemerged losses, the alternative model implies 
dependence. It can be proven that when the variance factor is 
larger than the development factor, the alternative model implies 
negative correlation between emerged and unemerged losses. In 
this section, we discuss the plausibility of that result under two 
scenarios. 

The first scenario is an incurred development projection, 
which is the most common situation in which variance factors 
different from the development factors will be needed. In this 
situation, the inclusion of  the case reserves in the data may lead 
to variance factors higher than the development factors and a 
presumed negative correlation between emerged and unemerged 
losses. In this case, the sign of the dependence is logical: relative 
over-reserving of cases for a particular year of origin will lead to 
a high error on the emerged losses and a low error on the une- 
merged losses, and vice versa. Of course, we have not addressed 
whether the amount of dependence predicted by the alternative 
model is reasonable. 

A paid loss development scenario provides a counter-example. 
Assume that there are no partial payments, that average claim 
size tends to grow with the lag to settlement, and that the co- 
efficient of variation of the claim size distribution is constant. 
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These assumptions imply that the independence model is appro- 
priate, and yet the variance factors will be different from the 
development factors. In this case the alternative model appears 
inappropriate. If the variance factors are correct, the generalized 
Cape Cod weights still produce the optimal combination of the 
individual year development projections; however, the individ- 
ual year development projections do not represent the optimal 
combination of data from a particular year of origin. 
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APPENDIX D 

ADAPTIVE VARIANCES AND DECAY FACTORS 

This Appendix provides a method for calculating the indicated 
decay factor D. The approach first calculates the indicated adap- 
tive variance under the random walk model, and then calculates 
the approximately equivalent decay factor. 

Calculating the Adaptive Variance 

This approach for calculating the adaptive variance was used 
by Wright [7]. 

Recalling that the development-based pure premium estimate 
for year i is denoted oPPi, 

oPPi = E(PPi)  + c i. (D. 1) 

The random walk model connecting the values E(PP  i) is: 

E(PPi)  = E(PPi_I )  + d for i = 2,3 . . . .  (D.2) 

The error term ~i and the random disturbance term d are pre- 
sumed to have variances or/z and act 2, respectively. For the pur- 
poses of  this calculation, we will also assume that ei and d are 
normally distributed. 

The adaptive variance aa  2 is the variance of  the differences 
between the true (unknown) parameters E(PPi) ,  not the estimates 
oPPi. We measure the adaptive variance by observing the differ- 

ences in the estimates oPPi, and correcting for the estimation 
errors c i . 

Let 
A A 

Ai = oPPi - oPPi-I  for i = 2, 3 . . . .  

Then, 

Ai = (E(PPi)  + el) - (E(PPi -1)  + ei - l )  = d + ei - ci-1. 
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The variance-covariance matrix, E, of  the vector A is given by: 

i 
.(72 + d + d - d  0 ] 

z = - d  .(72 + d + d - d  / 0 - d  ~2 + d + d - d  
0 0 -(742 etc. J 

A is normally distributed, and the value AT x ~ ] - 1  X A is chi- 
squared distributed with N - 1 degrees of  f reedom (N - 1 is the 
length of  the vector A). 

The expected value of  the chi-squared distribution is N - 1, 
so an estimate of  (72 is given by solving the equation: 

m r x Z - 1  x A - N - 1 for d(72, (D.3) 

which can be solved numerically, given that estimates of  (7/2 are 
available. It is possible that the variances (7~ may be large enough 
compared to the differences A i that A T x E - l  x ,5 < N - 1 for 
all a(72 > 0. In this case, there is no demonstrable random walk 
and we set d(72 tO zero (and the decay factor D to unity). 

Under  the alternative variance model of  Appendix C (which 
includes the Cape Cod variance model as a special case), 

k 
(7} - EiVN_i+ l . (D.4) 

Given an estimate of  k, Equation D.4 can be applied and then 
Equation D.3 solved for get 2. 

To convert an estimate o f  d O'2 to the approximately equivalent 
decay factor, we have used the following formula: 17 

- N k  (D.5) e~ where ~/2_ N 
D - ~2 + dO-2' 

~ - ~ E i V u _ i +  1 
i=1 

17The above formula equates the decay factor and adaptive variance approaches at a lag 
of  one year, for a year of  origin with average variance. 
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To estimate k, we use the formulas of  Appendix B or C; however, 
the derivation of/~ is dependent on an estimate of  D. For the 
first i teratio~ we assume D = 0 and use Equation B.9 or C.4 
to calculate k0 .18 We then apply Equations D.4, D.3, and D.5 
above to estimate D. Equation B.9 or C.4 can then be used to 
estimate /¢o, and D can be re-estimated. This process can be 
applied repeatedly. 

ISD = 0 is a logical starting point since i 0 is based entirely on within-year variance and 
provides an unbiased estimate of  k regardless of  the appropriate value of  D. Given that 

D > 0, kt9 is a superior (i.e. lower variance) estimate of  k. 
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APPENDIX E 

OPTIMALITY OF BORNHOETTER-FERGUSON CALCULATION 
WITH RELAXED CONSTRAINTS 

Appendices A and C provide proofs that the Bornhuetter- 
Ferguson weights are optimal based on the Cape Cod variance 
model and alternative variance model, respectively, with the ad- 
ditional constraint that the expected ultimate losses are known 
(i.e., E(ULT) = E(ULT)). 

The Bornhuetter-Ferguson and alternative Bornhuetter-Fer- 
guson weights remain optimal using an estimate, E(ULT), if: 

(2(ULT) = W' × LTD × DF + (1 - W')(Other) (E. 1) 

where Other is an estimate of E(ULT), independent of LTD and 
ULT, and 

Var( Other) W' 
- ( E . 2 )  

Var(LTD x DF) (1 - W') 

i.e., LTD x DF and Other are weighted in inverse proportion to 
the variances of the estimates. All of the estimates of E(ULT) 
described in this paper meet these conditions under the assumed 
variance models. 

We provide the proof using the alternative variance model of 
Appendix C, which includes as a special case the original Cape 
Cod variance model. 

Let V 2 = Var(ULT). 

Var(LTD × DF) = V 2 × VF (E.3) 

UL---T : W x LTD x DF + (1 - W)E(ULT) (E.4) 
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Substi tut ing Equat ion E.1 in Equat ion E.4: 

UL~T = W × L T D  x D F  + (1 - W ) ( W '  x L T D  × D F  + (1 - W ' ) ( O t h e r ) )  

= (W + (1 - W ) W ' )  × L T D  × D F  + (1 - W)(1 - W ' ) ( O t h e r )  

= W* × L T D  × D F +  (1 - W * ) ( O t h e r ) ,  

where  W* = W + (1 - W ) W ' .  (E.5) 

This is a weighted  average o f  two independent  est imates o f  ULT.  

The variance o f  the est imation error associated with the first 
estimate,  

V a r ( U L T -  L T D  × D F )  = V 2 ( V F  - 1), 

is a result developed in Appendices  A and C. 

For  the second estimate,  

Var(ULT - Other )  

= V a r ( U L T )  + Var (Other )  

= V 2 + V a r ( L T D  × D F ) ( W ' / 1  - W ' ) ,  using E.2 

= V 2 + V 2 × V F ( W ' / 1  - W ' ) ,  using E.3 

= V2[1 + V F ( W ' / 1  - W')]. 

Calcula t ing 1 - W* in inverse proport ion to variances: 

1 - W* = V 2 ( V F -  1) 
V 2 ( V F  - 1) + V2(1 + V F ( W ' / 1  - W ' ) )  

V F -  1 V F -  1 

V F -  1 + 1 + V F ( W ' / 1  - W ' )  VF(1  + W ' ( 1  - W ' )  

V F -  1 ( V F -  1)(1 - W ' )  
= = (E.6) 

VF(  1 / 1 - W ' )  V F  
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Subst i tu t ing  1 - W* = (1 - W)(1 - W') (see E.5) 

( 1  - W ) ( 1  - W ' )  = (VF- 1 ) ( 1  - W ' )  

VF 

V F - 1  1 
- -  | 

VF VF 

which  is the we igh t  used  in the al ternat ive B o r n h u e t t e r - F e r g u s o n  
calculat ion.  


