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1. INTRODUCTION 

This discussion of James Stanard’s paper “A Simulation Test 
of Prediction Errors of Loss Reserve Estimation Techniques” will 
use his simulation technique to test three loss reserving methods. 
Two of these methods are discussed in Stanard’s paper, and one 
is relatively new having been presented in the Proceedings last 
year by Daniel Murphy [6]. The three methods are shown to be 
special cases of a general weighted average approach. In addi- 
tion, some of the concepts presented by Stanard concerning the 
expected value of a loss development factor will be analyzed in a 
little more detail. Please note that the results derived in this dis- 
cussion are due to the assumptions made within this discussion 
and may not be applicable to general loss reserving situations. 

2. THREE LOSS RESERVE METHODS 

To describe these three methods, the following notation will 
be used: if Xi,i represents a random sum of losses from accident 
year i, measured j years after the beginning of the accident year, 
then an accident year loss triangle is as shown in Table 1. 

An age-to-age average loss development factor from age j to 
age j + 1 can be defined as 

LDFj = CLx,,j+l/X,jI/n! 

104 





106 PREDICTION ERRORS OF LOSS RI:SI~RVl: I:S’I‘lMA’IlON ‘l’fi(‘I INIOIJf:.S 

3. WEIGHTED AVERAGE APPROACH 

Suppose the observed value Xi,j is regarded as a “fixed” or 
controllable value and is used to predict the random value Xi,,+l. 
Since X;,j is not considered a random variable it will be written 
in lowercase as X;,j. To estimate Xi.;+,. it would make sense to 
use a weighted average of the available s;.js. The weights are 
given as 

1 

/x 

I 
Wi,j = Xi,j -xi,, 3 

i 

where Ci W;*j = 1.0. An age-to-age link ratio is then given by 

LDF; = 1 w,;X.,+dx,,, 

The three methods described in Section 2 can be viewed as 
special cases of this general weighted average. Table 2 relates the 
methods and weights. 

TABLE 2 

WEIGHTS USED 

If the statistics X,,j+l/.r;+, are from the same distribution (or 
different distributions with the same mean), then the weighted 
averages will be unbiased since the weights sum to one. This may 
not hold for X;,j+l /X,-j. where the denominator is viewed as a 
random variable, as will be discussed later. 

Assuming for the time being that .Y,,, is fixed. it could be 
helpful to consider the variance of X,.j+, in deciding which set 
of weights to use. In some cases. the variance of X,,i+, for a 
given xi,j may depend on the size of -vi,,. For example, a “large” 
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value of xi,; could typically be followed by a small variance in 
xi,j+l* 

If the Xi,i+lS are independent and their variances for a given 
xi,j are given by sfj+ly then define the random variable 

and 
i 

Var(Kj) = C Wtj/&s$+l. (3.1) 

If the variance of Xi,j+i for a given xi,j depends on the size 
of xi,j, one possible way to relate the two is to consider S:j+l to 
be proportional to x~,J: 

2 r 
si,j+l Ci xi,j. (3.2) 

Note that r < 0 is possible and would imply an inverse relation- 
ship between the size of loss and the subsequent variance. 

Substituting the right side of Equation 3.2 in Equation 3.1 
vields , 

Var( Kj) CC C X&*d,j* P-3) 

The variance of Kj as a function of Xi,j is developed here to help 
choose weights and therefore a reserving method. As Stanard 
points out, an estimator should be unbiased and have a minimum 
variance. 

It can be shown (see the appendix) that the weight structure 
that minimizes the variance of Kj is 

2-r 
Wij = Xif c l2J ’ 

x2:’ 

i 

This leads to choosing the usual arithmetic averages (Method I) 
if r = 2, Method II if r = 1, and Method III, the least squares 
estimator, if r = 0. 



108 PREDICTION ERRORS OF LOSS RESERVE ESTIMATION TECHNiQUES 

Applying all of this to a loss development triangle, the ques- 
tion is whether the variance of the sum of losses at a particular 
point in time is dependent on a previous measure of losses. One 
way to check differing variances at various levels of a predictor 
variable xi,j is to plot the residuals. Unfortunately, there aren’t 
enough points to look at in most loss reserving situations even if 
a consistent relationship between accident years is assumed. In 
some cases, however, one may believe that greater early develop- 
ment of losses commonly reduces the variance of the next period 
loss level. If this is the case, it would make sense to choose r less 
than zero. 

Exhibit 1 displays the results of applying the Methods I, II, 
and III using the simulation procedure outlined by Stanard. Re- 
call that Methods I, II, and III correspond to r values of 2, 1, 
and 0, respectively, depending on the variance assumption. Also 
tested are weighting schemes where r is set equal to - 1 and -2. 
This would correspond to the case where there is an inverse re- 
lationship between the variance and the previous size of loss as 
discussed above. It is interesting to note that the mean prediction 
error decreases as r decreases. 

These results show that r = 0 (Method III) produces the 
smallest prediction error for the current accident year, but the 
prediction of previous accident years can be improved by us- 
ing r less than zero. Given a knowledge of the underlying struc- 
ture of loss development, as is the case in this simulation 
model, it would be possible to choose an optimal value of r 
for the specific structure. In fact, r doesn’t have to be restrict- 
ed to integers; it could take on any real value and even vary 
by accident year. Finding an optimal r would be nearly impos- 
sible with actual loss data due to the lack of sufficient data 
and changes in underlying reporting patterns. But it could be 
possible to find a range of r values that would improve esti- 
mates. 
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4. AGE-TO-AGE FACTORS-LOG-NORMAL MODEL 

If we regard xi,j more realistically as an observation of a ran- 
dom sum Xi,j at time j, followed next period by loss Xi,j+i, then 
pairing them, (Xi,j, Xi,j+r), adds another dimension to evaluating 
their relationship. 

Stanard points out in his appendix that, in general, 

W/Xl f WI/WV 
In the case of losses emerging and or developing and the nota- 
tion used here, 

E[Xi,jtl/Xi,j] # E[Xi,jtl]/E[Xi,jl. 
So, using the average of development factors to develop ultimate 
losses could lead to incorrect conclusions. 

For ease of presentation, the random variables Xi,j and Xi,j+i 
will be represented by Xl and Yl, respectively, from here on in 
this section. Using this notation, the issue is, what is the expected 
value of the statistic Z1 = Y1/X1? To investigate Z1, the pair of 
losses (X1,Yl) will be modeled as an element of the joint bivari- 
ate log-normal distribution where Xr and Yl are possibly related 
via a correlation coefficient. Other joint distributions may be ap- 
propriate, and the choice depends on the characteristics of the 
data in question. The log-normal leads to very convenient com- 
putations, as will be seen. 

If and only if X1 and Y1 are jointly log-normal, then X = 
In(Xl), and Y = In(Y1) would be joint normal variables. In this 
case. a loss development factor is given by the statistic 

Zl = Yl/Xl 

= exp(Y)lexp(X) 

= exp(Y - X). 
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This form is convenient due to the fact that the expected value of 
Z1 is easy to find using the moment generating function of the 
bivariate normal. M(tl, tz) will denote the moment generating 
function of the bivariate normal with the following parameters: 

pI1- = mean of X, 

pLv = mean of Y. 

err = standard deviation of X. 

U)’ = standard deviation of Y, and 

p = correlation coefficient of X and Y. 

where X = In(X,) and Y = In(Y1). 

M(t,,12) = exp[rIp, + tips + ($1~: + 2f1f,f2g~u,~ + ri4)/2] 

E[Zl] = EIYI/XI] = E[exp(Y - X)] 

= M(-1,l) 

= exp[py - p.K + (d - +a,+ + 4)/2]. 

Since 

E[XII = M(1) 
= exp(pL, + at/2), 

and 

then 

W’II = M(1) 

= exp(py + n.t/% 

EIYl]/E[&] = exp[py - pLx + (fl: - d/21. 
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Getting back to the question of whether E[Yl/Xr] # E[Yr]/ 
EIXI], define the ratio 

d = E[Y~/X~l/[E[Y~l/E[X~lI 

exp[py - px + (4 - 2pr~~ + 4)/4 = 
exp[py - pL* + (0; - d>/23 

= exp(az - pa,gy). 

But 

where crxy is the covariance of X and Y. 

d = exp(az - gxy). 

This ratio d is the theoretical ratio of the expected straight av- 
erage LDFs to the expected weighted average LDFs. Note that d 
is greater than 1.0 when CZ > uxy and E[Yl/Xt] > E[Yl]/E[Xl]. 

To investigate d, the following simple model of loss develop- 
ment similar to Stanard’s is created. Assume: 

1. Losses from a Pareto severity: 

F(x) = 1 - (15,000/(15,000 + x))3; 

2. A normal frequency (mean = 50, variance = 25); 

3. An exponential reporting pattern: 

P(n) = 1 - exp(0.75n); 

4. Five “periods” are produced (so if the report time is 
greater than 5 it is not in the data); and 

5. 1,000 samples are produced. 
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The parameters of the log-normal can be estimated from the 
sample data using the moments of the transformed variable 
ln(Xi). For example, 

mx = c ln(X,;) z P,~, and 
i 

s x= [C ln(X1i)2 - m:] II2 z5 ~7~. 
i 

Some statistics of the log transformed sample data by age of 
development are shown in Table 3. The correlations and covari- 
antes are between ages one and two, two and three, etc. 

TABLE 3 

LOGTRANSFORMED SAMPLE DATA 

Age 1 2 3 4 5 

Mean 12.12740 12.54222 12.68834 12.74793 12.77808 
Variance 0.125657 0.086754 0.071959 0.066450 0.064028 
Skew -0.11204 xm3357 -0.03813 -0.01074 0.032122 
Correlation 0.811968 0.918299 0.970066 0.980749 
Covariance 0.084777 0.072555 0.067079 0.063972 

The next step is to calculate average loss development fac- 
tors based on the 10s~ data. These would be ci[Yii/Xii] for 
straight average (Method I) LDFs and my/mx for weighted aver- 
age (Method II) LDFs. Four average LDFs are available linking 
each period: 

Age-to-Age 1-2 2-3 .%I 4-5 

Straight Average 1 S49429 1.165989 1.063784 1.032007 
Weighted Average 1.485233 1.149049 1.058583 1.029500 

Now, according to the d ratio, the ratio of the straight aver- 
age to weighted average LDFs from the sample data should be 
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approximately 
d = exp(gf - gxY) 

if the distributions are approximately jointly log-normal. The var- 
ious values turn out to be: 

Age-to-Age 1-2 2-3 34 4-5 

Ratio 1.043223 1.014742 1.004913 1.002434 
d 1.041727 1.014299 l.cKl4891 1.002481 

where, for example, Ratio l-2 is 1.043223 = 1.549429/1.485233 
and d for l-2 is 1.041727 = exp(0.125657 - 0.084777). 

Since the theoretical values and the “experimental” values are 
so close, it is worth the effort to check the distributions of the 
simulated losses at each period. The Kolmogorov-Smirnov or 
K-S statistic is helpful in measuring the “closeness” of an empir- 
ical distribution to a continuous assumed distribution. The hy- 
pothesis Ho would be that the sampled distributions are normal 
after the In(Xl) transformation. The statistic 

Max[]F(x) - &(x)(]n”2 > 1.36 

is significant at the 95% level, where n is the number of data 
points. A high value indicates a poor fit and rejection of HO. 

For the standardized log transformed data: 

Age 1 2 3 4 5 

K-S 0.5492 0.4245 0.7075 0.6094 0.5209 
Maximum Difference 0.0174 0.0134 0.0224 0.0193 0.0164 

The distributions of the standardized log transformed sums of 
Pareto variables by period are apparently very closely approx- 
imated by a standard normal distribution, and the joint log- 
normal assumption appears to be valid. 
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The following were calculated using untransformed standard- 
ized data from the sample: 

Age 1 2 3 4 5 

KS 2.1892 1.6347 1.7544 1.4142 1 xx33 
Maximum Difference 0.0693 0.0517 0.0555 0.0447 0.0526 

These data indicate that a bivariate normal assumption would 
not be appropriate for this data. 

Concluding this section? the answer to the question “What is 
the expected value of an LDF?” is that it depends on the joint 
distribution of the losses. The joint log-normal allowed for the 
determination of expected LDFs in terms of the parameters of 
the underlying variables. It would be possible to use a similar 
analysis on actual loss data if reasonable estimates of the distri- 
butions of losses by age could be found. Also, this analysis could 
be extended to the product of LDFs. 

5. SUMMARY 

Exhibit 1 displays the results of the three loss development 
methods given in Section 2 using Stanard’s simulation routine. 
Methods II and III are clearly superior in terms of both bias 
and variance. To the extent that actual loss development patterns 
are like those simulated, Methods II and III would be preferred 
over Method I. As noted above, other weighting schemes may 
produce even better results. 

Method I, the straight averaging of LDFs, shows the greatest 
positive bias. Part of this bias could be explained by the analy- 
sis of E[Y/X] in Section 4. An obvious conclusion is that straight 
average LDFs will overstate projected ultimate losses, at least ac- 
cording to these models. However, if a selection criterion is used, 
such as excluding the high and low LDFs or judgment based on 



PREDICTION ERRORS OF LOSS RESERVE ESTIMATION TECHNIQUES 115 

other information, the straight average LDFs would likely pro- 
duce better results in terms of average error. The goal of the 
discussion here is to determine general underlying characteris- 
tics of LDFs and age-to-age methods that could possibly have a 
bearing on decision making. 

The idea of correlation between random sums measured at 
successive points in time could give more insight into the selec- 
tion of loss development factors and age-to-age factor methods 
in general. An understanding of how the aggregate distribution 
of losses changes with time would be a valuable tool. 
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EXHIBIT 1 

RESULTSOFLOSSDEVELOPMENTMETHODS 

MEAN PREDICTION ERROR 
Accident Year 

Method r 1 2 3 4 

I 2 13,627 31,498 83,862 482,307 
II 1 13,627 21,887 40,185 121,218 
III 0 13,627 16,397 17,110 13,056 

-1 13,627 13,532 5,883 - 26,840 
-2 13,627 11,958 67 - 44,583 

STANDARD DEVIATION OF PREDICTION ERROR 
Accident Ear 

Method r 1 2 3 4 

I 2 170,234 285,556 391,868 2,406,638 
II 1 170,234 278,987 347,260 857,74 1 
III 0 170,234 277,716 345,466 672,590 

-1 170,234 277,909 353,319 613,091 
-2 170,234 278,408 363,256 592,641 



118 PREDI<Z’llON ERRORS 01; I.OSS Kl:Sl:KVI: 1:s I IMAI’ION ‘I‘lI(‘I 1NIOUtIS 

APPENDIX 

The subscript j will not be used in the appendix for clarity. 
The goal here is to find w, such that Var(K) is minimized. If 

Var(K) = h(r) = C x[~‘w;?, 

where 

g’(t) = 2 c xf 1 xfln(x,). and 
i i 

h’(t) = (R’f - f’R)/d 

Since g2 > 0, we need to find t to set the numerator equal to 0 
or ~‘f = f’~. With some factoring this reduces to 

C 1: C .X~+r-2111(Xi) = C xf’+rp2 C xfln(xj). 
i i i i 

By inspection, t = 2 - r solves this equation. 

Using the first derivative test, it will be shown that, as t passes 
through 2 - r, the sign of h’(r) changes from negative to positive, 
indicating that this is a minimum. That is, show 

1. Ift<2-r then 

xxi c x~‘tr-21n(xi) < c J$+‘-’ c x:ln(xi) (A.l) 
i i i i 

and h’(l) is negative. 

2. If t > 2 - r then h’(f) is positive. 
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First, let 
t<2-r. 

Then 
2t<2-ri-t, 

and 
2t+r-2<t. 

Also, let 

xi > 1.0 for all i, and xi # xj for at least one (i, j). 

These two conditions are easily met for the loss data being 
considered. Since 

t>2t+r-2, 

and 
c x: > c x;t+r-2. 

i i 

Equation A.1 is equivalent to the inequality 

Cx?f+r-2 lIl(Xi) 

i I 
1 Xytrp2 

i 

< C *:lIl(Xi)/ C Xi. 

i i 

(A.2) 
For given xis, the left side is in the form of a weighted average 
of ln(xi) with weights equal to 

X2t+r-2 
1 

I 
C Xft+r-2, 

i 

and the right side is also a weighted 
weights 

(A.3) 

average of ln(xi) with 

x: xx:. I i 
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So, if 

C xDn(xi)/ )Jxt) (A4 
i i 

is a monotonically increasing function of t, Equation A.2 will be 
satisfied because 2t + r - 2 < t. 

Taking the first derivative of Equation A.4 with respect to t 
yields 

CX:lIl(Xi)2/cX: - (JJXh(Xi,)2/ (xx:)‘. 

i i i i 

(A.5) 
The form of Equation A.5 is algebraically identical to the vari- 
ance formula 

Var = E[X2] - E[X12, 

where the probabilities are the right side weights and the random 
variable is ln(xi). 

According to Mood, Graybill and Boes [4], the Jensen in- 
equality says that if X is a random variable with mean E[X], 
and g(x) is a convex function, then E[g(x)] 1 g(E[X]). It fol- 
lows that this will hold for Equation AS. In this case g(x) = x2 
is convex, so the derivative in Equation A.5 is greater than or 
equal to zero. In fact, the only case where the derivative equals 
zero is when the probability of a given X is concentrated at a sin- 
gle point, or in this case xi = xj for all (i,j), which isn’t allowed. 
This implies that the derivative is strictly positive and Equation 
A.4 is monotonically increasing which, in turn, implies that Equa- 
tion A.1 and Equation A.2 hold since 2t + r - 2 < t. This means 
that h’(t) is negative for t < 2 - r, which is what we meant to 
show. 

If we now consider condition 2 from above, the same ar- 
gument holds for t > 2 - r, implying that h’(t) is positive. This 
shows that h’(t) changes sign from negative to positive, and that 
t=2-risaminimum. 


