
RESIDUALS AND INFLUENCE IN REGRESSION 
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The purpose of this paper is to cover some techniques in sta- 
tistics that are important for testing the appropriateness of a 
fitted regression equation. These techniques, which are often 
used by statisticians, are not completely covered in the Pro- 
ceedings. Spectjkally, the areas discussed are: 

l Elimination of the Constant in the Regression Equation 

l Regression Diagnostics 

l Analysis of Residuals 

1. INTRODUCTION 

Estimating the parameters of a regression equation entails more 
than simply fitting a line to a set of data. During the estimation 
process, it is important to determine if the underlying assumptions are 
met and whether the equation accurately models the studied process. 

The purpose of this paper is to discuss some aspects of regression 
that are important in testing the appropriateness of the fitted regres- 
sion equation. These aspects, some of which are briefly covered in 
the present Syllabus are: the constant term in the multiple regression 
equation, regression diagnostics, and the analysis of residuals. It 
should be noted that the material described is contained in the refer- 
ences listed at the end of this paper. 

2. THE CONSTANT TERM 

At least two papers in the Proceedings [(l),(5)] suggest removing 
the constant term in the regression equation under some circum- 
stances. The circumstances described in the papers seem to be reason- 
able causes for removal of the constant term. For example, one reason 
outlined is that the constant does not explain any of the change in the 
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dependent variable. Thus, the constant term should be carefully scru- 
tinized and perhaps removed. Another suggested reason to remove 
the constant is to achieve a regression model which is intuitively 
sensible. Unfortunately, the removal of the constant, especially when 
it is statistically significant, tends to impair the accuracy of the model. 
Hence, something should be added to compensate for the removal of 
the constant. 

Both papers seem to imply that the constant should be eliminated 
if the corresponding t-statistic is insignificant (Le., It I < 2 ). Or, if the 
t-statistic is significant, one should try to search for another inde- 
pendent variable in an attempt to reduce the significance of the con- 
stant term. 

These procedures are unreliable for three reasons: 

1. Although it is sometimes not clearly stated in statistics 
texts, the objective in the traditional statistical test is to 
decide whether or not to reject the null hypothesis. Ac- 
ceptance of the null hypothesis is not the issue. For ex- 
ample, in analysis-of-variance (ANOVA), the null 
hypothesis (Ho) is that pI = p2 = . . . = pn. If the F-statistic 
is significant, one may reject the null hypothesis. Even in 
the absence of a high F-statistic, the null hypothesis is 
difficult to believe; all one can say is that the hypothesis 
cannot be proved false (i.e., fail to reject Z-Q. 

2. Eliminating the constant gives the origin (which can be 
considered one observation) an undue amount of lever- 
age on the fitted regression equation (the subject of lever- 
age is discussed in more detail in the next section). As a 
result of this elimination, the regression line is forced 
through a particular point, the origin. In other words, the 
origin, as an observation, is given special treatment be- 
cause it is not subject to the least squares constraint (i.e., 
minimize the sum of squares). Thus, the origin has more 
influence on the regression model than a typical observa- 
tion. 
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3. An additional independent variable may not be easily 
found. 

This is not to say that one should never eliminate the constant in 
the regression equation. The point is that this elimination should not 
be considered lightly. We will illustrate this with a numerical exam- 
ple in the next section. 

3. REGRESSION DIAGNOSTICS 

When analyzing the appropriateness of a regression equation, 
most statisticians review the data to see which observations are “in- 
fluencing” the estimation of the regression equation coefficients. 
More generally, the statistician wants to identify subsets of the data 
that have disproportional influence on the estimated regression 
model. As discussed by Belsley et al. [2], these influential subsets can 
come from a number of sources: 

1. improperly recorded data, 

2. errors that are inherent in the data, and 

3. outliers that are legitimately extreme observations, 

Belsley et al. indicate some interesting situations that might be 
subject to detection by diagnostics. Exhibit 1 summarizes these situ- 
ations. Part 1 displays the ideal situation: All the data is essentially 
grouped together. In Part 2, the point labeled z is an aberration or 
outlier; but, since it is near X there is no adverse effect on the slope. 
However, the estimate of the intercept will obviously be influenced. 
Part 3 also displays a data set with an outlier. However, the outlier in 
this example is consistent with the slope indicated by the remaining 
data. Because of this consistency, adding the outlier to the regression 
calculation reduces the variance of the parameter estimates (i.e., im- 
proves the quality of the regression). Generally, if the variance of the 
independent variable is small, slope estimates will be unreliable. Part 
4 is a problem situation, since the outlier essentially defines the slope. 
In the absence of the outlier, the slope might be anything. The outlier 
has extreme influence on the slope. Part 5 is a case where there are 
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two outliers that are both influential and whose effects are comple- 
mentary. Such a situation may call for use of one of the following 
procedures: 

1. 

2. 

deleting the observations, 

downweighting (i.e., giving less weight to the observa- 
tions), 

3. reformulating the model (e.g., adding or deleting inde- 
pendent variables); or 

4. where possible, using more observations. 

Part 6 displays a situation where deletion of either outlier has little ef- 
fect on the regression outcome because neither outlier exerts much 
influence upon the regression parameters. Parts 5 and 6 highlight the 
need to examine the effects of general subsets of data. 

To demonstrate some of these situations more clearly, we consider 
the numerical data and regression results on Exhibit 2, Part 1. This 
data set, which is plotted on Part 2, is similar to the pattern displayed 
on Exhibit 1, Part 1. The regression results, as expected from the 
uniformity of the plot, indicate a very good fit. 

In order to illustrate the Exhibit 1, Part 2 situation, the point (7, 
14.3) was added to the base data set. The regression results and the 
plot of the data are on Exhibit 2, Parts 3 and 4, respectively. It is 
interesting to note how the additional observation influenced the pa- 
rameter estimates. The constant changed from .702 to 1.171. How- 
ever, the slope estimate change was negligible (JO8 to .784). 

The Exhibit 1, Part 3 case can be demonstrated by adding the 
point (17, 14.3) in lieu of (7, 14.3). This new outlier is consistent with 
the remaining data (i.e., it lies on the path of the line indicated by the 
base data set). The regression results and the plot for this revised data 
set are displayed on Exhibit 2, Parts 5 and 6, respectively. The results 
indicate minimal change in the parameter estimates. Hence, (17, 14.3) 
does not have significant influence on the regression model. How- 
ever, adding the point (17, 14.3) decreased the variance of the pa- 
rameter estimates. It should also be noted that the standard error of 
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the residual associated with this outlier is relatively smaller than the 
standard errors associated with all the other observations. The magni- 
tude of the standard error for a residual relative to the other standard 
errors is an indication of the leverage of a point (i.e., the potential of 
the point to influence the calculation of the regression equation). 
Leverage depends on whether an observation is an outlier with re- 
spect to the x axis. 

To demonstrate another example of leverage, the point (17, 10) 
was used instead of (17, 14.3) and a new regression equation was 
calculated. The regression results and the plot can be found on Ex- 
hibit 2, Parts 7 and 8, respectively. The contrast between the two 
outliers, (7, 14.3) and (17, lo), is interesting. The outlier (7, 14.3), an 
outlier with respect to the y axis, is about 8 units away from where it 
“should be.” The other outlier, (17, lo), an outlier with respect to 
both the x and y axes, is only about 4 units away from where it 
“should be.” However, the influence of (17, 10) on the parameter 
estimates is much greater than that of (7, 14.3). As mentioned earlier, 
the (7, 14.3) outlier influenced only the estimate of the constant. 
There was a negligible change in the estimate of the slope. 

The estimates of the parameters under the varying data sets are 
summarized in the following table: 

Base Sg Sgtmyj~-lglm 1 f4,3_) j%t-vj<~ ( 17, 10) 
Intercept .702 1.171 1.394 

Slope .808 .784 .705 

As indicated by the table, the point (17, 10) influences both the inter- 
cept and slope estimates to a much greater extent than (7, 14.3). 

At this time we return to the question of eliminating the constant. 
It is interesting to note the situation of removing the constant term 
when fitting a regression line to the base data set (Exhibit 2, Part 1). 
The regression analysis of the base data set indicates that the t-statis- 
tic for the constant term is not “statistically significant.” However, 
removing the constant term from the regression equation influences 
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the slope estimate considerably. The coefficient of the independent 
variable is now .883 as compared to .808 . 

The preceding examples indicate that when there are two or fewer 
independent variables, scatter plots such as Exhibit 1 can quickly 
reveal any outliers. However, when there are more than two inde- 
pendent variables, scatter plots may not reveal multivariate outliers 
that are separated from the bulk of the data. What follows is a discus- 
sion of some diagnostic statistics that are useful in detecting such 
outliers. 

There are a number of different statistics used by statisticians to 
detect outliers in the data. One such statistic is Cook’s Di (or Cook’s 
Distance) statistic. The statistic is named after the statistician R. D. 
Cook. Cook’s Dj measures the influence of the ith observation. It is 
based on the difference between two estimators (one estimator in- 
cludes the i’ observation in the data; the other excludes the ith obser- 
vation). Using matrix notation, Cook’s Di is defined as follows: 

Di = (B - f3(i)}TXTX( fi - &i))/Ps2, 

where : 

X 

XT 

s 

hi) 

P 

is the n by p matrix that contains the values of the inde- 
pendent variables (i.e., n different values of the (p-l) 
independent variables together with a first column that is 
equal to unity, representing the constant); this is the same 
X that is used in the familiar multiple regression equation 
Y = XB + e (see, for example, Miller and Wichern [6, sup- 
plement 5B]); 

is the transpose of X, 

is the usual least squares estimator vector of p by 1 di- 
mensions; 

is the least squares estimator after the ith data point has 
been omitted from the data, also p by 1 dimensions; 

is the number of independent variables plus one; 
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s2 is the estimate of variance provided by residual mean 
square error from using the full data set; 

1 &B(i) 1 is the difference between the two p by 1 vectors, also p 
by 1. 

A large Di represents an influential observation; that is, an obser- 
vation that has more than the average influence on the estimation of 
the parameters. Presently, there is no formal definition of a “large 
II;.” However, there are some general rules that statisticians follow. 
First, if Di > 1, then the observation should probably be considered 
influential. Second, if all Dis are below I, a value considerably 
greater than the other values should be considered influential. Once a 
point with a large Di has been identified, the actuary would want to 
examine the point to be certain that such an observation is typical and 
not an aberration. With Cook’s Di, the actuary can review all outliers 
and decide whether or not to eliminate an observation. This process is 
somewhat analogous to the reserving actuary eliminating high/low 
loss development link ratios from an average. 

The preceding formula for Cook’s Di is rather cumbersome. For- 
tunately, it is standard output for most statistical software packages. 

The so-called hat statistic, h,i, is another tool that is helpful in 
determining which observations have significant leverage. Using ma- 
trix notation, the hat matrix (which contains the hat statistics) can be 
derived from the usual regression equations: 

Y=Xp+e, 

P=$; 

Since b = (XTX)-t XTY, 

P=,xT,-I XTY, 

= HY, 

where H, the II by n hat matrix, is defined as: 
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H = X(XTxy’XT. 

H is called the hat matrix because it transforms the vector of 
observed responses, Y, into the vector of fitted responses, ?. From 
this, the vector of residuals can be defined as: 

= Y - X(X9&y XT Y 

= [I-WY. 

It is shown in Weisberg [8] that: 

E(Z;) = 0, and Va.r (ZJ = ~2( l-hii), 

where the hat statistic, h,, is the th diagonal element of H. This is in 
contrast to the errors, e;, for which the variance is constant for all i. 
Incidentally, the variance for $; is dhii. 

Hence, cases with large values of hii will have small values of 
Var (si). As hii approaches unity, the variance of the ith residual ap- 
proaches zero. In other words, as hii approaches unity, -Qj (the esti- 
mate) approaches the observed value, 4’;. This is why h;i is called the 
leverage of the ith observation. The effect of the ith observation on the 
regression is more likely to be large if hi; is large. Similar to Cook’s 
Di, the hat matrix is standard output from common statistical software 
packages. 

How large is a “large” hii ? This issue is addressed by Belsley et 
al. They show that, if the explanatory variables are independently 
distributed as the multivariate Gaussian, it is possible to compute the 
exact distribution of certain functions of the hiis. Specifically, 
(n-p)[hii-( lln)]l( l-h;i)~l) is shown to be distributed as F with p-1 
and n-p degrees of freedom. For 1~10 and n-+50, the 95% value 
for F is less than 2. Hence, 2pln is roughly a good cutoff (twice the 
balanced average h;i). 
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At this point, it is appropriate to discuss the difference between 
influence and leverage. The leverage of an observation was just de- 
fined as hii. Note that this is independent of the dependent variable. 
Hence, the definition of leverage ignores the role played by yi (the 
observation). Influence, on the other hand, is defined as follows: 

A case is said to be injuential if appreciable changes in 
the fitted regression coefficients occur when it is re- 
moved from the data [7]. 

Another way to look at the difference between influence and lev- 
erage is as follows. The hiiS are indicating how well the independent 
data is “spread out.” Exhibit 1, Part 4 displays data that contain an 
observation that has leverage. The amount of leverage would be re- 
duced if there were more observations with larger independent values 
near that point’s independent value. 

Cook’s Di actually indicates how much of the leverage is being 
exerted by the observation on the estimation of the coefficients. 
Therefore, Cook’s Di is more helpful in analyzing a regression model. 

It is interesting to examine the relationship between hii and Di to 
understand the difference between influence and leverage. Weisberg 
[8] derives the following relationship: 

This formula is helpful in a number of ways. First, it shows that 
Cook’s Di can be calculated from data output of the full regression 
without the need to recompute estimates excluding observations. Sec- 
ond, it displays the relationship of Cook’s Di, the studentized residu- 
als, and the measure of leverage. Third, it shows explicitly that the 
hat diagonal describes only the potential for influence. Di will be 
large only if both hii and the associated residual are large. 

This clarification is important ‘because the two terms (influence 
and leverage) are sometimes used synonymously. For example, Cook 
and Weisberg [3] mention authors who interpret hii as the amount of 
leverage or influence. 
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Thus far, this discussion has focused on “single row” diagnostics. 
As mentioned earlier, Exhibit 1, Part 6 indicates the need for multiple 
row diagnostics; for example, in situations where one outlier masks 
the effect of another outlier. Such techniques exist and the interested 
reader is referred to Belsley et al [2]. 

To illuminate the use of these diagnostics, a multiple regression 
model is fitted to some pure premium data in Exhibit 3. The model 
used is similar to some work performed by the Insurance Services 
Office; namely, the alternative trend models. 

In this example, pure premium (PP) is the dependent variable, 
while the Consumer Price Index (CPI) and the change in the Gross 
National Product (GNP) are the independent variables. It should be 
noted that the values of these variables are realistic, but fabricated for 
the example. Exhibit 3, Part 1 displays results from fitting a regres- 
sion model to 10 observations. The model fitted is as follows: 

Pure Premium = b,, + b, CPI + &GNP. 

Including all 10 observations in the calculation produces an excel- 
lent fit, as indicated by the adjusted R*. Nevertheless, the residuals do 
become relatively larger as the pure premium increases. The hii val- 
ues indicate that the 1” and the gth observations have a considerable 
amount of leverage. The D, value indicates that the 1” observation is 
not influencing the model’s coefficients. However, the Dg value does 
indicate that the gth observation has significant influence. In order to 
improve the model, consideration should be given to removing the gth 
observation. Exhibit 3, Part 2 displays output excluding this observa- 
tion. These results can be summarized as follows: 

1. The adjusted R* improved slightly. 

2. The residuals are now more stable than before. 

3. The values of Di are stable. 
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4. ANALYSIS OF RESIDUALS 

Analysis of residuals is touched upon in some of the present Sylla- 
bus readings. As indicated in the readings, residuals can be helpful in 
determining if two required regression assumptions have been vio- 
lated; namely, the error terms must be independent and the variance 
must be constant for all observations. Violations of these assumptions 
are associated with the terms autocorrelation and heteroscedasticity, 
respectively. 

Heteroscedasticity, or non-constant variance, is typically detected 
by using a so-called residual plot [6]. If the plot of residuals is shaped 
like a cone (see Exhibit 4), it is likely that heteroscedasticity exists. 
These residual plots are also helpful in determining whether the re- 
gression equation needs an additional independent term. 

It is important to note (as mentioned in the previous section) that 
the variance of pi is not a constant for all i. As a matter of fact, it 
would be unusual for all the e”i7s to have the same variance. That is, it 
is possible to have a pattern similar to Exhibit 4 simply because the 
hiiS are not constant. 

Improved diagnostics can be achieved by dividing the re$duals by 
an estimate of the standard error. Specifically, the residual, ei, should 
be divided by S( l-hii)1’2 for all i. These scaled residuals, also known 
as the studentized residuals, will all have a common variance, if the 
model is correct. The studentized residuals can then be used, graphi- 
cally, to test for heteroscedasticity. 

An additional point which is not em hasized in many books is the 
reason the residuals are plotted against s and not Y. The reason is that 
the residuals and the actual observations are correlated, but the re- 
siduals and the fitted values are not. 

This can be shown [4] by calculating the sample correlation coef- 
ficients between the residuals and the actual and fitted observations. 
First, the sample correlation coefficient between e and Y, re,., is calcu- 
lated as follows: 
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The numerator, 

~(ei-~( Yi-~ = Cei( Yi-y) since Z = 0, if a constant is in the model 

= ~iYi (z=O) 

= eTY in matrix notation 

= eTe because eTe = YT(z-H)T(z-H)Y 

= YT(Z-H)Y 

= eTY 

= Residual sum of squares. 

Therefore, 

rev = [ Residual sum of squares / Total sum of squares} “* = ( l-R2)“2. 

The calculation of r,; is similar to the above, 

E(e+)( P-T) = ~,P, = eT? = YT(Z-H)THY = 0. 

Hence, re; = 0. 
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5. CONCLUSIONS 

The field of statistics is a tremendous resource that, except for a 
theoretical foundation, goes untapped by casualty actuaries. I hope 
this paper adds modestly to the knowledge of some actuarial practi- 
tioners and inspires other such summaries. 
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EXHIBIT 1 
Part 6 



Intercept 
Coefficient 

X 
2.50 
3.00 
3.00 
3.00 
4.00 
4.00 
5.00 
5.50 
6.00 
6.50 
7.00 
7.00 
7.50 
8.20 
9.00 
9.00 
9.00 
9.50 

10.00 
10.50 
11.00 
11.00 
12.00 
12.00 
12.50 
13.00 
13.00 
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EXHIBIT 2 
Part 1 

REGRESSION ANALYSIS 

Parameter Standard 
Estimates Error 

0.7016 0.5387 
t statistic 

1.302 
Probability >kJ 

0.2046 
0.8079 0.0628 

Adjusted R-Squared: 

12.870 0.0001 

Y 
2.10 
2.30 
3.30 
4.30 
3.30 
5.40 
4.30 
5.60 
7.30 
4.40 
6.00 
6.50 
7.50 
6.30 
6.60 
8.50 
9.00 
6.50 
9.30 
8.00 
8.50 

10.60 
10.00 
11.50 
12.00 
10.00 
12.50 

Predicted 
Value Y 

2.7214 
3.1254 
3.1254 
3.1254 
3.9333 
3.9333 
4.7413 
5.1453 
5.5492 
5.9532 
6.3572 
6.3572 
6.761 I 
7.3267 
7.973 1 
7.973 1 
7.9731 
8.3770 
8.7810 
9.1850 
9.5890 
9.5890 

IO.3969 
IO.3969 
IO.8009 
11.2048 
11.2048 

0.8636 

Std. Err. 
Pred. of 

0.3985 
0.372 1 
0.3721 
0.372 1 
0.3220 
0.3220 
0.277 I 
0.2574 
0.2403 
0.2262 
0.2158 
0.2158 
0.2097 
0.2088 
0.2189 
0.2189 
0.2189 
0.2306 
0.2458 
0.2639 
0.2843 
0.2843 
0.3302 
0.3302 
0.3552 
0.3810 
0.3810 

Residual 
-0.6214 
-0.8254 
0.1746 
1.1746 

-0.6333 
1.4667 

-0.4413 
0.4547 
I .7508 

-1.5532 
-0.3572 
0.1428 
0.7389 

- 1.0267 
-1.3731 
0.5269 
1.0269 

- 1 x770 
0.5190 

-1.1850 
- 1.0890 
1.0110 

-0.3969 
1.1031 
I.1991 

-1.2048 
I .2952 

Std. Err. of 
Residual 

1.0050 
1.0151 
1.0151 
1.0151 
1.0321 
1.0321 
1.0450 
1.0500 
1.0541 
1.0572 
1.0594 
1.0594 
1.0606 
1.0608 
1.0587 
1.0587 
I .0587 
I .0562 
1.0528 
I .0484 
1.043 I 
1.043 1 
I .0295 
1.0295 
I.021 I 
1.0117 
1.0117 
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Part2 

Y 
16 

14 

I2 

10 

8 

6 

4 

AA 
A^ 

A A 

A 
A ADA 

A A AA A AA 

8 A 
A A 

2 AA 

0 I I I I I I I 2.5 3.5 I I 4.5 I 
5.5 

I 
6.5 

I 
7.5 

I 
8.5 

I 
9.5 10.5 

I 
11.5 12.5 13.5 14.5 15.5 16.5 

x 



Intercept 
Coefficient 

Parameter 
Estimates 

1.1709 
0.7840 0.1078 

Adjusted R-Squared: 

X Y 
2.50 -2.10 
3.00 2.30 
3.00 3.30 
3.00 4.30 
4.00 3.30 
4.00 5.40 
5.00 4.30 
5.50 5.60 
6.00 7.30 
6.50 4.40 
7.00 6.00 
7.00 6.50 
7.50 7.50 
8.20 6.30 
9.00 6.60 
9.00 8.50 
9.00 9.00 
9.50 6.50 

10.00 9.30 
10.50 8.00 
11.00 8.50 
11.00 10.60 
12.00 10.00 
12.00 1 I .50 
12.50 12.00 
13.00 10.00 
13.00 12.50 
7.00 14.30 
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EXHIBIT 2 
Part 3 

REGRESSION ANALYSIS 

Standard Error t statistic Probability > In 
0.9196 1.273 0.2142 

7.276 

0.6579 

0.0001 

Predicted Std. Err. of 
Value Y Pred. 

3.~1319 0.6784 
3.5241 0.6329 
3.5241 0.6329 
3.5241 0.6329 
4.3085 0.5465 
4.3085 0.5465 
5.0929 0.469 I 
5.4851 0.4353 
5.8772 0.4058 
6.2694 0.3817 
6.6616 0.3640 
6.6616 0.3640 
7.0538 0.3538 
7.6029 0.353 1 
8.2304 0.3715 
8.2304 0.3715 
8.2304 0.3715 
8.6226 0.3923 
9.0148 0.4191 
9.4070 0.4507 
9.7992 0.4863 
9.7992 0.4863 

10.5836 0.5662 
10.5836 0.5662 
10.9757 0.6094 
I 1.3679 0.6542 
I I .3679 0.6542 
6.6616 0.3640 

Residual 
-1.0319 
-1.2241 
-0.2241 
0.7759 

- I .0085 
1.0915 

-0.7929 
0.1149 
1.4228 

- 1.8694 
-0.6616 
-0.1616 
0.4462 

-I .3029 
- 1.6304 
0.2696 
0.7696 

-2.1226 
0.2852 

- 1.4070 
- 1.2992 
0.8008 

-0.5836 
0.9164 
1.0243 

-I .3679 
I.1321 
7.6384 

Std. Err. of 
Residual 

I.7312 
I .7484 
1.7484 
1.7484 
1.7773 
1.7773 
1.7992 
1.8077 
1.8146 
1.8198 
1.8234 
1.8234 
1.8254 
1.8256 
1.8219 
1.8219 
1.8219 
1.8175 
1.8116 
1.8039 
1.7947 
1.7947 
1.7711 
1.7711 
1.7567 
I .7405 
I .7405 
I .8234 



EXHIBIT 2 
Part 4 

Y 
16 - 

14 - 

12 - 

10 - 

8- 

6- 

4- 

A 

A A 

$ A 
A A 

2 AH 

0 I I I I I I I I I I I I 1 I I 
2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 

X 



Intercept 
Coefficient 

X Y 
2.50 2.10 
3.00 2.30 
3.00 3.30 
3.00 4.30 
4.00 3.30 
4.00 5.40 
5.00 4.30 
5.50 5.60 
6.00 7.30 
6.50 4.40 
7.00 6.00 
7sKl 6.50 
7.50 7.50 
8.20 6.30 
9.00 6.60 
9.00 8.50 
9.00 9.00 
9.50 6.50 

10.00 9.30 
10.50 8.00 
11.00 8.50 
11 .OO 10.60 
12.00 10.00 
12.00 11.50 
12.50 12.00 
13.00 10.00 
13.00 12.50 
17.00 14.30 
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EXHIBIT 2 
Part 5 

REGRESSION ANALYSIS 

Parameter 
Estimates 
0.7229 

WardError ~_ t Statistic 
0.4930 I .466 

Prqrility > I!1 

0.8048 0.0547 14.713 

Adjusted R-Squared: 0.8887 

0.1546 
0.0001 

Predicted Std. Err. of 
Value Y Pred. 
2.7348 0.3723 
3.1372 0.3496 
3.1372 0.3496 
3.1372 0.3496 
3.9420 0.3064 
3.9420 0.3064 
4.7467 0.2674 
5.1491 0.2502 
5.5515 0.2348 
5.9539 0.2218 
6.3562 0.2115 
6.3562 0.2115 
6.7586 0.2044 
7.3220 0.2004 
7.9658 0.2047 
7.9658 0.2047 
7.9658 0.2047 
8.3681 0.2119 
8.7705 0.2223 
9.1729 0.2354 
9.5753 0.2509 
9.5753 0.2509 

10.3801 0.287 1 
10.3801 0.287 1 
10.7824 0.3073 
11.1848 0.3285 
11.1848 0.3285 
14.4039 0.5 192 

Residual 
-0.6348 
-0.8372 
0.1628 
1.1628 

-0.6420 
1.4580 

-0.4467 
0.4509 
1.7485 

-1.5539 
-0.3562 
0.1438 
0.7414 

- 1.0220 
- 1.3658 
0.5342 
1.0342 

-1.8681 
0.5295 

-1.1729 
- 1.0753 
1.0247 

-0.3801 
1.1199 
1.2176 

-1.1848 
1.3152 

-0.1039 

Std. Err. of 
Residual 

0.9929 
1.0011 
1.0011 
1.0011 
1.0152 
1.0152 
1.026 1 
1.0305 
I .0341 
1.0369 
I .039 1 
1.039 I 
1.0405 
1.0413 
I .0404 
1.0404 
1.0404 
1.0390 
1.0368 
1.0339 
I .0303 
1.0303 
1.0208 
1.0208 
1.0149 
1.0082 
1.0082 
0.9246 



E 

EXHIBIT 2 
Part6 

A 

AAA 

A A A 
it AAA 

A AA 

0’1 I I I 1 I I I I I 1 I I I I 
2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 

X 



149 RESlDUALSANDINF'LUENCEINREGRl?SSION 

EXHIBIT 2 
Part 7 

REGRESSION ANALYSIS 

Parameter 
Estimates Standard Error t Statistic Probability > Id 

Intercept 1.3944 0.6061 2.3006 
Coefficient 0.7046 0.0672 10.485 1 

Adjusted R-Squared: 0.8013 

X Y 
2.50 2.10 
3.00 2.30 
3.00 3.30 
3.00 4.30 
4.00 3.30 
4.00 5.40 
5.00 4.30 
5.50 5.60 
6.00 7.30 
6.50 4.40 
7.00 6.00 
7.00 6.50 
7.50 7.50 
8.20 6.30 
9.00 6.60 
9.00 8.50 
9.00 9.00 
9.50 6.50 

10.00 9.30 
10.50 8.00 
11.00 8.50 
11.00 10.60 
12.00 10.00 
12.00 11.50 
12.50 12.00 
13.00 10.00 
13.00 12.50 
17.00 10.00 

Predicted Std. Err. of 
Value Y -Pred. 

3.1560 0.4577 
3.5083 0.4298 
3.5083 0.4298 
3.5083 0.4298 
4.2129 0.3767 
4.2129 0.3767 
4.9175 0.3288 
5.2698 0.3076 
5.6221 0.2887 
5.9745 0.2727 
6.3268 0.2601 
6.3268 0.2601 
6.6791 0.2513 
7.1723 0.2464 
7.7360 0.2516 
7.7360 0.2516 
7.7360 0.2516 
8.0883 0.2605 
8.4406 0.2733 
8.7930 0.2895 
9.1453 0.3084 
9.1453 0.3084 
9.8499 0.3530 
9.8499 0.3530 

10.2022 0.3778 
10.5545 0.4038 
10.5545 0.4038 
13.3730 0.6383 

Residual 
- 1.0560 
- 1.2083 
-0.2083 
1.2417 

-0.9129 
1.1871 

-0.6175 
0.3302 
1.6779 

- 1.5745 
-0.3268 
0.1732 
0.8209 

-0.8723 
-1.1360 
0.7640 
1.2640 

-1.5883 
0.8594 

-0.7930 
-0.6453 
1.4547 
0.1501 
1.6501 
1.7978 

-0.5545 
1.9455 

-3.3730 

0.0297 
0.0001 

Std. Err. of 
Residual 

1.2206 
1.2307 
1.2307 
1.2307 
1.2480 
1.2480 
1.2615 
1.2668 
1.2713 
1.2748 
1.2774 
1.2774 
1.2792 
1.2801 
1.2791 
1.2791 
1.2791 
1.2773 
1.2747 
1.2711 
1.2666 
1.2666 
1.2549 
1.2549 
I .2477 
1.2395 
1.2395 
1.1367 



Y 
16 - 

14 - 

I2 - 

10 - 

8- 

6- 

4- 

EXHIBIT 2 
Part8 

A 

$t AAA 

A A A AA 

AAA 
A A A 

i A 
A A 

2 
1 

AA 

0 ' , I I I I I I I I I I I I I I 

2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 II.5 12.5 13.5 14.5 15.5 16.5 

X 



Intercept 
GNP 
CPI 

Estimates Standard Error t Statistic 
-54.262 7.051 -7.696 

2.570 0.449 5.724 
1.024 0.037 27.676 

Adjusted R-Squared: 0.9916 

Probability > Itl 
0.0001 
0.0007 
o.ooo1 

Obs PP GNP CPI Fitted PP Residual 
1 3x 3.00 148 ‘os.o-- -0.0446 
2 111.0 3.07 153 110.3 0.6540 
3 114.0 2.97 157 114.2 -0.1863 
4 118.0 4.14 I58 118.2 -0.2171 
5 126.0 4.00 166 126.1 -0.05 18 
6 128.0 3.42 170 128.7 -0.6586 
7 134.0 2.67 177 133.9 0.0985 
8 134.0 1.78 178 132.6 1.3612 
9 131.0 1.09 180 132.9 -1.9144 
10 138.0 1.50 183 137.0 0.959 1 

Obs 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Residual Plot 
-2 -1 0 1 

* 

**** 

* 

** 

** 

2 Hat Diagonal Cook’s D 
0.4818 0.001 
0.2808 0.073 
0.1939 0.003 
0.3069 0.009 
0.3664 0.001 
0.2345 0.055 
0.2108 0.001 
0.2147 0.203 
0.3979 1.269 
0.3125 0.192 
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EXHIBIT 3 
Part 1 

ANALYSIS OF REGRESSION MODEL 

Parameter 

151 



152 RESIDUALSANDINFLUENCEINREGRESSION 

Intercept 
GNP 
CPI 

Obs 
I 
2 
3 
4 
5 
6 
7 
8 
9 

Obs 
1 
2 
3 
4 
5 
6 
7 
8 
9 

EXHIBIT 3 
Part 2 

ANALYSIS OF REGRESSION MODEL 

Parameter 
Estimates Standard Error t Statistic 
-5 1.960 3.234 -16.067 

1.987 0.232 8.565 
1.022 0.017 60.118 

Adjusted R-Squared: 0.9984 

PP GNP 
105.0 
111.0 

3.00 
3.07 

114.0 2.97 
118.0 4.14 
126.0 4.00 
128.0 3.42 
134.0 2.67 
134.0 1.78 
138.0 1.50 

Residual Plot 
-2 -1 0 1 

* 

** 
* 

** 

* 
* 

** 

CPI Fitted PP 
148 !05.3-- 
153 110.5 
157 114.4 
158 117.8 
166 125.7 
170 128.6 
177 134.3 
178 133.5 
183 138.1 

2 Hat Diagonal Cook’s D 
0.4899 0.206 
0.2856 0.200 
0.2018 0.080 
0.3423 0.074 
0.3928 0.198 
0.2353 0.212 
0.2310 0.038 
0.3382 0.288 
0.483 1 0.010 

Probability > ltl 
0.0001 
0.0001 
0.0001 

Residual 
-0.2673 ~__~~ 
0.4832 

-0.4064 
0.247 1 
0.3487 

-0.5874 
-0.25 19 
0.4941 

-0.0600 



EXHIBIT 4 

P 

* 

* * 
* * 

* * * 
* * 

* * * 

* 

* 

* * 

* 

* 

* 

* 
* 

* 
* 

* 

* 

* 
n 
Y 

* * * * 
* * * 

* * * * * 
* * * 

* * * 
* * 

* * 
* * * 


