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DISCUSSION BY STUART A. KLUGMAN, PH.D. 

While actuaries have had a Bayesian view of the world for dec- 
ades, the adoption of methods that adhere strictly to the principles of 
modern Bayesian analysis has been slow. In his paper, Glenn Meyers 
shows that for a particular problem such an approach is not only 
feasible, but easy to complete. I am delighted that he has continued to 
take up the Bayesian cause, and with this note, I hope to provide just 
two extensions. One is to demonstrate that Meyers employed an ap- 
proximation that was not needed for the particular prior distribution. 
The other is to provide an example that will confirm that his sugges- 
tions are indeed not limited to the Pareto distribution nor to one-pa- 
rameter distributions. 

To be fair to Meyers, and to continue his promotion of Bayesian 
methods as a practical solution to estimation problems, I will employ 
his definition of “practical:” that solutions can be obtained via simple 
spreadsheet calculations. 

1. EXACT BAYESIAN CALCULATIONS 

There have been a number of reasons for the slow adoption of 
exact Bayesian methods. One excellent discussion is Efron [3]. Aside 
from philosophical issues, there is a major computational one. Begin 
by defining the customary Bayesian estimation problem: 

x = data 

8 = parameter 

p(6) = prior density 

fixlCl> = model density 

ACll.x) = posterior density 

t(e) = quantity of interest 
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fltlx) = posterior density of. the 
quantity of interest. 

In Meyers’s paper, 8 = q, and t is the layer average severity, while 
the model density is the likelihood function. 

One standard Bayesian estimate of a parameter is the posterior 
mean. For continuous models, the formula is 

E(8lx) = 
I ef(xle)p(e)de 

h xle)p(e)de ’ 
(1.1) 

The estimate of the quantity of interest is 

E[t(e)tx] = I 
t(e~xle)p(e)de 

k xle)p(e)de . 
(1.2) 

Thus any Bayesian estimation problem using the posterior mean 
reduces to evaluating a (possibly) multi-dimensional integral. The 
number and efficiency of methods to do so have greatly increased in 
the past decade. Four methods (extensions of one-dimensional nu- 
merical integration methods, Gauss-Hermite, Tierney-Kadane, Monte 
Carlo, empirical Bayes) are outlined in Klugman [4]. Recently two 
additional methods have been developed: the Gibbs sampler (Casella 
and George [2]) and sampling-resampling (Smith and Gelfand [SJ). 
All of the methods require a large number of calculations and clearly 
do not meet our present standard of being spreadsheet-friendly. 

Meyers offers the only alternative that requires a limited amount 
of calculation: Replace the customary continuous prior distribution 
with a discrete one. The integrals then become sums and are easy to 
calculate. The question that remains is whether additional approxima- 
tions are needed in order to complete the posterior calculations. 



116 SINGLE PARAMETER PARETO 

2. EXACT CALCULATIONS FOR THE 

SINGLE PARAMETER PARETO DISTRIBUTION 

For the specific problem addressed by Meyers we have 

p(q) cc qa-‘t+ (2.1) 

(2.2) 

The prior distribution is a Gamma distribution when a and p are 
both positive, and reduces to Meyers’s noninformative prior when 
they are both zero. The posterior distribution is 

(2.3) 

where y= -An(k) + Zln(+). This is just another Gamma distribution 
and so the posterior mean is 

(2.4) 

the usual weighted average of the maximum likelihood estimator and 
the prior mean. When a = p = 0, the posterior mean is (; as in Meyers 
(so once again the “WYSIWYG” estimator is obtained) but without 
resorting to the Normal approximation. The posterior variance is 

var (qlx) = -rz+a 
wP)* . 

(2.5) 

With a = p = 0 it is (;*/n, also in agreement with Meyers. 

The difference comes when other features are desired or when 
numerical approximations are needed. The other feature desired in 
Meyers’s paper is the layer average severity. The required integral for 
the posterior mean of the layer average severity is 
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E q”+a-le-(vP)qdq , (2.6) 

which cannot be integrated analytically. A simple discretization (the 
composite trapezoid rule) should approximate this integral. For Mey- 
ers’s example, the values are n = 100, y= 57.143, R = l,OOO,OOO, 
L = 5,000,000, k = 100,000, a = 0, and p = 0. The approximate inte- 
gral, evaluating q every 0.05 from 0 to 3, produced a posterior mean 
of 18,971 and a posterior standard deviation of 9,989. These cannot 
be compared with Meyers’s paper as he did not solve this example. 

The above calculations took advantage of the fact that the Gamma 
prior distribution turned out to be conjugate for the single parameter 
Pareto likelihood. (That is, the posterior turned out to have the same 
density type as the prior. The major advantage is that the constants 
needed to make Equation 2.3 an equality can be found without inte- 
grating.) This will seldom be the case for actuarial examples. To 
continue Meyers’s example, we can use the prior that appears in his 
Exhibit 1. Exhibit 1 of this discussion provides the equivalent results 
using Meyers’s discrete prior but retaining the exact likelihood func- 
tion. The results are similar to the exact calculation done previously 
with a posterior mean of 18,972 and standard deviation of 9,989. 
These numbers are similar to those obtained by Meyers, but were not 
expected to be exactly the same. 

3. EXTENSIONS TO MULTI-PARAMETER PROBLEMS 

Avoiding the Normal approximation for the distribution of maxi- 
mum likelihood estimators-in fact, avoiding maximum likelihood 
estimators of q altogether- may make extensions of Meyers’s analy- 
sis easier. The major difficulty is that any sums must now be taken 
over a relatively large number of values. This is because, for exam- 
ple, two-dimensional approximate integration requires the square of 
the number of function evaluations as compared with a similar one- 
dimensional approximation. Rather than produce general formulas, 
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the example used previously is extended to the case of a Lognormal 
distribution. Suppose a sample of size 100 was taken and the suffi- 
cient statistics (the only numbers other than the parameter values 
needed to compute the likelihood function) were 

Cln(xJ = 1000, and C[ln(xi)J2 = 10,300. 

Thus, the maximuml\likelihood estimates of the Lognormal parame- 
ters are i = 10, and d = 3. This leads to a maximum likelihood esti- 
mate of the layer average severity of 48,770. The noninformative 
prior distribution selected is the standard one (Berger [I], pp. 83-87) 
for the normal distribution: &a) = l/o. This implies a uniform 
(over the entire real line) prior on p that is independent of the prior on 
CJ. Possible values were restricted to the range 8 < p < 12 and 
1 .O I CY I 2.5. The other relevant functions are: 

10.30@-2,000~+100~2 

= Gene 202 , (3.1) 

and 

t(p,o) = epM2 @ 
it 

ln(5,000,000)-p 
(T - 

~ 

1 t 

_ Q ln( 1 @OO@W - p _ d 
(T 

)I 

+ 4,000,ooo - (5,ooo,000) @ 
! 
1n5ym;m -li 

1 

+ 1 ,Ooo,OOO @ 
L 

ln( 1 ,ooO,OOO)-p 
(3 

1. 
(3.2) 

For the calculations, the ranges on p and cs were split into 30 
equally spaced intervals. This led to 961 function evaluations, of 
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which 13 are displayed in Exhibit 2. The relevant posterior quantities 
appear at the end of the exhibit. 

4. CONCLUSIONS 

Through his paper, Glenn Meyers has reminded us that Bayesian 
calcuations can be relatively simple, and that they provide quantities 
of great interest to actuaries (mainly the standard deviation, and per- 
haps the complete distribution of the quantity to be estimated). This 
discussion points out that there may be simpler ways to do the calcu- 
lations and that two-dimensional calculations are indeed feasible as 
Meyers indicated. 



120 SINGLE PARAMETER PARETO 

REFERENCES 

[1] Berger, James O., Bayesian Inference in Statistical Analysis, 
Second edition, New York, Springer-Verlag, 1985. 

[2] Casella, George and Edward I. George, “Explaining the Gibbs 
Sampler,” The Americun Statistician, 46, 1992, pp. 167-174. 

[3] Efron, Bradley, “Why Isn’t Everyone a Bayesian?,” The Ameri- 
can Statistician, 40, 1986, pp. l-l 1. 

[4] Klugman, Stuart A., Buyesiun Statistics in Actuarial Science 
with an Emphasis on Credibility, Boston, Kluwer, 1992. 

[5] Smith, Adrian F.M. and Alan E. Gelfand, “Bayesian Statistics 
Without Tears: A Sampling-Resampling Perspective,” The 
American Statistician, 46, 1992, pp. 84-88. 



l.& 
1.050 
I.100 
1.150 
I.200 
I .250 
I.300 
1.350 
I.400 
I.450 
1.500 
1.550 
1.600 
1.650 
1.700 
1.750 
1.800 
1.850 
1.900 
1.950 
2.000 
2.050 
2.100 
2.150 
2.200 
2.250 
2.300 
2.350 
2.400 
2.450 
2.500 

SINGLE PARAMETER PARETO 

EXHIBIT 1 

SINGLEPARAMETERPARETO-POSTERIOR ANALYSIS 
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/ b(post) B(postcdf) q*b jr4_“p r*h f*t*b 

160944 0.0000 o.oooo O.OMlO 0.00000 0.07 10512 
137822 0.0000 o.oQoo 0.00000 0.00000 0.40 554478 
118085 O.OGOO 0.0000 0.00002 o.ocQo2 1.98 233847 
101229 O.ooOl O.OoQl 0.00009 0.00010 7.95 8044Y6 
86826 0.0003 o.oco4 0.00037 0.00044 26.46 2297361 
74512 0.0010 0.0014 0.00125 0.00156 74.2 1 5529579 
63979 0.0028 0.0042 0.00361 0.00469 177.72 11370313 
54964 0.0067 0.0109 0.00903 0.01220 367.78 20214.671 
47245 0.0141 0.0249 0.01970 0.02758 664.74 31405343 
40631 0.0261 0.0510 0.03781 0.05482 1059.42 43045108 
34961 0.0430 0.0940 0.06443 0.09664 1501.62 52498447 
30099 0.0634 0.1573 0.09824 0.15226 1907.56 57414828 
25926 0.0844 0.2417 0.13498 0.215% 2187.06 56700811 
22343 0.1019 0.3436 0.16819 0.27752 2277.50 508855 12 
19265 0.1125 0.4561 0.19120 0.32502 2166.60 41739159 
16619 0.1139 0.5700 0.19931 0.34880 1892.83 31457522 
14344 O.lc64 0.6764 0.19149 0.34468 1525.98 21889173 
I2387 0.092 I 0.7684 0.17030 0.31506 1140.29 14124672 
lu702 0.0741 0.8425 0.14079 0.26750 793.00 8486676 
9251 0.0557 0.8982 0.10860 0.21177 515.19 4765789 
8000 0.0392 0.9374 0.07844 0.15688 313.75 251CKXKl 
6922 0.0260 0.9634 0.05322 0.10910 179.69 1243787 
5992 0.0162 0.9796 0.03402 0.07145 97.01 581624 
5189 0.0096 0.9892 0.02055 0.04419 49.60 257374 
4496 0.0053 0.9945 0.01176 0.02587 24.03 108049 
3897 0.0028 0.9973 0.00639 0.01438 11.07 43138 
3380 0.0014 0.9988 0.00331 0.00760 4.86 16415 
2932 O.ooO7 0.9995 0.00163 0.00383 2.03 5966 
2545 0.0003 0.9998 0.00077 0.00185 0.82 2075 
2210 0.ooo1 0.9999 0.00035 0.00085 0.31 692 
1920 0.0001 1 .oooo o.OGO17 0.00038 0.12 222 

mle Pof!t~m-ea?- F!E!sd-- low 95 high 95 
For q 1.750 1.7500 0.1749 1.400 2.100 

For E(x) 16,619 18,972 9,989 5,992 47,245 
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P (3 prior t model posterior 
8 1 1 0 9.93OE-153 3.173E-108 
8 1.75 .57143 320 l.l55E-74 2.1 OSE-30 
8 2.5 .4 14,390 7683E-65 9.818E-21 

9.867 1.75 .57143 12,154 1.989E-46 3.63lE-2 
10 1 1 20 7.175E-66 2.292E-2 1 
10 1.7 .58824 12,174 2.5938-46 4.874E-2 
10 1.75 .57143 15,172 2.658E-46 4.854E-2 
10 1.8 .55556 18,616 2.326E-46 4.1288-2 
10 2.5 .4 114,619 6.066E-5 1 7.753E-7 

10.133 1.75 .57143 18,845 1.989B46 3.63lE-2 
12 1 1 20,411 9.93OE-153 3.173E-108 
12 I .75 .57143 234,939 l.l55E-65 2.108E-30 
12 2.5 .4 560,653 7.683E-65 9.818E-21 
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EXHIBIT 2 

LOGNORMAL POSTERIOR ANALYSIS 

E(P) 10.000 
StdDev(p) .17586 

E(o) 1.754 1 
StdDev(o) .I2609 

E(r) 17,452 
StdDev(r) IO,8 11 

Note: The entries in the “model” column are the evaluation of 
Equation 3.1. The entries in the “posterior” column are the entries 
in the “model” column divided by d and then multiplied by a 
constant to make them sum to one. 


